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Abstract. The modelling and simulation of the unsaturated flow or the flow of two immiscible fluid phases
in a porous medium is challenging as this flow takes place through the pores of the medium, which form
a highly complex domain. Next to the complexity of the domain, a major challenge is to account for the
interface separating the fluids, or the unsaturated fluid from the inert filling part, as the location of this
interface is not known a-priori. The evolution of this interface depends on the flow of both fluids and of the
surface tension. Moreover, the surface tension may depend on the concentration of a surfactant dissolved
in one fluid phase. In this work, such aspects are taken into account, and effective, Darcy-scale models are
derived based on the known physics at the pore scale. In this sense a thin strip is used as the representation of
a single pore in the porous medium. The Darcy-scale models are derived for various regimes, accounting for
different pore-scale processes. Numerical examples show that the upscaled models are a good approximation
of the transversal average of the solution to the pore-scale models, as the ratio of the width and the length
of the pore approaches zero.
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1. Introduction

Two-phase flow in porous media is relevant for many industrial and environmental applications such as
geological CO2 sequestration, or oil recovery. Common for all these applications is the need to describe the
flow at the Darcy scale (from now on the macro scale), the preferred scale for numerical simulations, where
the grain and void space and the two (or more) fluid phases cannot be explicitly separated, but modelled
through average quantities such as porosity and saturation. At the Darcy scale, the flow of each fluid phase
is described with the help of Darcy-scale quantities like the absolute permeability, which depends strictly on
the medium, and the fluid-specific relative permeability, which is a function of the fluid saturation.

The two-phase or, more general, the multi-phase and multi-component flow through a porous medium
is inherently a process occurring at multiple scales, in which the processes at the pore scale do affect the
overall flow on the Darcy scale. When considering the process at the scale of pores (here and below the micro
scale), the fluids are assumed immiscible and they are separated by a fluid-fluid interface. The location of
this interface gives directly the volume occupied by each of the two fluids within one pore, so it can be
related directly to the saturation of the two fluids. The interface is evolving in an a-priori unknown manner,
depending on the velocities of the two fluids and on the surface tension. This evolution has a high impact
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on the overall flow behaviour. Simply knowing the saturation of the two fluids is not sufficient for describing
the overall flow behaviour. We need to understand the processes affecting the fluid-fluid interface to be able
to describe the flow.

One of the first mathematical models for the Darcy-scale flow in a porous medium was formulated by
Henry Darcy [1], based on experiments. In these experiments only one fluid phase was considered, occupying
the entire pore space so the porous medium was fully saturated. The experiments showed a proportionality
between the pressure gradient and the flow rate. Subsequent extensions, still based on experimental obser-
vations, have considered unsaturated media [2], two-phase flow [3], or reactive transport [4] in porous media.
Traditionally, the flow models involve the mass balance for each phase, the Darcy law with a saturation-
dependent (relative) permeability, and that the phase-pressure difference (the capillary pressure) is a nonlin-
ear, monotone function of the saturation of the (say) wetting fluid. The relative permeability functions, and
the one for the capillary pressure, are determined experimentally.

Although extensively used such models need improvements, as also motivated by experimental results.
As shown in [3], the capillary pressure - saturation function also depends on the process (infiltration or
drainage). Also, the break-through curves determined in [5] for the phase-pressure difference, respectively
for the saturation, reveal that the dependency of the former quantity on the latter is not necessarily monotone.
Next to this, there is indirect evidence of the limited validity of assuming a nonlinear relationship dependency
of the capillary pressure and the saturation. In this respect we mention that effects like saturation overshoot
or finger formation, clearly evidenced in experiments reported e.g. in [6, 7, 8, 9] and [10, 11], are ruled out
by the mathematical models used traditionally.

To overcome these drawbacks, extensions of Darcy’s law for unsaturated or two-phase flow in porous
media have been proposed. In this sense we start by mentioning [12, 13, 14, 15, 16], where different play-type
hysteresis models are being proposed (an overview is provided in [17]), and [14, 18] for models incorporating
dynamic effects in the capillary pressure - saturation dependency. Inspired by the thin film model proposed
in [19], a phase-field model involving the second-order spatial derivative of the saturation in the capillary
pressure is proposed in [20, 21] for unsaturated flow in porous media (also see [22]). Finally, in [23] a model
accounting for the differences between percolating and non-percolating parts of a fluid is discussed, whereas
the interfacial area concept is incorporated in the porous media flow models discussed in [24, 25, 26].

The effectiveness of such extensions in capturing phenomena like saturation overshoot and fingering is
evidenced in [9, 21, 27, 28, 29, 30, 31, 32, 33, 34]. Two different major strategies can be observed in
these papers. The first is to present numerical simulations for the extended models, aiming to reproduce
the experimental results quantitatively. The second relies on mathematical analysis, and in particular on
travelling waves, the focus being mainly on the qualitative behaviour of the solution, and in particular the
dependence on the parameters appearing in the extended models.

The extended models discussed above are stated at the Darcy scale, where no distinction is being made
between the pore space, wherethrough fluid flow takes place. These models are describing the averaged
behaviour of the system by considering so-called representative elementary volumes, and without focussing
on the detailed description of the processes inside each pore. Alternatively, one can consider the mathematical
models valid at the scale of pores, which leads to models posed in an extremely complex domain consisting of
the entire pore space of the porous medium. Although a numerical simulation at such detailed level is simply
infeasible for practical applications, such an approach allows to incorporate detailed pore-scale physics, which
is generally better understood (see e.g. [35, 36, 37, 38]). To overcome the difficulties related to the complexity
of the domain, one can apply upscaling techniques to derive Darcy-scale models. Such an approach is adopted
in [39, 40], by considering a simple pore geometry consisting of a long and thin pore, and for which transversal
averaging is applied to derive a Darcy scale model. In this way, various model components and features can
be included in a quite straightforward manner, and the corresponding Darcy-scale models can be derived in
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a rational manner.
Here we follow the same approach for deriving Darcy-scale models for two-phase or unsaturated, one-phase

flow in porous media. In the former case a wetting and a non-wetting fluid are present, in the latter only a
wetting fluid is present together with a fluid that has constant pressure (say, zero) and infinite mobility. The
fluids are assumed incompressible and immiscible. The derived models also take into account the possibility
that one fluid is transporting a solute, which has an impact on the surface tension coefficient. We start with
formulating the relevant models at the pore scale and then derive upscaled (Darcy-scale) models based on
reasonable assumptions on the underlying physics.

At the pore scale we assume that the flow of each fluid phase is modelled by the Navier-Stokes equations.
When referring to two fluid phases (the unsaturated, one-phase case being similar), a peculiar aspect in this
approach is in the fact that, since the fluids are assumed immiscible, at the pore scale they are separated
by an interface having a location that is not known a-priori. This interface moves depending on the fluid
velocities, and, if applicable, on the concentration of the solute at this interface. In mathematical terms, this
interface represents a free boundary in the model. Jump conditions ensuring conservation of the involved
quantities are used at the evolving interface, as well as kinematic conditions to model its evolution.

To simplify the presentation, here we consider a single pore as a representative for the porous medium.
In this case, the interface separating the two fluid phases can be seen as the thickness of the wetting phase
layer. For more complicated situations, one can use e.g. a level set [41] approach. Alternatively, a diffuse
interface approach can be considered, using e.g. the phase-field models in [42].

In any of these approaches, the resulting models can be used for deriving the upscaled, Darcy scale
counterparts, which are more suited for numerical simulations. For the simplified situation here, we apply
asymptotic expansion techniques and transversal averaging to derive the upscaled mathematical models. In
doing so, we also include a solute-dependent surface tension, leading to so-called Marangoni effects in the
upscaled equations.

This work is builds on [39, 40], where mathematically rigorous upscaling results are obtained for two-
phase flow in a single pore. Compared to [39, 40], here we consider more regimes with respect to the capillary
number, and also include solute effects in the surface tension dependency. We also mention that, although
not considering the flow in a porous medium, in [43] a similar approach is used for deriving the shallow-water
equations.

In this context, we mention that asymptotic homogenization methods in either a thin strip or in a
periodic porous medium have been widely applied for many application in which evolving interfaces are
encountered at the pore scale. Examples in this sense are the evolving fluid-solid interface due to mineral
precipitation and dissolution [44, 45, 46, 47, 48, 49, 50], or to biofilm growth or other biological processes
[51, 52, 53, 54, 55, 56, 57]. In all these cases, the derived Darcy-scale models were resembling well many of
the models that are commonly accepted in the literature, but allow integrating additional effects in a rational
manner.

The paper is organized as follows. In the next section the physical processes at the pore-scale and the
corresponding mathematical models are introduced. With ε being a small parameter representing the ratio of
the pore width and length, in Section 3, the pore-scale models are non-dimensionalized and their dependence
on ε is derived. In Section 4 asymptotic expansion methods are applied to the pore-scale models and for
various scaling regimes, and the corresponding upscaled are derived. In this sense, the cases in which the
Marangoni effects do play a role at the Darcy scale are evidenced. Also, cases where the two upscaled
fluid pressures are equal, or where the capillary pressure depends on the saturation in a non-standard way,
resembling the models in [20, 21, 40, 39]. The results are summarized and discussed more closely in Section 5.
Finally, Section 6 provides some numerical examples that confirm the validity of the approach. Specifically,
the numerical solutions to the original, pore-scale models are computed for different situations, and then
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their transversal averages are compared to the solutions to the upscaled models. These results demonstrate
that, as ε approaches zero, the upscaled models are describing well the averaged behaviour of the pore-scale
models, showing that the simplified, Darcy-scale models are a valid approximation of the pore-scale ones.

2. Mathematical model

A pore-scale model is considered for two-phase or unsaturated flow through a porous medium. For sim-
plicity, we considered a thin two-dimensional strip to represent the local pore geometry. Two incompressible
and immiscible fluids, where one is wetting and the other is non-wetting, are flowing through the strip. Den-
sities and viscosities of the fluids are constant. The wetting phase is attached to the pore wall and the wetting
layer has a thickness that changes with time and varies with the location of the wall. The two fluids are
separated by a sharp interface with zero thickness which is changing with time. The movement is not known
a-priori, hence we have a moving boundary at the fluid-fluid interface. The interface that separates the fluids
moves because of the surface tension and of the flow/movement of the two fluids. There is a solute present
only in the wetting fluid and the concentration of the solute will change subject to diffusion and transport.
The surface tension is considered as a function of the solute concentration, which results in a tangential stress
at the moving interface which is called the Marangoni stress. The gravity effects are neglected.

2.1. Geometric settings

The width and length of the thin strip are respectively 2 l and L with L >> l. For simplicity, we assume
a symmetric case with respect to (w.r.t.) the x-axis. The lower half of the strip is shown in Figure 1.

ΩI(t)

ΩII(t)
d(x, t)

vn

n

tΓfs

Γff (t)qI

qII

(0,−l)

(0, 0) (L, 0)

(L,−l)

Figure 1: Schematic representation of the lower half of a single pore.

Let t > 0 be the time variable. The thickness of the wetting fluid layer is denoted by d(x, t), where
0 ≤ d(x, t) ≤ l. The void space consists of two domains. The domain occupied by the non-wetting fluid
(fluid-I) and by the wetting (fluid-II) fluid are denoted by respectively

ΩI(t) := {(x, y) ∈ R2|0 < x < L,−l + d(x, t) < y < 0},
ΩII(t) := {(x, y) ∈ R2|0 < x < L,−l < y < −l + d(x, t)}.
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The fluid-fluid interface and the fluid-solid interface are respectively

Γff (t) := {(x, y) ∈ R2|0 < x < L, y = −l + d (x, t)},
Γfs := {(x, y) ∈ R2|0 < x < L, y = −l}.

The velocity vectors are denoted by qα =
(
q
(1)
α , q

(2)
α

)
, where the index α = I, II is distinguishing between

the non-wetting and the wetting fluid, respectively.
Since d(x, t) gives the location of the fluid-fluid interface, the unit normal vector on the fluid-fluid interface

pointing into fluid-I and the unit tangent vector are

n := (−∂xd, 1)T /
√

1 + (∂xd)2, and t := (1, ∂xd)T /
√

1 + (∂xd)2.

Given a point (x,−l + d(x, t)) on Γff (t), its normal velocity is

vn := ∂td/
√

1 + (∂xd)2. (1)

2.2. Equations in the pore domain

We refer to [58] and assume that the flow of the two fluids is governed by the Navier-Stokes equations

ρα ∂t qα + ρα (qα · ∇)qα = −∇pα + µα∇2 qα, in Ωα(t) (α = I, II),

∇ · qα = 0, in Ωα(t) (α = I, II).

where ρα and µα are respectively the constant viscosities and densities, and the pressures are pα.
We assume that one chemical species (solute) is present in fluid-II, its molar concentration being c. Addi-
tionally, there is no mass transfer of the solute form fluid-II to fluid-I, hence, the molar concentration of the
solute in fluid-I is zero. The solute concentration changes both by diffusion and convection, resulting in

∂tc+∇ · (−D∇c+ qIIc) = 0, in ΩII(t),

where D is the constant diffusion coefficient.

2.3. Boundary conditions at the fluid-fluid interface Γff (t)

Here, we specify the boundary conditions at Γff (t). This means that all equations in this section are
valid only at points at Γff (t). Firstly, we assume that the velocities of the two fluids are equal at Γff (t),

qI = qII .

Secondly, we assume that the normal velocity of Γff (t) as given in (1), equals the normal velocities of the
two fluids,

qα · n = vn (α = I, II).

Further conditions at Γff (t) are involving the stress tensors

Tα := −pαI + µα

(
(∇qα) + (∇qα)

T
)

(α = I, II),
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the curvature of Γff (t)

∇ · n := −∂x

(
∂xd√

1 + (∂xd)2

)
,

and the surface tension γ. If γ is affected by the presence of the solute present in fluid-II, one has γ = γ(c).
For example, in [59] the following law is proposed

γ(c) = γref

(
1− b ln

( c

a cref
+ 1
))

, (2)

where a, b are constants and γref is the surface tension at reference concentration cref . Its tangential stress
gradients is

∇sγ(c) := ∇ γ(c)− n (n · ∇ γ(c)) .

With this, the third boundary condition at Γff (t) reads (see [60])

(TI −TII) · n = γ(c) (∇ · n) n−∇s γ(c).

This jump can be written in terms of the normal and the tangential components. At Γff (t), for the normal
component, one has ((

TI −TII

)
· n
)
· n = γ(c) (∇ · n) ,

while for the tangential component, also known as Marangoni stress, one gets((
TI −TII

)
· n
)
· t = −t · ∇ γ(c).

Finally, the mass balance for the solute at Γff (t) reads

(−D∇c+ qIIc) · n = vn c.

2.4. Boundary conditions at the fluid-solid interface Γfs

As before, the equations hold only at the fluid-solid interface Γfs, where first no-slip is assumed,

qII = 0.

For the solute concentration, the normal flux into the solid matrix is zero,

(−D∇c+ qIIc) · n = 0.
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2.5. Pore-scale model for the two-phase flow with solute-dependent surface tension

Recall that the sub-domain occupied by fluid α is time dependent, Ωα(t), and that the freely moving
fluid-fluid interface is Γff (t) and considering the discussion above, one has

ρα∂tqα + ρα (qα · ∇)qα = −∇pα + µα∇2qα, in Ωα(t) (α = I, II) , (3)

∇ · qα = 0, in Ωα(t) (α = I, II) , (4)

∂tc+∇ · (−D∇c+ qIIc) = 0, in ΩII(t), (5)

qI = qII , at Γff (t), (6)

qα · n = vn, at Γff (t) (α = I, II) , (7)((
TI −TII

)
· n
)
· n = γ(c) (∇ · n) , at Γff (t), (8)((

TI −TII

)
· n
)
· t = −t · ∇γ(c), at Γff (t), (9)

(−D∇c+ qIIc) · n = vn c, at Γff (t) , (10)

qII = 0, at Γfs, (11)

(−D∇c+ qIIc) · n = 0, at Γfs. (12)

2.6. Pore-scale model for the two-phase flow with constant surface tension

Whenever the surface tension is constant, as happening e.g. in the absence of a solute in fluid-II, the
tangential components of the normal stresses are equal at Γff (t). In this case, the pore-scale model is
simpler, as (5), (10) and (12) become superfluous, while γ(c) = γ in (8) and (9) reduces to((

TI −TII

)
· n
)
· n = γ (∇ · n) , at Γff (t),((

TI −TII

)
· n
)
· t = 0, at Γff (t).

The remaining equations are the same as in Section 2.5.

2.7. Pore-scale model for the unsaturated flow with constant surface tension

A further simplification is to assume that the pressure in the fluid-I is constant and that its mobility
is infinite. Essentially, this means that fluid-I plays no role for the flow of fluid-II. This situation appears
e.g. if fluid-I is air and is connected to the atmosphere. Then the number of variables reduces to those
corresponding to fluid-II. Moreover, we assume the solute is absent in fluid-II, and the surface tension is
constant. In this case, (5), (10) and (12) are excessive. Moreover, the model equations in Section 2.5 are
further simplified by giving up the equations for α = I, reducing to the Navier-Stokes equations in ΩII(t).
At Γff (t), (7) is valid for α = II, and (8), (9) shortens to

(TII · n) · n = −γ (∇ · n) , at Γff (t),

(TII · n) · t = 0, at Γff (t).

7



3. The non-dimensional model equations

To identify the model components that have a larger or smaller impact than others, we first bring the
model to a non-dimensional form. To this aim, we use reference quantities and rescale the dimensional ones
as specified in Table 1. In particular, µII and ρII are taken as reference viscosity, respectively density.
Table 1 introduces two length scales, L and l. In a general porous medium, L would reflect the length scale
of the entire medium, where l is the one of a pore. As we let a single pore represent the porous medium, we
use the width and the length of the pore as described in Section 2.1. In the same spirit, here we define the
non-dimensional number ε := l

L > 0, and assume that ε is small. Observe now that the x and y coordinates
are scaled differently, so that they become both of order 1, O(1). Based on this, the derivatives change into
∂
∂x̂ = L ∂

∂x ,
∂
∂ŷ = ε L ∂

∂y . The non-dimensional gradient is ∇̂ :=
(
∂x̂,

1
ε∂ŷ
)

due to the different scaling in x
and y-direction.

Table 1: Reference and non-dimensional quantities

Variables Reference values Non-dimensional variables

time tref t̂ = t/tref
space xref = L, yref = l x̂ = x/L, ŷ = y/l = y/ (ε L)

depth of the wetting fluid d̂ε = d/l = d/ (ε L)
velocities qref = L/tref q̂εI = qI/qref , q̂εII = qII/qref
densities ρref = ρII ρ̂I = ρI/ρII = 1/N , ρ̂II = 1

pressures pref =
(
L4 ρref

)
/
(
t2ref l

2
)

p̂εI = pI/pref , p̂εII = pII/pref

kinematic viscosities µref =
(
l2 pref

)
/ (L qref ) = µII µ̂I = µI/µII = 1/M , µ̂II = 1

surface tension γref γ̂(ĉε) = γ(c)/γref ,
γ̂ = γ/γref = 1, if γ is constant

diffusion coefficient Dref = L2/tref D̂ = D/Dref

molar concentration cref ĉε = c/cref
capillary number Ca = (µref qref ) /γref

Note that the dimensionless parameters M,N appearing in Table 1,

M := µII/µI , N := ρII/ρI ,

may also depend on ε. In this respect, here we restrict to the case N = 1, while M is assumed first O(1),
and later the limit M → ∞ is considered to show that the two-phase model reduces to the unsaturated,
single-phase one.

In the non-dimensional setting, the pore space occupied by the two fluids is

Ω̂εI(t̂) := {(x̂, ŷ) ∈ R2|0 < x̂ < 1,−1 + d̂ε(x̂, t̂) < ŷ < 0}, (13)

Ω̂εII(t̂) := {(x̂, ŷ) ∈ R2|0 < x̂ < 1,−1 < ŷ < −1 + d̂ε(x̂, t̂). (14)

The fluid-fluid and fluid-solid interfaces become

Γ̂εff (t̂) := {(x̂, ŷ) ∈ R2|0 < x̂ < 1, ŷ = −1 + d̂ε(x̂, t̂)},

Γ̂fs := {(x̂, ŷ) ∈ R2|0 < x̂ < 1, ŷ = −1}.
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The normal and tangent unit vectors are, respectively

n̂ε :=

(
−ε ∂x̂d̂ε, 1

)
√

1 +
(
ε ∂x̂d̂ε

)2 , and t̂ε :=

(
1, ε ∂x̂d̂

ε
)

√
1 +

(
ε ∂x̂d̂ε

)2 .
The normal velocity becomes

v̂εn :=
ε ∂t̂d̂

ε√
1 +

(
ε ∂x̂d̂ε

)2 .
The non-dimensional stress tensors are

T̂ε
I := −p̂εI I +

ε2

M

{(
∇̂q̂εI

)
+
(
∇̂q̂εI

)T}
, T̂ε

II := −p̂εII I + ε2
{(
∇̂q̂εII

)
+
(
∇̂q̂εII

)T}
.

3.1. Non-dimensional model for the two-phase flow with solute-dependent surface tension

Substituting the non-dimensional variables into the pore-scale model in Section 2.5, for every t̂ > 0 the
non-dimensional model equations for the two-phase flow model with solute-dependent surface tension become

ε2
(
∂t̂q̂

ε
I +

(
q̂εI · ∇̂

)
q̂εI

)
+ ∇̂p̂εI −

ε2

M
∇̂2q̂εI = 0, in Ω̂εI(t̂), (15)

ε2
(
∂t̂q̂

ε
II +

(
q̂εII · ∇̂

)
q̂εII

)
+ ∇̂p̂εII − ε2∇̂2q̂εII = 0, in Ω̂εII(t̂), (16)

∇̂ · q̂εα = 0, in Ω̂εα(t̂) (α = I, II) , (17)

∂t̂ĉ
ε − ∇̂ ·

(
D̂∇̂ (ĉε)− q̂εII ĉ

ε
)

= 0, in Ω̂εII(t̂). (18)

The boundary conditions at the fluid-fluid interface are

q̂εI = q̂εII , at Γ̂εff (t̂), (19)

q̂εα · n̂ε = v̂εn, at Γ̂εff (t̂) (α = I, II) , (20)(
−D̂∇̂ĉε + q̂εII ĉ

ε
)
· n̂ε = ĉε v̂εn, at Γ̂εff

(
t̂
)
, (21)((

T̂ε
I − T̂ε

II

)
· n̂ε
)
· n̂ε =

ε2

Ca
γ̂ (ĉε)

(
∇̂ · n̂ε

)
, at Γ̂εff

(
t̂
)
, (22)((

T̂ε
I − T̂ε

II

)
· n̂ε
)
· t̂ε = − ε2

Ca

(
t̂ε · ∇̂γ̂(ĉε)

)
, at Γ̂εff

(
t̂
)
. (23)

At the fluid-solid interface, the boundary conditions are

q̂εII = 0, at Γ̂fs, (24)(
−D̂∇̂ĉε + q̂εII ĉ

ε
)
· n̂ε = 0, at Γ̂fs. (25)

At ŷ = 0 we apply symmetry conditions for all variables.
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3.2. Non-dimensional model for the two-phase flow with constant surface tension

Similar to Section 2.6, we consider the case without solute and γ being constant. With γref = γ, one gets
γ̂ = 1 and (22) and (23) become((

T̂ε
I − T̂ε

II

)
· n̂ε
)
· n̂ε =

ε2

Ca
∇̂ · n̂ε, at Γ̂εff

(
t̂
)
, (26)((

T̂ε
I − T̂ε

II

)
· n̂ε
)
· t̂ε = 0, at Γ̂εff

(
t̂
)
. (27)

Further, (18), (21) and (25) are not needed anymore and the remaining equations are the same as in the
above section.

3.3. Non-dimensional model for unsaturated flow with constant surface tension

Continuing as in Section 2.7, assuming that fluid-I does not influence the flow of fluid-II and in the absence
of solute one ends up with (16), (17), (20) (for α = II), (24) and(

T̂ε
II · n̂ε

)
· n̂ε = − ε2

Ca
∇̂ · n̂ε, at Γ̂εff

(
t̂
)
, (28)(

T̂ε
II · n̂ε

)
· t̂ε = 0, at Γ̂εff

(
t̂
)
. (29)

4. Asymptotic expansion

We use an asymptotic expansion w.r.t. ε to derive transversally averaged upscaled (effective) models at the
Darcy scale. Since in this section only the non-dimensional variables are used, for the ease of presentation the
hats are suppressed. We use the homogenization ansatz, namely that all variables can be expanded regularly
w.r.t. ε. We assume that

pεα(x, y, t) = pα,0(x, y, t) + εpα,1(x, y, t) +O(ε2) (α = I, II),

qε,(k)α (x, y, t) = q
(k)
α,0(x, y, t) + εq

(k)
α,1(x, y, t) +O(ε2) (α = I, II, k = 1, 2),

cε(x, y, t) = c0(x, y, t) + εc1(x, y, t) +O(ε2),

dε(x, t) = d0(x, t) + εd1(x, t) +O(ε2).

(30)

where pα,j(x, y, t), q
(k)
α,j(x, y, t), cj(x, y, t), dj(x, t) are functions describing theO(εj) order approximation (for j =

1, 2, · · · ) of the corresponding variables. We will now insert these expansions in the model equations and
equate terms of the same order in ε to find the transversally averaged equations. We do this for different
regimes, and end up with different upscaled models.

4.1. Two-phase flow with solute-dependent surface tension

We start with the model for two-phase flow with solute-dependent surface tension (15)-(25). At this point
we assume that M is O(1) w.r.t. ε.

10



4.1.1. Mass conservation

To derive an effective equation for the mass conservation, we follow the ideas in [48, 44, 47]. Substituting
the asymptotic expansion (30) in the mass conservation equation (17) and restricting the writing up to the
O(ε0) terms gives

1

ε
∂yq

(2)
α,0 +

(
∂xq

(1)
α,0 + ∂yq

(2)
α,1

)
+O(ε) = 0, in Ωεα(t). (31)

To show that q
(2)
α,0 = 0 in Ωεα(t), we use (30) in the kinematic conditions (20) and obtain

q
(2)
α,0 + ε

(
q
(2)
α,1 − q

(1)
α,0 ∂xd0 − ∂td0

)
+O(ε2) = 0, at Γεff (t). (32)

The lowest order terms in (31) - (32) give

∂yq
(2)
α,0 = 0, in Ωεα(t), and q

(2)
α,0 = 0, at Γεff (t),

while (24) and the symmetry condition at y = 0 lead to

q
(2)
α,0 = 0, in Ωεα(t). (33)

To upscale the mass balance for the fluids, we consider a thin segment of the pore space, as sketched in
Figure 2.

ΩεI(t)

ΩεII(t)

nε

tε

Γfs

Γεff (t)

qεI

qεII dε(x, t)

x

y

(x1,−1)

(x1, 0) (x1 + δx, 0)

(x1 + δx,−1)

Figure 2: Thin section of the pore space

Let YI := {(x, y)|x1 < x < x1 + δx, 0 < y < −1 + dε} be the region in this segment that is occupied by
fluid-I. By integrating (17) over YI , one obtains∫

YI

∇ · qεI dVI = 0.
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In the above equation, we apply the theorem of Gauss and divide all terms by δx, then using (20) and the
asymptotic expansions (30) to get

1

δx

∫ 0

−1+d0
q
(1)
I,0 dy|x=x1+δx −

1

δx

∫ 0

−1+d0
q
(1)
I,0 dy|x=x1 +

1

δx

∫ x1+δx

x1

q
(2)
I,0 dx|y=0 −

1

δx

∫ x1+δx

x1

∂td0 dx+O(ε) = 0.

Using (33) and equating the lowest order terms in the above gives

1

δx

∫ 0

−1+d0

(
q
(1)
I,0|x=x1+δx − q

(1)
I,0|x=x1

)
dy − 1

δx

∫ x1+δx

x1

∂td0 dx = 0.

Defining the total flux of fluid-I as

q̄
(1)
I,0(x, t) :=

∫ 0

−1+d0
q
(1)
I,0(x, y, t) dy, (34)

and letting δx→ 0, one obtains

∂xq̄
(1)
I,0 − ∂td0 = 0, for all 0 < x < 1 and t > 0. (35)

Similarly using the fluid-II region YII := {(x, y)|x1 < x < x1 + δx,−1 + dε < y < −1}, for

q̄
(1)
II,0(x, t) :=

∫ −1+d0
−1

q
(1)
II,0(x, y, t) dy, (36)

one obtains

∂xq̄
(1)
II,0 + ∂td0 = 0, for all 0 < x < 1 and t > 0. (37)

Remark 1. Recalling that the fluids are incompressible, observe that, since d0 is the thickness of the wetting
phase layer in the half-pore, it can be regarded as the saturation of the wetting fluid. In this sense (35) and
(37) are the effective mass balance equations for the two fluid phases.

4.1.2. Solute transport

To upscale the solute transport, which is needed when considering the Marangoni effect, one uses the
asymptotic expansion (30) in (18) to get

∂tc0 −
(
∂x,

1

ε
∂y

)
·D
(
∂x,

1

ε
∂y

)(
c0 + εc1 + ε2c2

)
+

(
∂x,

1

ε
∂y

)
·
(
q
(1)
II,0, q

(2)
II,0 + εq

(2)
II,1

)
(c0 + εc1) +O(ε) = 0, in ΩεII(t).

(38)

First, we show that c0 and c1 do not depend on y. The ε−2 order term in (38) is leading to

∂yyc0 = 0, in ΩεII(t).

From the ε−1 order term in the boundary conditions (21) and (25), one obtains

∂yc0 = 0, at Γεff (t) and Γfs.
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This implies that c0 does not depend on y,

c0 = c0(x, t), in ΩεII(t).

In a similar fashion, using this, (33), the ε−1 order term in (38) and ε0 order term in (21), (25), one obtains

c1 = c1(x, t), in ΩεII(t).

The non-dimensional equation describing the solute concentration (18) can be written as

1

ε2
∂y (D ∂yc

ε)− 1

ε
∂y

(
qε

(2)

II cε
)
− ∂tcε + ∂x

(
D ∂xc

ε − qε
(1)

II cε
)

= 0.

We integrate the above equation w.r.t. y from y = −1 to y = −1 + dε. Applying the Leibniz rule in the last
two terms and taking into account that dε depends on x and t, one gets[

1

ε2
D∂yc

ε − 1

ε
qε

(2)

II c
ε

]y=−1+dε
y=−1

− ∂t

(∫ −1+dε
−1

cεdy

)
+ ∂td

εcε|y=−1+dε

+ ∂x

(∫ −1+dε
−1

(
D∂xc

ε − qε
(1)

II c
ε
)
dy

)
− ∂xdε

(
D∂xc

ε − qε
(1)

II c
ε
)
|y=−1+dε = 0.

We insert the asymptotic expansion (30) in the above equation, recalling that c0 and c1 do not depend on y

and that ∂yc2 = 0 and q
(2)
II,1 = 0 at y = −1, since q

(2)
II,0 = 0 in ΩεII(t), one obtains

(
D∂yc2 − q(2)II,1c0

)
|y=−1+d0 − ∂t

(
c0

∫ −1+d0
−1

1 dy

)
+ ∂td0 c0|y=−1+d0

+ ∂x

(
D ∂xc0

(∫ −1+d0
−1

1 dy

)
− c0

(∫ −1+d0
−1

q
(1)
II,0 dy

))
− ∂xd0

(
D∂xc0 − c0 q(1)II,0

)
|y=−1+d0 +O(ε) = 0.

Using (36) and the ε order terms from the boundary condition (21) at y = −1 + d0, one obtains the effective
equation for the solute transport

∂t (c0 d0) + ∂x

(
c0 q̄

(1)
II,0

)
− ∂x(D d0 ∂xc0) = 0, for all 0 < x < 1 and t > 0. (39)

4.1.3. Momentum conservation

We apply the asymptotic expansion (30) in the horizontal and vertical component of the momentum

equation for fluid-II (16). Recalling that q
(2)
II,0 = 0, in ΩεII(t), for all t > 0 one has

−∂yyq(1)II,0 + ∂xpII,0 − ε ∂yyq(1)II,1 + ε ∂xpII,1 +O(ε2) = 0, (40)

1

ε
∂ypII,0 + ∂ypII,1 + ε ∂ypII,2 − ε ∂yyq(2)II,1 +O(ε2) = 0. (41)

Restricting to ε−1 order term in (41), for all 0 < x < 1 and t > 0, one gets

pII,0 = pII,0(x, t).

13



For all t > 0, the dominant terms in (40) give

∂yyq
(1)
II,0 = ∂xpII,0, in ΩεII(t). (42)

Integrating the above equation in y and taking into account that pII,0 is independent of y, we obtain

∂yq
(1)
II,0 = ∂xpII,0 y +A1(x, t), in ΩεII(t), (43)

where A1(x, t) is an integrating constant that will be fixed using boundary condition for q
(1)
II,0. We now

assume that the surface tension γ = γ(cε) depends smoothly on the solute concentration. Using (30) and
expanding γ(cε) around c0 gives

γ(cε) = γ (c0) + ε c1 γ
′ (c0) +O(ε2).

We apply the asymptotic expansion (30) in the boundary condition (23). Using the above equation and

recalling that q
(2)
α,0 = 0 at Γεff (t) and that c0 is independent of y, we get

1

ε

(
1

M
∂yq

(1)
I,0 − ∂yq

(1)
II,0

)
+

(
1

M
∂yq

(1)
I,1 − ∂yq

(1)
II,1

)
+ ε

(
1

M
∂yq

(1)
I,2 − ∂yq

(1)
II,2

)
+ ε

(
1

M
∂xq

(2)
I,1 − ∂xq

(2)
II,1

)
+ 2ε∂xd0

(
1

M
∂yq

(2)
I,1 − ∂yq

(2)
II,1

)
− 2ε∂xd0

(
1

M
∂xq

(1)
I,0 − ∂xq

(1)
II,0

)
− ε (∂xd0)

2

(
1

M
∂yq

(1)
I,0 − ∂yq

(1)
II,0

)
+

1

Ca
∂xγ(c0) +

ε

Ca
∂x

(
c1γ
′(c0)

)
+O(ε2) = 0, at Γεff (t).

(44)

At this point, the upscaling depends on the capillary number Ca. We will discuss the cases with Ca =
εβ Ca, for 0 ≤ β ≤ 3, where Ca = O(1). We start by assuming Ca = O(1) thus β = 0. From (44), one gets
the tangential stress boundary condition

∂yq
(1)
II,0 =

1

M
∂yq

(1)
I,0, at Γεff (t). (45)

Using the above in (43) leads to

1

M
∂yq

(1)
I,0|y=−1+d0 = (−1 + d0) ∂xpII,0 +A1(x, t), in ΩεII(t). (46)

Applying the asymptotic expansion (30) into (15) and using (33), for all t > 0 one has

− 1

M
∂yyq

(1)
I,0 + ∂xpI,0 −

ε

M
∂yyq

(1)
I,1 + ε ∂xpI,1 +O(ε2) = 0, in ΩεI(t), (47)

1

ε
∂ypI,0 + ∂ypI,1 + ε ∂ypI,2 −

ε

M
∂yyq

(2)
I,1 +O(ε2) = 0, in ΩεI(t). (48)

The lowest order term in (48) gives

pI,0 = pI,0(x, t), for all 0 < x < 1. (49)

For all t > 0, the dominating terms in (47) satisfy

∂yyq
(1)
I,0 = M ∂xpI,0, in ΩεI(t). (50)

14



We integrate the above equation w.r.t. y. We use (49) and the symmetry condition ∂yq
(1)
I,0(x, y, t) = 0 at

y = 0, which leads to

∂yq
(1)
I,0 = M ∂xpI,0 y, in ΩεI(t). (51)

We determine A1(x, t) from (46), by using (51) at y = −1 + d0, one gets for all t > 0

∂yq
(1)
II,0 = ∂xpII,0 y + (−1 + d0)

(
∂xpI,0 − ∂xpII,0

)
, in ΩεII(t). (52)

The lowest order terms in (24) imply that q
(1)
II,0 = 0 at y = −1. Hence, integrating the above equation in y,

one obtains

q
(1)
II,0 =

∂xpII,0(y2 − 1)

2
+ (−1 + d0) (∂xpI,0 − ∂xpII,0) (y + 1), in ΩεII(t). (53)

Integrating the above in y from y = −1 + d0 to y = −1 and using (36), yields

q̄
(1)
II,0(x, t) = −d

3
0

3
∂xpII,0 −

(1− d0) d20
2

∂xpI,0, for all 0 < x < 1 and t > 0. (54)

To derive an effective equation for the velocity of fluid-I, we integrate (51) twice w.r.t. y. To determine the
integration constants we use the continuity of the velocity at the fluid-fluid interface. The lowest order terms

in (19) imply q
(1)
I,0 = q

(1)
II,0 and hence

q̄
(1)
I,0 = −

[
M (1− d0)3

3
+ d0 (1− d0)2

]
∂xpI,0 −

(1− d0) d20
2

∂xpII,0, for all 0 < x < 1 and t > 0. (55)

4.1.4. Effect of Ca

We recall that the boundary conditions coming from the normal (22) and the tangential (23) components
of the jump in the normal stress depends on the capillary number, Ca. To complete the upscaled model
representing the effective behaviour for two-phase flow, we still have to find a relationship between the
pressure difference of the fluids (capillary pressure) and the saturation in the porous medium. To this aim,
we rewrite (22) as

− 1

ε2
(pεI − pεII) +

2

ε

(
∂yq

ε,(2)
I −M ∂yq

ε,(2)
II

)
− (∂xd

ε)2 (pεI − pεII) + 2 ∂xd
ε
(
∂yq

ε,(1)
I −M ∂yq

ε,(1)
II

)
− 2 ε ∂xd

ε
(
∂xq

ε,(2)
I −M ∂xq

ε,(2)
II

)
+
ε γ(cε) ∂xxd

ε

Ca
+O(ε2) = 0, at Γεff (t).

(56)

Whenever Ca = O(1) thus β = 0, applying the asymptotic expansion (30) in the above equation and recalling
(33) gives

pI,0 − pII,0 = 0, for all 0 < x < 1 and t > 0. (57)

This means that in the upscaled model the pressures in both phases are equal. Hence the capillary pressure
is zero, as commonly assumed in petroleum reservoir simulation models [61]. Since pI,0 = pII,0 in the
pressure relation (57), for simplicity, we set p0 = pα,0 and the effective velocities (54) and (55) become, for
all 0 < x < 1 and t > 0

q̄
(1)
II,0 =− d20 (3− d0)

6
∂xp0, (58)

q̄
(1)
I,0 =−

(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0. (59)
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Remark 2. One can recognize (58) and (59) as the Darcy laws for the two fluid phases. Since d0, respectively
(1− d0) are the saturation of the two fluids, the factors multiplying the pressure gradients in these equations
can be viewed as relative permeabilities of the two fluids.

Thus, the upscaled model with Ca = O(1) is represented by the mass conservation equations (35), (37),
the effective velocities (58), (59) and the solute transport (39). This can be expressed in terms of three
primary variables, the saturation of the wetting fluid d0, the pressure p0 (recall that the two fluid pressures
are equal) and the concentration c0. Specifically, for all 0 < x < 1 and t > 0 one has

∂td0 + ∂x

[(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0

]
= 0,

∂td0 − ∂x
[
d20 (3− d0)

6
∂xp0

]
= 0,

∂t (c0 d0) + ∂x

[
c0

(
d20 (3− d0)

6

)
∂xp0

]
− ∂x(D d0 ∂xc0) = 0.

(60)

This means that the surface tension γ plays no role in the effective equations, and therefore the Marangoni
effect is lost.

For regimes, where Ca = O(εβ) Ca with β > 0, the Marangoni effect will play a role in the upscaled
models. For example, if Ca = ε Ca with Ca = O(1), from (44), one gets the Marangoni stress boundary
condition,

∂yq
(1)
II,0 =

∂yq
(1)
I,0

M
+
∂xγ(c0)

Ca
, at Γεff (t). (61)

Using this instead of (45) and repeating the same steps in Section 4.1.3, one gets for 0 < x < 1 and t > 0,

q̄
(1)
I,0 =−

(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0 +

(1− d0)d0

Ca
∂xγ(c0), (62)

q̄
(1)
II,0 =− d20 (3− d0)

6
∂xp0 +

d20
2 Ca

∂xγ(c0). (63)

Remark 3. Again, one can interpret (58) and (59) as Darcy laws and identify the related permeabilities.
Compared to (54) and (55), the Marangoni effect is included.

The upscaled model is consists of the mass conservation equations (35), (37), effective velocities (62),
(63) and the solute transport (39). The model can be expressed in terms of three primary variables, the
water saturation d0, the pressure p0 (recalling that the two fluid pressures are equal) and the concentration
c0. Specifically, for 0 < x < 1 and t > 0 one has

∂td0 + ∂x

[(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0 −

(1− d0)d0

Ca
∂xγ(c0)

]
= 0,

∂td0 − ∂x
[(

d20 (3− d0)

6

)
∂xp0 −

d20
2 Ca

∂xγ(c0)

]
= 0,

∂t (c0 d0) + ∂x

[
c0

(
d20 (3− d0)

6

)
∂xp0

]
− ∂x(D d0 ∂xc0) = 0.

(64)

Assuming Ca = εβ Ca, with β = 2 or 3, will lead to different Marangoni stress condition than (61), involving
the unknowns c1, c2 etc. In this case one needs to find an effective solute transport equation involving c1, c2
etc. This is beyond the scope of this paper.
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4.2. Two-phase flow with constant surface tension

Now, we consider the pore-scale model in Section 3.2. We begin with the assumption that M = O(1).
We recall that for a constant surface tension, the dynamic boundary conditions are now (26), (27).

4.2.1. Mass conservation

The derivation of the mass conservation equation in this section is identical to the one in Section 4.1.1.
The mass conservation equation for the two-phase flow model with constant surface tension is the same as
(35) and (37).

4.2.2. Momentum conservation

To derive the effective velocities for fluid-I and fluid-II we can follow the same steps discussed in Section
4.1.3. Since the surface tension γ is constant, we use the continuity in the tangential component of the normal
stress (27). It is worth to mention that the capillary number Ca is absent in the tangential stress boundary
condition. Applying asymptotic expansion (30) in the boundary condition (27), we get

1

ε

(
1

M
∂yq

(1)
I,0 − ∂yq

(1)
II,0

)
+

(
1

M
∂yq

(1)
I,1 − ∂yq

(1)
II,1

)
+O(ε) = 0, at Γεff (t).

The lowest order terms imply

∂yq
(1)
II,0 =

1

M
∂yq

(1)
I,0, at Γεff (t),

which is same as (45). Further as in Section 4.1.3, one obtains the same effective velocities, (54) and (55).

4.2.3. Effect of Ca

Assuming Ca = εβ Ca with β < 3 and applying asymptotic expansion (30) in (56) (recalling that here
γ(cε) = 1), the lowest order term implies the same pressure relation as in (57). The upscaled model for the
two-phase flow with constant surface tension, large or moderate capillary number can be represented by the
mass conservation equations (35), (37), by the effective velocities (59), (58) and the pressure relation (57).
This can be expressed in terms of two primary variables, the water saturation d0 and the pressure p0 (recall
that the two fluid pressures are equal). Specifically, for 0 < x < 1 and t > 0 one has

∂td0 + ∂x

[(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0

]
= 0,

∂td0 − ∂x
[
d20 (3− d0)

6
∂xp0

]
= 0

(65)

If the capillary number is Ca = ε3 Ca, applying (30) in (56), we obtain

pI,0 − pII,0 =
∂xxd0

Ca
. (66)

In this case, the upscaled model for the two-phase flow with constant surface tension is given by the mass
conservation equations (35), (37), the effective velocities (55), (54) and the capillary pressure relationship
(66).
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Remark 4. Observe that compared to traditional two-phase flow models, in which the capillary pressure is a
function of the saturation, here this involves second order derivative of the saturation. Here we emphasize the
differences between the cases β < 3 and β = 3 in the capillary pressure relation (57) and (66). In the former,
the pressures for both fluids are equal, in other words the capillary pressure is zero. In the later case, one
gets a model in which the commonly used pressure-saturation relation is replaced by a differential equation.
This is similar to the models in [21, 39]. One can explain the different results in the two cases starting with
the observation that γ is the reciprocal of Ca. Thus, in the first case γ is much smaller than in the second
case. As in the Young-Laplace equation, the pressure difference is proportional to γ, which whenever small,
implies that the two pressure are equal.

4.2.4. Effect of large viscosity ratio between the fluids

By now we assumed M = O(1), here we consider M = ε−1 M , where M = O(1), which means that the
viscosity of fluid-I is much smaller than that of fluid-II. We show that the first order terms when M → ∞,
upscaling the equations in Section 4.2 will only include the fluid-II flow whereas the fluid-I flow component
is vanishing, reducing the model to the unsaturated flow in Section 4.3. In this respect we first show that the
pressure becomes constant (and set as reference value to 0) for fluid-I. Now, considering M = ε−1 M with
M = O(1) in (47) and (48), for all t > 0 one has

∂xpI,0 + ε ∂xpI,1 −
ε

M
∂yyq

(1)
I,0 +O(ε2) = 0, in ΩεI(t), (67)

1

ε
∂ypI,0 + ∂ypI,1 +O(ε) = 0, in ΩεI(t). (68)

The lowest order terms in (67) and (68) give

∂xpI,0 = 0, and ∂ypI,0 = 0, in ΩεI(t).

Hence pI,0 is constant in space. We assume it constant in time as well and set this value as a reference zero
pressure, implying

pI,0 = 0, in ΩεI(t).

Considering the surface tension constant in (44) and M = ε−1 M , where M = O(1), give

−1

ε
∂yq

(1)
II,0 − ∂yq

(1)
II,1 +

1

M
∂yq

(1)
I,0 +O(ε) = 0, at Γεff (t).

The ε−1 order term in the above equation gives

∂yq
(1)
II,0 = 0, at Γεff (t). (69)

To find the effective velocity for fluid-II we use (69) instead of (45) when integrating (42) in y. Recalling
that γ is constant and pI,0 is zero for fluid-I, we follow the same steps as in Section 4.1.3, which results in

q
(1)
II,0 = ∂xpI,0

(
y2

2
+ (1− d0) y +

(
1

2
− d0

))
, in ΩεII(t). (70)

Integrating (70) and using (36) gives the Darcy law

q̄
(1)
II,0 = −d

3
0

3
∂xpII,0, for all 0 < x < 1 and t > 0. (71)
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To find the pressure equation for fluid-II, we take M = ε−1 M in Section 4.1.4 and we use the fact that the
pressure for fluid-I is zero. Then the capillary pressure relation in (57) (for β < 3) changes into

pII,0 = 0, for all 0 < x < 1 and t > 0. (72)

Remark 5. Since pII,0 = 0 in (72), the same holds for q̄
(1)
II,0 in (71) and therefore the saturation is constant

in space and time. This is trivial situation corresponding to a steady state.

Similarly, if β = 3, (66) becomes

pII,0 = −∂xxd0
Ca

, for all 0 < x < 1 and t > 0. (73)

Note that fluid-I plays no role in the upscaled equations, which now reduces to the equations for fluid-II.
Specially, the upscaled model consists of the mass conservation equation (37), the effective velocity (71) and
the pressure equation (72) (for β < 3), respectively by (73) (for β = 3). Hence, in the limit when M → ∞,
only the flow of one phase is accounted for the lowest order and the upscaled model for two-phase flow reduces
to the upscaled model for the unsaturated flow, as derived in Section 4.3.

4.3. Unsaturated flow with constant surface tension

We here now turn our attention to the model in Section 3.3.

4.3.1. Mass conservation

The derivation of the mass conservation equation in this section is identical to the one in Section 4.1.1.
The mass conservation equation for the unsaturated flow model with constant surface tension is the same as
(37).

4.3.2. Momentum conservation

We apply the asymptotic expansion (30) in the boundary condition (29) and recall that q
(2)
II,0 = 0 at

Γεff (t), instead of (44), the boundary condition for unsaturated flow at Γεff (t) reduces to

−1

ε
∂yq

(1)
II,0 − ∂yq

(1)
II,1 +O(ε) = 0. (74)

The ε−1 order gives

∂yq
(1)
II,0 = 0, at Γεff (t),

which is same as in (69). To find the effective velocity for fluid-II, we follow then the same steps as in
Section 4.2.4, which results in (71), the same effective law for fluid-II as in Section 4.2.4.

4.3.3. Effects of Ca

In the unsaturated flow case, we disregard fluid-I in (56), which leads to

− 1

ε2
pεII +

2

ε
∂yq

ε(2)

II − (∂xd
ε)2 pεII + 2 ∂xd

ε ∂yq
ε(1)

II − 2 ε ∂xd
ε ∂xq

ε(2)

II −
ε γ(cε) ∂xxd

ε

Ca
+O(ε3) = 0, at Γεff (t).
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Applying (30) in the above equation and recalling q
(1)
II,0 = 0 at Γεff (t), we find the same capillary pressure

relations as in Section 4.2.4. In particular, for β < 3, we get (72) and in this case the upscaled model is
trivial (see Remark 5). The case Ca= ε3 Ca is more interesting as it gives the pressure relation (73). The
upscaled model in this case is then represented by (35), (71) and (73). This can be expressed in terms of one
primary variable, the water saturation d0. Specifically, for all 0 < x < 1 and t > 0, one has

∂td0 + ∂x

(
d30
3

∂xxxd0

Ca

)
= 0, (75)

This equation resembles the thin-film lubrication approximation [62]. Moreover, the upscaled models in this
section are same as the ones for two-phase flow derived in Section 4.2.4 for the case of a large viscosity ratio.

5. Summary of upscaled models

We recall that in the upscaled models the width of the wetting fluid (fluid-II) d0 can be seen as its
saturation and therefore the saturation of the non-wetting fluid (fluid-I) is (1− d0). The effective equations
on the Darcy scale are now summarized and discussed in the sections below. These models are obtained in
the limit situation when ε → 0. Practically, one has ε small but not zero. Therefore the upscaled models
should be seen as an approximation of the pore-scale models, having a much simpler structure.

5.1. Two-phase flow with solute-dependent surface tension

If Ca = O(1), then for all 0 < x < 1 and t > 0, the upscaled model for the pore-scale model (15)-(25)
becomes

∂td0 − ∂xq̄(1)I,0 = 0,

∂td0 + ∂xq̄
(1)
II,0 = 0,

q̄
(1)
I,0 +

(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0 = 0,

q̄
(1)
II,0 +

d20 (3− d0)

6
∂xp0 = 0,

∂t (c0 d0) + ∂x

(
c0 q̄

(1)
II,0

)
− ∂x(D d0 ∂xc0) = 0.

(76)

If Ca = ε Ca, then for all 0 < x < 1 and t > 0, the upscaled counterpart of the pore-scale model in Section 2.5
becomes

∂td0 − ∂xq̄(1)I,0 = 0,

∂td0 + ∂xq̄
(1)
II,0 = 0,

q̄
(1)
I,0 +

(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0 −

(1− d0) d0

Ca
∂xγ(c0) = 0,

q̄
(1)
II,0 +

d20 (3− d0)

6
∂xp0 −

d20
2 Ca

∂xγ(c0) = 0,

∂t (c0 d0) + ∂x

(
c0 q̄

(1)
II,0

)
− ∂x(D d0 ∂xc0) = 0.

(77)

Both upscaled models above are valid for the regimes where the capillary number is either moderate or large,
which corresponds to very small surface tension. In particular, if the pressure difference becomes zero, i.e.,
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both fluid pressures are equal (here denoted by p0), the capillary pressure becomes zero as explained in
Remark 4. The models in (76) and (77) have a common structure. They both include the mass balance for
both fluid phases and the Darcy laws for the two fluid velocities. In terms of porous media models, the factors
multiplied by the pressures gradients are representing the relative permeabilities. In (77), the influence of
the surface tension gradient, namely the Marangoni effect, is visible. Finally, the last equation gives the mass
balance for the solute.

5.2. Two-phase flow with constant surface tension

If solute is not present in the fluid-II phase, the surface tension coefficient is constant. In this case the
mass balance for solute is left out. Also, no Marangoni effect is encountered, which simplifies the models.
Specifically, assuming Ca = εβ Ca with Ca = O(1) (for β < 3), the upscaled counterpart of the pore-scale
model in Section 2.6 is

∂td0 − ∂xq̄(1)I,0 = 0,

∂td0 + ∂xq̄
(1)
II,0 = 0,

q̄
(1)
I,0 +

(
M(1− d0)3

3
+
d0 (1− d0) (2− d0)

2

)
∂xp0 = 0,

q̄
(1)
II,0 +

d20 (3− d0)

6
∂xp0 = 0,

(78)

for all 0 < x < 1 and t > 0. Here the upscaled model is valid in the flow regimes where the capillary number
is moderate or large, which implies that the pressures for the two fluid phases are same, as explained in
Remark 4. Assuming, Ca = εβ Ca with Ca = O(1) (for β = 3), the upscaled model becomes

∂td0 − ∂xq̄(1)I,0 = 0,

∂td0 + ∂xq̄
(1)
II,0 = 0,

q̄
(1)
I,0 +

[
M (1− d0)3

3
+ d0 (1− d0)2

]
∂xpI,0 +

(1− d0) d20
2

∂xpII,0 = 0,

q̄
(1)
II,0 +

d30
3
∂xpII,0 +

(1− d0) d20
2

∂xpI,0 = 0,

pI,0 − pII,0 =
∂xxd0

Ca
,

(79)

for all 0 < x < 1 and t > 0. For the upscaled model above, the surface tension cannot be neglected because
of the very small capillary number, as mentioned in Remark 4. This is a non-standard model, as it does
not express difference of the two fluid pressures as a monotone function of the saturation, but as the second
spatial derivative of the saturation. This is in line with [19, 20, 21, 39, 40] (see also the introduction).

5.3. Unsaturated flow with constant surface tension

Continuing in the same spirit as before, for the unsaturated case with constant surface tension in Sec-
tion 2.7, the upscaled models are simplified. More precisely, assuming Ca = εβ Ca with Ca = O(1), for β < 3
the upscaled fluid-II pressure becomes zero (as the one for fluid-I) and therefore the flow is vanishing as well.
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In this case, the saturation becomes constant in both space and time, which is actually steady state. In this
case the upscaled model is trivial. For β = 3, the upscaled model becomes

∂td0 + ∂xq̄
(1)
II,0 = 0,

q̄
(1)
II,0 +

d30
3
∂xpII,0 = 0,

pII,0 = −∂xxd0
Ca

(80)

for all 0 < x < 1 and t > 0. Similar to (79), the upscaled model in (80) is a non-standard model in the
sense that the capillary pressure relation is given by the second derivative of the effective saturation. More
explanation is in Remark 4. For a large viscosity ratio, the pore-scale model for the two-phase flow in
Section 3.2 reduces to the upscaled models in (80).

Remark 6. The Marangoni effect is only visible for the upscaled model (77). For (76), the Marangoni effect is
lost and one immediately sees that (77) is equivalent to (76) for a constant surface tension. Additionally (77)
is equivalent to (78) for a constant concentration and surface tension. Hence, for the numerical validation in
Section 6, we will only consider the three upscaled models (77), (79) and (80), as these three models represent
the different effective behaviours we have considered.

6. Model validation

In this section the upscaled models are validated by numerical experiments. Specifically, the full so-
lutions (e.g. pεα,q

ε
α, c

ε, dε) of the two-dimensional pore-scale models, computed for pores having different
width/length ratios (e.g. ε = 0.1, 0.07, 0.05, 0.01), and for different capillary numbers (Ca=εβ Ca with
Ca = O(1), for β = 1, 3), are averaged in the transversal direction and compared to the approximate up-
scaled solutions (e.g. pα,0,qα,0, c0, d0).

To compute the full solutions of the pore-scale models, we use COMSOL Multiphysics [63]. For the
simulations of the upscaled models, we use a simple finite difference scheme on an equidistant mesh, imple-
mented in MATLAB. First and second order central differences are used for the space discretization. For the
time discretization, an explicit method with fixed time-step size is used for (77), while for (79) and (80), an
implicit method with fixed time-step size is used. We use harmonic averages for the relative permeabilities
in the effective flow equations. For the advective flux in (77) we use an upwind approximation. We employ
Newton’s method for solving the resulting non-linear system of equations.

We specify the pore geometry as in (13) and (14). For (13), we define the inflow and outflow boundaries
as

ΓεI,in(t) := {(x, y) ∈ R2|x = 0,−1 + dε(0, t) < y < 0},
ΓεI,out(t) := {(x, y) ∈ R2|x = 1,−1 + dε(1, t) < y < 0}.

For (14), the inflow and outflow boundaries are given by

ΓεII,in(t) := {(x, y) ∈ R2|x = 0,−1 < y < −l + d(0, t)},
ΓεII,out(t) := {(x, y) ∈ R2|x = 1,−1 < y < −1 + dε(1, t))}.

In the following, all the presented numerical results are non-dimensional.
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6.1. Two-phase flow with solute-dependent surface tension

Here we consider a numerical example of the pore-scale model in Section 3.1 where the regime is Ca = ε Ca
with Ca = 1. At the fluid-fluid interface, the surface tension coefficient is chosen as (2) with a = 1 and b = 1,
to include the Marangoni effect. The diffusion coefficient is chosen as D = 1 and the viscosity ratio as M = 1.
The initial conditions are

dε(x, t = 0) = 0.5, at Γεff (t = 0), cε(x, y, t = 0) = 0.25, in ΩεII(t = 0),

qεα(x, y, t = 0) = 0, in Ωεα(t = 0), pεα(x, y, t = 0) = 0, in Ωεα(t = 0).

The inflow and outflow boundary conditions are

pεα = 0.023 at Γεα,in(t), and pεα = 0 at Γεα,out(t),

cε = 1 at ΓεII,in(t), and cε = 0.25 at ΓεII,out(t).

Compatible initial and boundary conditions are chosen by recalling the capillary pressure relation (57). To
solve the upscaled model (77), the same initial and boundary conditions are chosen. We use homogeneous
Neumann boundary conditions for d0 at x = 0 and x = 1. The models are solved for a total time of t = 0.1.

Figure 3: Comparison of the saturation (left) and the concentration (right) of the upscaled model with the transversally averaged
solutions of the pore-scale model for different ε at t = 0.1.
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Figure 4: Comparison of the pressures of the wetting (left) and the non-wetting fluid (right) of the upscaled model with the
transversally averaged solutions of the pore-scale model for different ε at t = 0.1.

Figure 5: Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right) of the upscaled model with transversally
averaged solutions of the pore-scale model for different ε at t = 0.1.

In Figure 3-Figure 5, we have plotted the upscaled solutions of (77) together with the transversally
averaged pore-scale solutions in Section 3.1 for four different ε. For decreasing ε, the averaged pore-scale
solutions are converging to the upscaled solutions.

6.2. Two-phase flow with constant surface tension

Here we consider a numerical example of the pore-scale model in Section 3.2 where the regime is Ca =
ε3 Ca with Ca = 1. The viscosity ratio is chosen as M = 1. The initial conditions are

dε(x, t = 0) = 0.5− 1.2 x+ 1.2 x2 at Γεff (t = 0),

qεα(x, y, t = 0) = 0, pεα(x, y, t = 0) = 0 in Ωεα(t = 0).
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The inflow and outflow boundary conditions are

pεI = 0.023, at ΓεI,in(t), and pεI = 0 at ΓεI,out(t),

pεII = −2.377, at ΓεII,in(t), and pεII = −2.4, at ΓεII,out(t).

To avoid a non-smooth behaviour of the fluids, the values chosen above ensures that the initial and the
boundary conditions are compatible. Moreover, the capillary pressure relation (66) is also satisfied for t = 0.
To solve the upscaled model (79), the same initial and boundary conditions are chosen. We use homogeneous
Neumann boundary conditions for d0 at x = 0 and x = 1. The models are solved for a total time of t = 1.

Figure 6: Comparison of the saturation of the wetting fluid of the upscaled model with transversally averaged solutions of the
pore-scale model for different ε at t = 1.

Figure 7: Comparison of the pressures of the wetting (left) and the non-wetting fluid (right) of the upscaled model with
transversally averaged solutions of the pore-scale model for different ε at t = 1.
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Figure 8: Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right) of the upscaled model with transversally
averaged solutions of the pore-scale model for different ε at t = 1.

In Figure 6 - Figure 8, we have plotted the upscaled solutions of (79) together with the averaged pore-
scale solutions in Section 3.2 for various ε at t = 1. For decreasing ε, the averaged pore-scale solutions are
converging to the upscaled solutions.

6.3. Unsaturated flow with constant surface tension

The numerical computations of the pore-scale model in Section 3.3 are considered for the regime in
Ca = ε3 Ca with Ca = O(1). The initial conditions are

dε(x, t = 0) = 0.5 at Γεff (t = 0), qεII(x, y, t = 0) = 0 in ΩεII(t = 0),

pεII(x, y, t = 0) = 0 in ΩεII(t = 0).

The inflow and outflow boundary conditions are

pεII = 0.023 at ΓεII,in(t) and pεII = 0 at ΓεII,out(t).

The initial conditions and the boundary conditions are same as for the pore-scale model. We use homogeneous
Neumann boundary conditions for d0 at x = 0 and x = 1. The models are solved for a total time of t = 1.
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Figure 9: Comparison of the saturation of the wetting fluid of the upscaled model with the transversally averaged solutions of
the pore-scale model for different ε at time t = 1.

Figure 10: Comparison of the pressure (left) and the flux (right) of the wetting fluid of the upscaled model with the transversally
averaged solutions of the pore-scale model for different ε at time t = 1.

In Figure 9 and Figure 10, we have plotted the upscaled solutions of (80) together with the averaged
pore-scale solutions in Section 3.3 for various ε at t = 1. For decreasing ε, the averaged pore-scale solutions
are converging to the upscaled solutions.

7. Conclusion

We consider the flow of two immiscible and incompressible phases, respectively the unsaturated flow in a
porous medium. We account for the possible dependence of the surface tension on the solute transported by
the wetting fluid. For the two-phase flow (the unsaturated, one-phase flow being similar) the starting point
is the model at the pore scale, where the two fluids are separated by an interface having an a-priori unknown
location but depending on the fluid velocities. The flow is described by the Navier-Stokes equations and

27



the solute transport by the advection-diffusion equation. At the interface separating the two fluids, relevant
interface conditions are imposed. In particular, the difference in the normal stress tensors depend on the
surface tension, which may change depending on the solute. Considering a simplified situation, namely a thin
strip representing a single pore, we have derived upscaled one-dimensional models describing the averaged
behavior of the system. In doing so, different situations are considered, in which the capillary number and
the viscosity ratio have a certain behavior w.r.t. the ratio of the pore width and length. In particular, we see
that the solute-dependent surface tension (the Marangoni effect) is relevant for the upscaled models only if
the capillary number is small enough. Similarly, the capillary pressures effects are lost for low to intermediate
capillary numbers, while for larger ones the capillary pressure - saturation dependency is involving a second
order derivative of the saturation, as proposed in [20, 21, 39, 40]. Finally, in the case when the viscosity ratio
becomes large, the two-phase flow model reduces to the unsaturated, one-phase model.

Although considering a simple geometry, combining asymptotic expansions with various scalings of the
non-dimensional parameters show which processes are important at the larger scale and which can be ne-
glected. The upscaling procedure also shows how the capillary pressure depends on the saturation when
the capillary pressure should be accounted for. Allowing for other types of fluid displacement, such as a
fluid-fluid-solid contact point, and more general geometries open for also other types of upscaled models.
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