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In this work, the hierarchical scale separation (HSS) method developed for linear systems
resulting from discontinuous Galerkin (DG) discretizations has been extended to hybridized
discontinuous Galerkin (HDG) schemes. The HSS method is related to p-multigrid techniques
for DG systems but is conceptually much simpler. Our extension of the HSS scheme to the
HDG method tested using a convection-diffusion equation for a range of benchmark problems
demonstrated excellent performance on a par with that of the HSS method for a non-hybridized
DG approximation. In the limiting case of a pure convection equation, the measured convergence
rate of the HSS scheme was significantly better than the rates demonstrated in the non-hybridized
case.

1 Introduction

Discontinuous Galerkin (DG) methods [2] combine the most attractive features of the finite volume (local
conservation, robustness for advection-dominated problems, shock-capturing features, etc.) and the finite
element (high order discretizations, Galerkin formulation, etc.) methods. However, the price is a compu-
tationally more expensive scheme, partly due to a significantly greater number of degrees of freedom than
a finite element discretization of equal order, partly caused by more expensive evaluations of element and
boundary integrals. This performance disadvantage has even more impact if a linear equation system re-
sulting from a DG discretization must be solved as a part of the solution algorithm – e.g., in an implicit
time-stepping scheme.

A number of recent publications, see, e.g., [6, 7, 8, 11, 13, 12, 15], introduced the hybridizable discontinuous
Galerkin (HDG) methods aiming to address this drawback. The main idea of the HDG method lies in the
introduction of an approximation space for traces of primary unknowns on element boundaries, relying on
classical ideas in the context of hybrid mixed methods, see, e.g., [4, 5]. This approximation space on the mesh
’skeleton’ constitutes a globally connected problem, whereas the original system unknowns are computed in a
postprocessing step by solving element-local problems that utilize those traces. This approach substantially
reduces the number of global degrees of freedom, lends itself readily to an efficient parallelization, and even
sometimes results in better convergence rates than its non-hybridizable counterparts [6].

In order to speed up the linear system solves for DG discretizations, a hierarchical scale separation (HSS)
approach has been introduced in [1] for a nonsymmetric interior penalty Galerkin (NIPG) method. The
main idea of the HSS technique is related to the p-multigrid scheme proposed for DG in [9] that, in its turn,
was motivated by a similar approach introduced for the spectral method in [14]. Contrary to the classical
h-multigrid method that utilizes a mesh hierarchy to suppress the low wave number errors present in the
finest-mesh solution, the p-multigrid method uses in the same role a hierarchy of approximation spaces on
a fixed mesh (usually corresponding to DG spaces of different polynomial order). The hierarchical scale
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separation (HSS) method goes even further and resorts to a two-space technique resulting in a much simpler
algorithm and a more complete separation of fine- and coarse-scale solutions than the p-multigrid method.
The coarse-scale problem has the computational structure of a cell-centered finite volume method and is
solved globally. The fine-scale problems are computed as local corrections to the coarse-scale solution; thus
producing a numerical algorithm highly suitable for an efficient parallel implementation. In [1], the HSS
method demonstrated performance on a par or exceeding that of the p-multigrid method. The main promise
of this type of method lies in a much reduced parallel communication overhead as compared to traditional
linear solvers; this advantage is expected to become even more significant for massively parallel applications.

In the present paper, we extend the HSS paradigm to an HDG discretization of a convection-diffusion
equation and demonstrate the performance of the method on a range of benchmark problems. The remainder
of this paper is organized as follows. In the next section, we formulate the boundary value problem for
a generic convection-diffusion equation and discretize it using an HDG method. Sec. 3 details the HSS
algorithm. Some numerical examples illustrating the performance of the proposed method are presented in
Sec. 4. Conclusions are offered in Sec. 5.

2 The hybridized discontinuous Galerkin method

In this work, we consider the two-dimensional linear convection-diffusion equation on a bounded domain Ω,

−ε∆u+∇ · (cu) = f, ∀x ∈ Ω, u = g, ∀x ∈ ∂ΩD (1)

for a constant vector c ∈ R2, a constant scalar ε ∈ R+ and functions f ∈ L2(Ω), g ∈ L2(∂Ω). ∂ΩD denotes
the Dirichlet boundary which encompasses the whole domain boundary in the convection-diffusion case, i.e.
∂ΩD = ∂Ω if ε > 0, or is limited to the inflow part of the external boundary ∂ΩD = {x ∈ ∂Ω | c · n ≤ 0}
for the pure convection ε = 0, where n denotes an an exterior unit normal to ∂Ω.

As is frequently done for DG-type methods, we rewrite this equation as a first order system,

σ = ∇u, ∇ · (cu− εσ) = f, ∀x ∈ Ω.

In order to introduce the HDG method properly, we need to define the approximation spaces. Vh is the
standard DG space, defined on a triangulation Ω =

⋃ne
k=1 Ωk as

Vh := {f ∈ L2(Ω) | f|Ωk
∈ Πp(Ωk), k = 1, . . . , ne},

where Πp is the space of polynomials of total degree at most p. Approximating the unknown u on the
skeleton of the mesh necessitates the introduction of yet another space, the so-called hybrid ansatz space.
So let Γ denote the set of all edges of the mesh, and let Γ =

⋃nf
k=1 Γk. (Every edge only occurs once,

independent of whether it is a boundary edge or not.) Then, Mh is defined by

Mh := {f ∈ L2(Γ) | f|Γk
∈ Πp(Γk), k = 1, . . . , nf}.

For a point x ∈ ∂Ωk, we define the one-sided values of a scalar quantity w = w(x) by

w−(x) := lim
ε→0+

w(x− εn) and w+(x) := lim
ε→0+

w(x + εn) ,

respectively. (Obviously, along the physical boundary of the domain, only the first expression is defined.)
The one-sided values of a vector-valued quantity v are defined analogously. Then using the standard DG
notation, the average and the jump of w and v in x are given by

{w} :=
w− + w+

2
and JwK := w−n− w+n ,

{v} :=
v− + v+

2
and JvK := v− · n− v+ · n
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respectively, where n denotes an exterior unit normal to Ωk. Note that JwK is a vector-valued quantity, and
JvK is a scalar.

The distinctive feature of the HDG method is that only degrees of freedom from Mh occur in the globally
connected system [6]. In order to clarify this, we introduce the so-called non-homogeneous local solves as
follows: Find (σnh, unh) ∈ V 2

h × Vh, such that

(σnh, τ h)Ωk
+ (unh,∇ · τ h)Ωk

= 0, ∀τ h ∈ V 2
h ;

− (cunh − εσnh,∇ϕh)Ωk
+
〈
αu−nh − εσ−nh · n, ϕh

〉
∂Ωk

= (f, ϕh)Ωk
, ∀ϕh ∈ Vh.

Note that this constitutes a discretization of the equation (1) on a cell Ωk with homogeneous boundary
conditions on ∂Ωk. In contrast, the homogeneous local solves depend on a function λh ∈Mh and are defined
by the following: For a given λh ∈Mh, find (σ(λh), u(λh)) ∈ V 2

h × Vh, such that

(σ(λh), τ h)Ωk
+ (u(λh),∇ · τ h)Ωk

− 〈λh, τ h · n〉∂Ωk
= 0, ∀τ h ∈ V 2

h ;

− (cu(λh)− εσ(λh),∇ϕh)Ωk
+
〈(

̂cu(λh)− εσ(λh)
)
· n, ϕh

〉
∂Ωk

= 0, ∀ϕh ∈ Vh.

The flux ̂cu− εσ is defined by

̂cu− εσ := cλh − α(λh − u−)n− εσ−h ,

where α is a stabilization parameter. Note that, for given λh and Ωk, this is a locally, not globally coupled
system. (And so is the non-homogeneous local solve.) Thus, it allows for a very easy parallelism. Boundary
conditions are set via λh.

The global problem that has to be solved is to seek for λh ∈Mh, such that

ah(λh, µh) :=
〈
J ̂cu(λh)− εσ(λh)K, µh

〉
Γ

= −〈Jαunh n− εσnhK, µh〉Γ =: b(µh), ∀µh ∈Mh. (2)

After obtaining the solution to the global problem λh the original unknowns uh, σh can be easily constructed
as

uh = unh + u(λh),

σh = σnh + σ(λh).

Remark 1. Note that we did not split the stability constant α into a convective and a viscous part. Usually,
this constant is assumed to be O(1).

Remark 2. It is well-known [6] that the HDG method presented here is equivalent to a DG method

(σh, τh)Ωk
+ (uh,∇ · τh)Ωk

− 〈ûh, τh · n〉∂Ωk
= 0

− (cuh − εσh,∇ϕh)Ωk
+
〈(

̂cuh − εσh

)
· n, ϕ

〉
∂Ωk

= (f, ϕh)Ωk

with numerical fluxes

ûh := {uh}+
ε

2α
JσhK, ̂cuh − εσh := cû− α

(
û− u−h

)
n− εσ−h .

A straightforward computation reveals that the fluxes are indeed conservative.
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3 Hierarchical scale separation

In the spirit of [1], we assume that Mh is equipped with a hierarchical basis, i.e., every λh ∈ Mh allows a
decoupling into coarse and fine scales λ̄h + λ′h. This could be a Taylor basis as in [1], or a Legendre basis,
which is what we use in this publication. More precisely, coarse scales belong to piecewise constants in this
work. Then again, (2) yields a linear system of equations that, in the spirit of coarse and fine scales, can be
written as

(
Ā B̄
B′ A′

)(
λ̄
λ′

)
=

(
b̄
b′

)
.

The key idea of the hierarchical scale separation is to start from an initial guess for λ, and only solve the
linear system of equation associated to Ā, and the block-diagonal version of A′. More precisely, let A′ be
split into a block-diagonal matrix Ã′ (the blocks corresponding to degrees of freedom on only one edge) and
the remainder (A′ − Ã′). Then the algorithm is given in Alg. 1 (see again [1]).

λ(0) = (λ̄
(0)
, λ′(0))T – initial guess; k = 0;

while λ(k) not converged do

Ā λ̄
(k+1)

= b̄− B̄λ′(k);

Ã′λ′(k+1) = b′ − (A′ − Ã′)λ′(k) −B′λ̄(k+1)
;

λ(k+1) = (λ̄
(k+1)

, λ′(k+1))T ;
k = k + 1;

end

λ = λ(k);
Algorithm 1: HSS algorithm

Note that this algorithm consists of a ’coarse grid’ part on the space of piecewise polynomials, and a
block-Jacobi smoother thereafter. Both, the choice of the coarse space and of the smoother can be subject
to further investigation and might be tuned to improve the performance of the method. However, this is
not the focus of the present work and will be left for future investigation.

4 Numerical results

In this section, we present numerical results demonstrating the performance of the hierarchical scale sepa-
ration coupled to the HDG method. All linear systems of equations are solved with a GMRES method with
a default tolerance of 10−10. Local solves are computed using a direct solver, which is standard as these
matrices are small but dense. If not stated otherwise, we choose the stabilization coefficient α to be one.
Based on our experience with the HDG method, the algorithm should not be too sensitive with respect to
this parameter. However, we discuss cases where HSS does not converge for some values of alpha, mostly
for the non-hybridized DG method.

4.1 Simple case

We start with a simple test case, choosing c = (1, 2)T and ε ∈ {1, 10−1, 10−2}. The equation (1) is equipped
with homogeneous boundary conditions, and the source term f is chosen in such a way that the solution is
given as

u(x, y) = sin(2πx) sin(2πy). (3)
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Domain Ω is the unit square. In Figs. 1-3, we report the convergence history of the HSS algorithm in
combination with the HDG method for different viscosity coefficients. Polynomial orders are chosen as
p = 1 (left), p = 4 (middle) and p = 7 (right) to demonstrate the different behavior for varying polynomial
degrees. The following observation can be made from these findings:

• The number of iterations to reach the stopping criterion seems to be, at least approximately for
ε = 10−2, mesh-independent.

• Rather surprisingly, the number of iterations depends very little on the value of ε. In the case of
the non-hybridized HSS-realization [1], this dependence was quite pronounced. It is also known that
multigrid iterations in general tend to be sensitive to the ratio of the diffusion and convection coeffi-
cients [3, 10]. We believe that the effect observed here is due to the fact that the local solves already
take away much of the difficulties associated to the vanishing viscosity.

• Not surprising at all is the fact that the higher the polynomial degree, the more iterations are necessary.

• As already stated, we choose α = 1, independent of the mesh resolution, without observing any
convergence problems for the HSS iteration.
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Figure 1: Simple test case with solution (3). c = (1, 2)T and ε = 1.0. Left plot: Polynomial order p = 1,
middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the
algebraic two-norm of the residual.
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Figure 2: Simple test case with solution (3). c = (1, 2)T and ε = 0.1. Left plot: Polynomial order p = 1,
middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the
algebraic two-norm of the residual.

In particular, the last part is very intriguing since this is not the case for a non-hybridized DG method,
where choosing α = O

(
1

∆x

)
was necessary in order to get a convergent HSS algorithm. This, of course,

adds more numerical diffusion than necessary to the problem. Note that this problem has already been
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Figure 3: Simple test case with solution (3). c = (1, 2)T and ε = 0.01. Left plot: Polynomial order p = 1,
middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the
algebraic two-norm of the residual.

reported in [1]. Furthermore, the p = 0 subsystem that one has to solve in step one of the HSS algorithm
has in general a worse condition than its corresponding HDG counterpart, being expressed in the fact that
GMRES takes much longer to converge.

4.2 Boundary layer

A somewhat more challenging test case is presented in this section. We show results for c = (1, 1)T and
varying ε. Domain Ω is again given as the unit square Ω = [0, 1] × [0, 1]. The source term f is chosen in
such a way that the exact solution u is given as the boundary layer solution

u(x, y) =

(
x+

e
x
ε − 1

1− e 1
ε

)(
y +

e
y
ε − 1

1− e 1
ε

)
, (4)

see also [7]. An image of this solution can be seen in Fig. 4. It is clearly visible that there is indeed a
boundary layer that steepens as ε→ 0 in the upper right corner. We present numerical results for polynomial
degrees p = 1 (always left image), p = 4 (middle image) and p = 7 to investigate the performance of the
HSS algorithm. Convergence of the HSS iterations can be seen in Figs. 5-7. Again, we can observe the
findings already given in Sec. 4.1, showing that these findings seem to be independent of the complexity of
the test case.

Figure 4: Boundary layer test case: Solution for ε = 1, 0.1 and 0.01 (left to right).
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Figure 5: Boundary layer test case with solution (4). c = (1, 1)T and ε = 1.0. Left plot: Polynomial order
p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus
the algebraic two-norm of the residual.
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Figure 6: Boundary layer test case with solution (4). c = (1, 1)T and ε = 0.1. Left plot: Polynomial order
p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus
the algebraic two-norm of the residual.
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Figure 7: Boundary layer test case with solution (4). c = (1, 1)T and ε = 0.01. Left plot: Polynomial order
p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus
the algebraic two-norm of the residual.

4.3 Unstructured mesh

In order to test whether the results obtained thus far depend on the domain geometry and mesh structure,
we use a more involved test case here. The right-hand side is chosen to be f ≡ 0, boundary conditions are
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u(x, y) = sin(2π(x − y)). We choose c = (1, 1)T , so with ε → 0, the solution obviously converges toward
u(x, y) = sin(2π(x− y)).

A picture of both solution and geometry can be seen in Fig. 8. For obvious reasons, we refer to this
geometry as pacman-like geometry. We observe that the conclusions drawn from the previous test case
also hold here (see Figs. 9-11), so the domain geometry and the mesh do not appear to have a significant
influence on the quality of the HSS algorithm.

Figure 8: Test case on unstructured grid: Solution for ε = 1, 0.1 and 0.01 (left to right).
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Figure 9: Pacman test case. c = (1, 1)T and ε = 1.0. Left plot: Polynomial order p = 1, middle plot: p = 4,
right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the algebraic two-norm of
the residual.
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Figure 10: Pacman test case. c = (1, 1)T and ε = 0.1. Left plot: Polynomial order p = 1, middle plot: p = 4,
right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the algebraic two-norm of
the residual.
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Figure 11: Pacman test case. c = (1, 1)T and ε = 0.01. Left plot: Polynomial order p = 1, middle plot:
p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the algebraic
two-norm of the residual.

4.4 Convection equation: Simple

Our main interest is in applying the methodology presented here to the compressible Euler or Navier-Stokes
equations. It is well-known [10, 16] that straightforward extensions of multigrid algorithms for elliptic
problems do not perform very well in this setting. In particular, also the hierarchical scale separation for
non-hybridized DG does not perform as well as for non-zero diffusion – as observed in [1]. However, we show
some interesting findings here. We choose c = (1, 1)T and ε = 0 in this section, again for Ω being the unit
square. Obviously, this necessitates outflow boundary conditions where c · n > 0, which we approximate by
setting λh = u−h on ∂Ω. Inflow boundary conditions are set as u(x, y) = sin(2π(x − y)), which yields the
solution

u(x, y) = sin(2π(x− y)). (5)

This time, we compare HDG to its completely equivalent, i.e., uDG
h = uHDG

h , DG counterpart. Our numerical
results are shown in Fig. 12 for the HDG and Fig. 13 for the DG method. The following observations can
be made:

• Obviously, the number of steps needed until convergence is reached is not mesh-independent, neither
for DG nor for HDG. This is in good agreement with well-known results from multigrid theory. Note
that we do not aim at improving this convergence behavior by using an ordering of the degrees of
freedom that depends on the linearity of the convection, because this is not directly applicable to
Euler equations.

• For p = 4 and p = 7, the HDG method shows a rather odd convergence behavior. The residual error is
increased up to a certain point from where convergence starts and is, in fact, very fast. We do not yet
have an explanation for this phenomenon, nor do we know how to exploit this to obtain even faster
convergence.

• We choose, as before α = 1 for the HDG method. This time, this choice seems to be sensitive.
Increasing α beyond four results in a divergence of the HSS algorithm. In contrast, α = 1 is not
possible for the DG method, where α = 2 is needed.

• The convergence behavior of the DG method is monotonously decreasing, however very slow. This is
in good agreement with findings in [1].

• In comparison, it seems that HDG is much more efficient than DG for this setting.
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Figure 12: Convection equation with solution (5). c = (1, 1)T and ε = 0. Left plot: Polynomial order p = 1,
middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus the
algebraic two-norm of the residual. Numerical algorithm is HDG with numerical stabilization
α = 1.
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Figure 13: Convection equation with solution (5). c = (1, 1)T and ε = 0. Left plot: Polynomial order
p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm 1) versus
the algebraic two-norm of the residual. Numerical algorithm is DG with numerical stabilization
α = 2.

4.5 Convection equation: Unstructured mesh.

To substantiate our findings for the pure convection case, we compute yet another example, again with a
non-trivial domain, being in this case the ring-shaped geometry Ω = {(x, y) | 1

2 ≤ x2 + y2 ≤ 1}. We choose

c = (1, 1)T , and inflow boundary conditions are set in such a way that the solution is u(x, y) = ecos(x−y),
see Fig. 14 for an illustration. Results are plotted in Fig. 15 for the HDG method, and Fig. 16 for the DG
method. We can confirm our findings from the previous section, with the exception that the convergence
behavior of the HDG method is less irregular than before. The reason behind this is certainly an interesting
point of future research.
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Figure 14: Convection on unstructured mesh. Plotted is medium mesh with 296 cells.
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Figure 15: Convection equation with ring-shaped geometry. c = (1, 1)T and ε = 0. Left plot: Polynomial
order p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm
1) versus the algebraic two-norm of the residual. Numerical algorithm is HDG with numerical
stabilization α = 1.
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Figure 16: Convection equation with ring-shaped geometry. c = (1, 1)T and ε = 0. Left plot: Polynomial
order p = 1, middle plot: p = 4, right plot: p = 7. Plotted is HSS iterations (k in Algorithm
1) versus the algebraic two-norm of the residual. Numerical algorithm is DG with numerical
stabilization α = 2.

5 Conclusion and outlook

Our numerical tests shown in this work suggest that the HSS method is an efficient solution technique for
linear equation systems arising from hybridized discontinuous Galerkin discretizations. The experimental
convergence rates of the HSS-iteration compared favorably to that of the non-hybridized DG formulations;
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the results appear to be unaffected by domain geometry, mesh structure, and solution complexity. The
magnitude of the diffusion coefficient did not influence the convergence of the scheme, thus differing in this
regard from method’s behavior in non-hybridized cases. Furthermore, for pure convection, the algorithm
performs better than its corresponding DG formulation, with still some inexplicable convergence behavior,
though. The latter is left for future research.

Promising results obtained here for a convection-diffusion equation suggest that the HSS method, espe-
cially in the combination with an HDG discretization, is a viable alternative to conventional linear solvers;
in particular, one has to note a very simple algorithm and a near ’black-box’ usage of the method. A number
of issues connected with the performance of the HSS scheme for the HDG method are subject of ongoing
and future work. In particular, we are looking into implementing and testing the scheme for Euler and
compressible Navier-Stokes equations; time-dependent problems and integration of HSS into the Newton’s
method for non-linear equations are other investigations being pursued.

A separate interesting research direction concerns using HSS in a combination with the traditional multi-
grid (either of geometric or of algebraic variety). A straightforward extension would integrate a multigrid
solver for the coarse scales, a bit more sophisticated usage could employ HSS as a smoother or preconditioner
within a multigrid scheme.
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