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Abstract
The overarching topic of this dissertation is multi-phase flow
in porous media. In the presence of salts and their ions,
precipitation and dissolution can alter the pore-space and have
a great impact on flow through porous media. Therefore, we
need reliable models that can describe these effects accurately
both on the pore-scale and on larger scales.
In this dissertation, we first propose several pore-scale models
for multi-phase flow including reactive fluid–solid interfaces.
In these models, both fluid–fluid and fluid–solid interfaces are
resolved as diffuse interfaces using the phase field method. We
investigate the thermodynamical consistency of the models
and find their sharp interface limit using asymptotic analysis.
We proceed to upscale the pore-scale models either using
homogenization in a periodic porous medium or transversal
averaging in the simplified geometry of a thin strip. The results
are multi-scale models consisting of averaged equations for
flux and ion concentration, with parameters that have to be
determined through cell problems. These cell problems encode
information about the geometry of the microscale at each
macroscopic point.
Lastly, we apply the developed models to investigate enzymat-
ically induced calcite precipitation. We compare simulation re-
sults to micro-fluidic experiments and find excellent agreement,
in particular for the growth direction of crystal aggregates.
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Abstract

The overarching topic of this dissertation is multi-phase flow in
porous media. In the presence of salts and their ions, precipitation
and dissolution can alter the pore-space and have a great impact on
flow through porous media. Therefore, we need reliable models that
can describe these effects accurately both on the pore-scale and on
larger scales.

In this dissertation, we first propose several pore-scale models for
multi-phase flow including reactive fluid–solid interfaces. In these
models, both fluid–fluid and fluid–solid interfaces are resolved as
diffuse interfaces using the phase field method. We investigate the
thermodynamical consistency of the models and find their sharp
interface limit using asymptotic analysis.

We proceed to upscale the pore-scale models either using homoge-
nization in a periodic porous medium or transversal averaging in the
simplified geometry of a thin strip. The results are multi-scale mod-
els consisting of averaged equations for flux and ion concentration,
with parameters that have to be determined through cell problems.
These cell problems encode information about the geometry of the
microscale at each macroscopic point.

Lastly, we apply the developed models to investigate enzymatically
induced calcite precipitation. We compare simulation results to
micro-fluidic experiments and find excellent agreement, in particular
for the growth direction of crystal aggregates.

Zusammenfassung

Das übergeordnete Thema dieser Dissertation ist die Mehrphasen-
strömung in porösen Medien. In Anwesenheit von Salzen und ihren
Ionen können Präzipitation und Auflösung den Porenraum verändern
und die Strömung durch poröse Medien stark beeinflussen. Daher
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benötigen wir zuverlässige Modelle, die diese Effekte sowohl auf der
Porenskala als auch auf größeren Skalen exakt beschreiben können.

In dieser Dissertation schlagen wir zunächst mehrere Modelle für
Mehrphasenströmungen einschließlich reaktiver Flüssig–Festkörper-
Grenzflächen auf der Porenskala vor. Dabei werden sowohl Flüssig–
Flüssig- als auch Flüssig–Festkörper-Grenzflächen mit Hilfe der Pha-
senfeldmethode als diffuse Grenzschicht aufgelöst. Wir untersuchen
die thermodynamische Konsistenz der Modelle und finden ihren
scharfen Grenzflächen-Limes mithilfe asymptotischer Analysis.

Wir betrachten den Skalenübergang der Porenskala-Modelle zur
Darcy-Skala durch Homogenisierung in einem periodischen porösen
Medium oder durch transversale Mittelung in der vereinfachten Geo-
metrie eines dünnen Streifens. Das Ergebnis sind Multiskalenmodelle,
die aus gemittelten Gleichungen für Fluss und Ionenkonzentration
bestehen. Die Parameter dieser Gleichungen müssen duch Zellproble-
me bestimmt werden, die die Geometrie der Mikroskala an jedem
makroskopischen Punkt beschreiben.

Abschließend wenden wir die entwickelten Modelle an, um enzyma-
tisch induzierte Kalzitausfällung zu untersuchen. Wir vergleichen
die Simulationsergebnisse mit mikrofluidischen Experimenten und
stellen eine exzellente Übereinstimmung fest, insbesondere für die
Wachstumsrichtung der Kristallaggregate.
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Introduction 1
1.1 Reactive Multi-Phase Flow in Porous Media

Multi-phase flow and reactive transport processes are commonly en-
countered in engineering applications, getting particularly important
in the context of porous media flow. Examples comprise processes
like concrete carbonation, geological 𝐶𝑂2–sequestration involving
calcite precipitation, ion exchange in fuel cells or the spreading of
biofilms in the soil’s vadose zone. While modeling of multi-phase
flow in porous media is challenging in itself, these applications are
even more complex as the involved solid phase can change over time.
The evolving porous medium skeleton in turn changes the overall
flow dynamics.

To describe multi-phase flow in porous media it is necessary to
understand the phase-interfaces inside the porous medium, as they
control to a large extent the behavior of the fluid flow. These
interfaces include fluid–solid interfaces, usually between a fluid phase
and the solid porous medium skeleton, as well as fluid–fluid interfaces
between the fluid phases. Some fluid–solid interfaces can be altered
due to chemical reactions, and such reactive fluid–solid interfaces
introduce additional non-linearities in the system.

An important property of any porous medium is the occurrence of
multiple spatial scales. On the pore-scale the fluid phases and the
solid porous medium skeleton can be identified clearly, occupying
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certain positions in well-defined volumes. This also means that all
interfaces between phases are resolved on the pore-scale. Because the
overall size of the porous medium is much bigger than the pore-scale,
it is usually not feasible to resolve the pore-scale. Instead, averaged
quantities are considered on a larger scale, i.e., the Darcy-scale.

Processes in porous media can be modelled at different length scales.
When formulated on the pore-scale, the models are capable to de-
scribe the detailed processes accurately. On the other hand, they
are defined in a highly complex domain, and this makes such models
difficult to use for large spatial scales. For some simple processes in
homogeneous porous media there exist fundamental laws for effec-
tive quantities on the Darcy-scale, e.g. Darcy’s law for single-phase
flow, effective laws for diffusion governed by Fick’s law and for heat
transfer governed by Fourier’s law. More complex processes are
much more difficult to describe through effective laws, in particular
processes involving evolving pore-scale interfaces, such as fluid–fluid
interfaces and reactive fluid–solid interfaces. Currently, such pro-
cesses are approximated on an empirical basis through constitutive
relationships that are stated directly at the Darcy-scale. In this
context, upscaling is a natural way to derive mathematical models
that, on one hand, can be used for practical applications, and, on
the other hand, do incorporate accurately the influence of evolving
small-scale interfaces at the pore-scale.

1.1.1 Example for Microstructural Evolution: EICP in Porous
Media

A pertinent example of multi-phase flow in porous media with an
evolving micro-structure is enzymatically induced calcium carbonate
precipitation (EICP). To illustrate a process where the results of this
thesis can be directly applied, we give a short overview of EICP in
the following.

Enzymatically induced calcium carbonate precipitation is an en-
gineering technology that employs enzymatic activity for altering



1.1 Reactive Multi-Phase Flow in Porous Media 5

Figure 1.1: EICP in a micro-fluidic cell (images with permission
from Felix Weinhardt). The solid matrix consisting of circles
is impermeable for the fluid. From the left to the right image,
calcium carbonate (dark gray) is precipitating over a time
of 11 hours and this leads to a decrease in porosity and
permeability.

geochemistry, thus resulting in precipitation of calcium carbonate.
For this, ureases are used, which are widespread enzymes in soil
bacteria and plants. Ureases catalyze the hydrolysis reaction of urea
((NH2)2CO), resulting at typical environmental conditions in the
products bicarbonate (HCO –

3 ) and ammonium (NH +
4 ), i.e.,

CO(NH2)2 + 3H2O 𝑢𝑟𝑒𝑎𝑠𝑒 NH +
4 + H2NCOO− + 2H2O

2NH +
4 + HCO −

3 + OH−.

The produced bicarbonate (HCO –
3 ) can dissociate to yield carbonate

ions (CO 2–
3 ). In the presence of calcium ions (Ca2+) this results

in calcium carbonate (CaCO3) precipitation. Therefore, the overall
reaction can be stated as

CO(NH2)2 + 2 H2O + Ca2+ 2 NH +
4 + CaCO3 ↓ .

EICP offers an engineering option to precipitate calcium carbonate
in-situ, and by that to alter porous medium parameters such as
porosity and permeability as well as the strength and stiffness of
the medium. Hence, EICP can be used e.g. to seal high-permeable
leakage pathways.
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Figure 1.1 shows an experiment of EICP in a micro-fluidic cell. The
calcium carbonate forms multiple nuclei in the pore space, and these
nuclei continue to grow into grains through precipitation. While
these grains can be transported by fluid, they usually remain affixed
to the solid matrix (or in this case to the front- and backplate of the
micro-fluidic cell).

1.2 Phase Field Models for Multi-Phase Flow

To describe multi-phase flow and an evolving solid phase on the
pore-scale, the evolution of the interfaces between the phases has
to be modeled. There are multiple approaches to model evolving
interfaces of types fluid–fluid, reactive fluid–solid and non-reactive
fluid–solid as encountered in our multi-phase flow scenario. From
a physical point of view, the most well-grounded is the sharp inter-
face formulation. The interfaces are represented as codimension-1
manifolds, and their movement is described by their normal velocity
at each point of the interface. The normal velocity is determined
from transmission conditions that connect to bulk models valid in
the respective phases.

An alternative approach to model the evolving interfaces is through
diffuse interface methods. Here, the interface is described as a zone
of small positive width. The most common type of diffuse interface
method is the phase field method. It introduces an additional order
parameter 𝜙 as an approximation of the characteristic function,
and hence 𝜙 attains the value 1 in one domain and 0 in the other.
Because 𝜙 is chosen to be continuous, it has a smooth transition
zone of non-zero width across the interface.

The evolution of the phase field variable 𝜙 is given by a phase
field equation, which usually can be derived from a minimization
of a free energy functional. Most commonly used are the Allen–
Cahn equation [Allen and Cahn 1979] and Cahn–Hilliard equation
[Cahn and Hilliard 1958]. They both arise from modeling the phase
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separation of mixed systems, as encountered e.g. in the spinodal
decomposition of alloys.

For a domain Ω ⊂ ℝ𝑁, 𝑁 ∈ {2, 3}, with boundary 𝜕Ω and outer
normal n, the Allen–Cahn equation for the phase field variable 𝜙 is
given by

𝜕𝑡𝜙 = 𝑀
𝜀

(𝜀∇2𝜙 − 1
𝜀

𝑊 ′(𝜙)) in Ω, (1.1)

𝜕n𝜙 = 0 on 𝜕Ω. (1.2)

Here the mobility 𝑀 determines the time scale of the evolution. In the
simplest case it is chosen to be constant, while more involved models
also allow for the mobility to depend on 𝜙. The phase field parameter
𝜀 determines the width of the diffuse interface zone. In Section 1.3
we show that for 𝜀 → 0 a sharp interface model is recovered. The
function 𝑊 is a double well function, e.g. 𝑊(𝜙) = 8𝜙2(1 − 𝜙)2 as
shown in Figure 1.2.

Distant from the diffuse interface zone the phase field variable 𝜙
attains values corresponding to the minima of 𝑊. For the scope
of this work we always choose the minima at 0 and 1, although
other choices are also common in literature, in particular the choice
−1 and 1. The Allen–Cahn equation is a 𝐿2-gradient flow to the

𝜙

𝑊(𝜙)

0 1

Figure 1.2: Plot of the double well potential 𝑊(𝜙) = 8𝜙2(1−𝜙)2.
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Ginzburg–Landau free energy

𝐹(𝜙, ∇𝜙) = ∫
Ω

(𝑊(𝜙)
𝜀

+ 1
2

𝜀 |∇𝜙|2) , (1.3)

and therefore the free energy 𝐹 is decreasing in time. The free energy
functional 𝐹 is composed of a bulk free energy, with a minimum for
each of the pure phases, and an interfacial energy penalizing large
gradients in the phase field variable 𝜙.

In the same setting the Cahn–Hilliard equation is given by

𝜕𝑡𝜙 = ∇ ⋅ (𝑀∇𝜇) in Ω, (1.4)

𝜇 = 𝑊 ′(𝜙)
𝜀

− 𝜀∇2𝜙 in Ω, (1.5)

𝜕n𝜙 = 0 on 𝜕Ω, (1.6)
𝜕n𝜇 = 0 on 𝜕Ω. (1.7)

Again, the mobility 𝑀 determines the speed of the evolution, and is
chosen to be constant in simple models. Obviously equation (1.5)
describing the chemical potential 𝜇 can be inserted into equation
(1.4) to obtain a fourth order differential equation for 𝜙. The Cahn–
Hilliard equation is a 𝐻−1-gradient flow to the Ginzburg–Landau free
energy (1.3). This again implies that the free energy 𝐹 is decreasing
in time.

While similar in structure, there are some important differences
between the Allen–Cahn equation and the Cahn–Hilliard equation.
For the Allen–Cahn equation it is easy to prove, using the maximum
principle for elliptic equations, that for initial values of 𝜙 between 0
and 1 the phase field variable remains bounded by 0 and 1. When
interpreting the phase field variable as a mass-fraction or volume-
fraction this ensures that 𝜙 stays in the physical regime. In contrast,
while there exist 𝐿∞-bounds for the Cahn–Hilliard equation [Caf-
farelli and Muler 1995], the phase field variable 𝜙 is not bounded in
the admissible physical regime [0, 1]. The Cahn–Hilliard equation
is conservative with regard to 𝜙. This can be easily seen by inter-
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preting (1.4) as a transport equation with the appropriate boundary
condition (1.7). On the other hand, the Allen–Cahn equation is
generally not conservative, although conservative reformulations for
two-phase flow [Jeong and Kim 2017] and multi-component systems
[Mu et al. 2018] exist. However, these formulations are only globally
and not locally conservative. While the Allen–Cahn equation is a
second-order partial differential equation, the Cahn–Hilliard equation
contains fourth-order spatial derivatives. Consequently, numerical
algorithms might require smaller time steps for the Cahn–Hilliard
equation. Both the Allen–Cahn equation and the Cahn–Hilliard
equation form interfaces that evolve due to curvature effects. While
the Allen–Cahn equation approximates mean curvature flow (see
Section 1.3.1 below), the Cahn–Hilliard equation approximates the
Mullins–Sekerka free boundary problem.

Next, we combine the phase field equations with other physical phe-
nomena. Phase field models have been coupled in various applications
to describe e.g. dendritic growth [Takaki 2014], tumor growth (see
[Oden et al. 2010] and references therein) and fracture propagation
[Egger et al. 2019]. In the following we focus on coupling the phase
field equations with the incompressible Navier–Stokes equations to
model multi-phase flow.

The basic model for incompressible two-phase flow, called “Model
H”, was presented in [Hohenberg and Halperin 1977]. It couples
the Cahn–Hilliard equation with the incompressible Navier–Stokes
equations and reads

∇ ⋅ v = 0 in Ω, (1.8)
𝜕𝑡(𝜌v) + ∇ ⋅ (𝜌v ⊗ v) = −∇𝑝 + ∇ ⋅ (2𝛾∇v)

+ 𝜀𝜎∇ ⋅ (∇𝜙 ⊗ ∇𝜙) in Ω, (1.9)
𝜕𝑡𝜙 + ∇ ⋅ (𝜙𝑣 − 𝜀∇𝜇) = 0 in Ω, (1.10)

𝜇 = 𝑊 ′(𝜙)
𝜀

− 𝜀∇2𝜙 in Ω, (1.11)

∇𝜙 ⋅ n = 0 on 𝜕Ω, (1.12)
∇𝜇 ⋅ n = 0 on 𝜕Ω, (1.13)
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v = 0 on 𝜕Ω. (1.14)

Here v is the fluid velocity, 𝜌 is the constant fluid density, 𝑝 is the
pressure, 𝛾 is the constant fluid viscosity, and 𝜎 is the constant surface
tension. Also, n is the outer normal unit vector of Ω. The density
and viscosity of both fluid phases is the same. There are two terms
coupling the Navier–Stokes equations (1.8), (1.9) with the Cahn–
Hilliard equations (1.10), (1.11). Firstly, the phase field variable
𝜙 gets transported with the fluid velocity v in (1.10). Secondly,
the term 𝜀𝜎∇ ⋅ (∇𝜙 ⊗ ∇𝜙) in equation (1.9) models surface tension
between the two fluid phases.

As the model is based on the Cahn–Hilliard equation, the interfaces
still evolve due to curvature effects approximating the Mullins–
Sekerka problem. Therefore, the mobility of the Cahn–Hilliard
equation is chosen to be equal to 𝜀, so that additional curvature
effects arising from the Cahn–Hilliard evolution are small and vanish
for 𝜀 → 0.

Multiple models have been proposed to generalize Model H to fluids
with different densities. Because the mass averaged generalizations
proposed by [Lowengrub and Truskinovsky 1998] lead to a non
divergence-free vector field, we base our work in Chapter 3 on the
volume-averaged model in [Abels, Garcke, et al. 2012]. Here the
phase field variable 𝜙 is interpreted as the volume fraction of the
first fluid phase. With constant fluid densities 𝜌1 and 𝜌2 the density
of the fluid mixture is given as

𝜌𝑓 = 𝜙𝜌1 + (1 − 𝜙)𝜌2.

The model reads

∇ ⋅ v = 0, (1.15)
𝜕𝑡(𝜌𝑓v) + ∇ ⋅ ((𝜌𝑓v + 𝜌1J − 𝜌2J) ⊗ v) = −∇𝑝 + ∇ ⋅ (2𝛾(𝜙)∇𝑠v)

+ 𝜀𝜎∇ ⋅ (∇𝜙 ⊗ ∇𝜙),
(1.16)

𝜕𝑡𝜙 + ∇ ⋅ (𝜙𝑣 + J) = 0, (1.17)
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J = −𝜀∇𝜇, (1.18)

𝜇 = 𝑊 ′(𝜙)
𝜀

− 𝜀Δ𝜙, (1.19)

in Ω with boundary conditions (1.12)–(1.14). Compared to Model
H (1.8)–(1.11) this model introduces an additional flux term in the
momentum equation (1.16). This is due to the fact, that the Cahn–
Hilliard evolution can be seen as an additional flux J for the fluid
phases and has to be included in the momentum transport to ensure
thermodynamical consistency.

For a generalization to three fluid phases, [Boyer, Lapuerta, et al.
2010; Boyer and Lapuerta 2006] introduced consistency principles
that lead to particular choices of the bulk free energy. Based thereon
models for more than three fluid phases have been proposed in e.g.
[Boyer and Minjeaud 2014; Dunbar et al. 2019]. When considering
more than two phases, three interfaces can meet at a triple junc-
tion. Analysis of this triple junction [Bronsard and Reitich 1993;
Dunbar et al. 2019; Garcke, Nestler, et al. 1998] shows that the free
energy functional implies a contact angle condition between the three
interfaces.

For phase field models describing fluid–solid interfaces, one can
introduce a solid phase as a fluid with very high viscosity, as in
[Anderson et al. 2000]. This is also the idea in [Zhang and Klapper
2010; Zhang and Klapper 2011], where microbially induced calcium
carbonate precipitation is considered. In contrast, we follow the
work of [Beckermann et al. 1999] (see also [Jeong, Goldenfeld, et al.
2001; Sun and Beckermann 2004]), who assign a zero-velocity to the
solid phase and solve the flow equations only in the volume fraction
occupied by fluid.

The publication [van Noorden and Eck 2011] incorporates a kinetic
reaction at the phase boundary. In [Xu and Meakin 2008] a phase
field model for precipitation and dissolution is proposed, in [Redeker
et al. 2016] precipitation is considered for one solid and two fluid
phases. Both works only consider diffusion in the fluid phase, and
ignore the fluid flow.



12 1 Introduction

1.3 Matched Asymptotic Expansions and the
Sharp Interface Limit

The width of the diffuse transition zone is controlled by the phase field
parameter 𝜀. An essential property of a phase field formulation is that
it can be seen as an approximation to a sharp-interface model (i.e.,
bulk equations and boundary conditions at the evolving interface).
This can be justified by investigating the limit 𝜀 → 0, called the
sharp interface limit. The complexity of phase field models allows for
a rigorous treatment of the sharp interface limit only in simple cases,
such as the Allen–Cahn equation [Mottoni and Schatzman 1995], the
Cahn–Hilliard equation [Alikakos et al. 1994], simple solidification
[Caginalp and Chen 1998], or more recently a Stokes–Allen–Cahn
system [Abels and Liu 2018]. For rigorous sharp interface limits
including boundary conditions, see [Moser 2021]. For more complex
models the sharp interface limit can be analyzed by using the formal
technique of matched asymptotic expansions. For phase field models
this has been pioneered by [Caginalp and Fife 1988], see also [Elder
et al. 2001; Li et al. 2009] for some general results. In the following
we present the method of matched asymptotic expansions exemplary
for the Allen–Cahn equation.

We are interested in a regime of solutions where bulk phases, charac-
terized through small gradients in the phase field parameter 𝜙, are
separated by interfaces that are smooth manifolds of codimension
one. We distinguish between the behavior of the solution close to
the interface and far away from it. For this we assume now, that
away from the interface we can write solutions to the Allen–Cahn
model (1.1) in terms of outer expansions of the unknown 𝜙, i.e., we
can write it in the form

𝜙out(𝑡, x) = 𝜙out
0 (𝑡, x) + 𝜀𝜙out

1 (𝑡, x) + 𝜀2𝜙out
2 (𝑡, x) + … , (1.20)

where 𝜙out
𝑘 , 𝑘 ∈ ℕ0 does not depend on 𝜀. We will insert expan-

sion (1.20) into (1.1) and group terms by powers of 𝜀, using Taylor
expansions of the nonlinearities. If the respective derivatives exist,
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we have for a generic function ℎ ∈ 𝐶2(ℝ) and a generic expansion
𝑢 = 𝑢0 + 𝜀𝑢1 + … the calculation

ℎ(𝑢) = ℎ(𝑢0 + 𝜀𝑢1 + …) = ℎ(𝑢0) + 𝜀ℎ′(𝑢0)𝑢1 + 𝑂(𝜀2).

For the inner expansion, valid close to the diffuse interface, we
introduce local coordinates. To do so, we let

Γ(𝑡) = {x ∈ Ω ∶ 𝜙(𝑡, x) = 1/2} . (1.21)

By our assumption, Γ is a smooth (𝑁 − 1)-dimensional manifold
embedded in Ω ⊂ ℝ𝑁 and depending on time 𝑡. Observe that
Γ depends on 𝑡, and in particular also on 𝜀. Let s be a local
parameterization along Γ(𝑡) (s being a scalar in the two-dimensional
case and a vector in ℝ2 in the three-dimensional case), so that
x(𝑡, s) ∈ Γ. Let n ∈ ℝ𝑁 be the normal unit vector at Γ(𝑡) pointing
into the phase with 𝜙 = 0. We denote by

𝜈(𝑡, s) = 𝜕𝑡x(𝑡, s) ⋅ n(𝑡, s)

the normal velocity of the interface. With this, one can define local
curvilinear coordinates (𝜁, s) near the interface Γ through

x(𝑡, s, 𝜁) = x(𝑡, s) + 𝜁n(𝑡, s),

see Figure 1.3 for an illustration. With this construction 𝜁 is the
signed distance from the point x(𝑡, s, 𝜁) to the interface.

Γ x(𝑡, s)

x(𝑡, s, 𝜁)

n(𝑡, s)

𝜙 = 1

𝜙 = 0

Figure 1.3: Local curvilinear coordinates for the interface Γ(𝑡).
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It can be shown (see [Caginalp and Fife 1988], the appendix of [Abels,
Garcke, et al. 2012], and Lemma 14.17 in [Gilbarg and Trudinger
2001] ) that

|∇𝜁| = 1, ∇𝜁 ⋅ ∇𝑠𝑖 = 0, 𝜕𝑡𝜁 = −𝜈𝑛,

∇2𝜁 =
𝑁−1
∑
𝑖=1

−𝜅𝑖
1 − 𝜅𝑖𝜁

= −𝜅 + 2Π𝜁
1 − 𝜅𝜁 + Π𝜁2 ,

where 𝜅𝑖 are the principal curvatures of the interface. Further, we
introduce 𝜅 = ∑𝑁−1

𝑖=1 𝜅𝑖, i.e., 𝜅 is equal to 𝑁 − 1 times the mean
curvature. Also, Π = 𝜅1𝜅2 is the Gaussian curvature of the interface
for 𝑁 = 3 and Π = 0 for 𝑁 = 2. As Γ depends on 𝑡 and 𝜀, so do
the local coordinates around the interface. We make this explicit for
x(𝑡, s) with the expansion x(𝑡, s) = x0(𝑡, s) + 𝜀x1(𝑡, s) + … , where
x0 is a point on the interface Γout

0 (𝑡) defined through 𝜙out
0 = 1/2.

Similarly we expand n(𝑡, s) = n0(𝑡, s) + 𝜀n1(𝑡, s) + 𝑂(𝜀2), where
n0(𝑡, s) is the normal vector of Γout

0 (𝑡) at x0(𝑡, s). We also define
𝜈0 = 𝜕𝑡x0(𝑡, s) ⋅ n0(𝑡, s).

We expect the diffuse interface width being proportional to 𝜀. There-
fore, let 𝑧 = 𝜁/𝜀 be a rescaled signed distance to the interface. For
generic scalar and vectorial variables 𝑢 and U we obtain the trans-
formation rules (see [Caginalp and Fife 1988] and the Appendix of
[Abels, Garcke, et al. 2012])

𝜕𝑡𝑢 = −1
𝜀

𝜈0𝜕𝑧𝑢 + 𝑂(1), (1.22)

∇𝑢 = 1
𝜀

𝜕𝑧𝑢n0 + ∇Γout
0

𝑢 + 𝑂(𝜀), (1.23)

∇ ⋅ U = 1
𝜀

𝜕𝑧U ⋅ n0 + ∇Γout
0

⋅ U + 𝑂(𝜀), (1.24)

∇U = 1
𝜀

𝜕𝑧U ⊗ n0 + ∇Γout
0

U + 𝑂(𝜀), (1.25)

∇2𝑢 = 1
𝜀2 𝜕𝑧𝑧𝑢 − 1

𝜀
𝜅0𝜕𝑧𝑢 + 𝑂(1), (1.26)

where 𝜅0 is the sum of the principal curvatures of Γout
0 and ∇Γout

0
is
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the surface gradient of Γout
0 . As we work only with the leading order

terms 𝜈0, n0, ∇Γout
0

, 𝜅0 in the following, we drop the indices in the
notation.

We assume that close to the interface we can write solutions to the
Allen–Cahn model (1.1) in terms of inner expansions of the unknown
𝜙, reading

𝜙in(𝑡, s, 𝑧) = 𝜙in
0 (𝑡, s, 𝑧) + 𝜀𝜙in

1 (𝑡, s, 𝑧) + … . (1.27)

Note that expansion (1.27) already uses the local, rescaled coordi-
nates s and 𝑧.

For the outer expansion and a fixed 𝑡 and s we denote the limit
x(𝑡, s, 𝜁) → x(𝑡, s, 0) from positive 𝜁 by x+ and from negative 𝜁 by
x−. We match the corresponding limit values of the outer expansion
with the ones for the inner expansion, obtained when 𝑧 → ±∞.
More precisely, we formally write for a generic variable 𝑢 with outer
expansion 𝑢out and inner expansion 𝑢in,

𝑢out(𝑡, x(𝑡, s, 𝜀𝑧)) = 𝑢in(𝑡, s, 𝑧).

Lengthy calculations [Caginalp and Fife 1988] lead to the following
matching conditions in the limit 𝑧 → ±∞.

𝑢in
0 (𝑡, s, ±∞) = 𝑢out

0 (𝑡, x±), (1.28)
𝜕𝑧𝑢in

0 (𝑡, s, ±∞) = 0, (1.29)
𝜕𝑧𝑢in

1 (𝑡, s, ±∞) = ∇𝑢out
0 (𝑡, x±) ⋅ n. (1.30)

In particular, combining (1.28) and (1.30) we have for a generic vector
valued variable U with outer expansion Uout and inner expansion
Uin

𝜕𝑧Uin
1 (𝑡, s, ±∞) ⊗ n + ∇ΓUin

0 (𝑡, s, ±∞) = ∇Uout
0 (𝑡, x±). (1.31)
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1.3.1 Sharp Interface Limit for the Allen–Cahn Equation

We now use the method of matched asymptotic expansions to formally
calculate the sharp interface limit for the Allen–Cahn equation (1.1).
We first substitute the outer expansion (1.20) for 𝜙 into the Allen–
Cahn equation (1.1). For the 𝑂(𝜀−2) term, which is the leading
order, one obtains

𝑊 ′(𝜙out
0 ) = 0.

With the choice 𝑊(𝜙) = 8𝜙2(1 − 𝜙)2, this equation has three so-
lutions: 𝜙out

0 = 0, 1/2, or 1. Using the formal argument in [van
Noorden and Eck 2011], the first and the last solution are stable
since 𝑊 ″(0) > 0 and 𝑊 ″(1) > 0, whereas 𝜙out

0 = 1/2 is unstable
since 𝑊 ″(1/2) < 0. In view of this, we see that in the limit 𝜀 → 0
one obtains the solutions 𝜙out

0 = 0 and 𝜙out
0 = 1, and let Ω1(𝑡) and

Ω2(𝑡) be the (time dependent) sub-domains of Ω where 𝜙out
0 is 1 and

0, respectively.

Next we consider an interface with Ω1(𝑡) on the side of negative 𝑧 and
Ω2(𝑡) on the side of positive 𝑧. We substitute the inner expansion
(1.27) into the Allen–Cahn equation (1.1). The leading order terms
are of order 𝑂(𝜀−2) and satisfy

0 = 𝜕2
𝑧 𝜙in

0 − 𝑊 ′(𝜙in
0 ). (1.32)

Using (1.28) we obtain the boundary conditions

lim
𝑧→−∞

𝜙in
0 (𝑡, 𝑧, s) = 1 and lim

𝑧→∞
𝜙in

0 (𝑡, 𝑧, s) = 0.

Furthermore, 𝜙in
0 (𝑡, 0, s) = 0.5 as the location of the interface is

defined by 𝜙 = 1/2 according to (1.21).

Multiplying (1.32) by 𝜕𝑧𝜙in
0 , integrating the result in 𝑧 and using the

matching conditions(1.28)–(1.30) one gets

1
2

(𝜕𝑧𝜙in
0 )2 = 𝑊(𝜙in

0 ). (1.33)
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This can be interpreted as an equipartition of the two energy terms in
the Ginzburg–Landau free energy (1.3). With boundary conditions
for 𝜙in

0 at 𝑧 → ±∞, the centering condition 𝜙in
0 (𝑡, 0, s) = 1/2, and

explicitly using 𝑊(𝜙) = 8𝜙2(1 − 𝜙)2, the unique solution of (1.33)
is given by

𝜙in
0 (𝑡, 𝑧, s) = 𝜙in

0 (𝑧) = 1
1 + 𝑒4𝑧 = 1

2
(1 − tanh (2𝑧)) . (1.34)

With (1.34) the shape of 𝜙 across the diffuse transition zone is
determined.

Next, we determine the interface velocity. When inserting the inner
expansion (1.27) into the Allen–Cahn equation (1.1), the first order
terms are of size 𝑂(𝜀−1), and one obtains

(𝑊 ″(𝜙in
0 ) − 𝜕2

𝑧 )𝜙in
1 = ( 𝜈

𝑀
− 𝜅) 𝜕𝑧𝜙in

0 .

We multiply by 𝜕𝑧𝜙in
0 and calculate

∫
∞

−∞
(𝑊 ″(𝜙in

0 ) − 𝜕2
𝑧 )𝜙in

1 𝜕𝑧𝜙in
0 𝑑𝑧

= ∫
∞

−∞
𝜕𝑧(𝑊 ′(𝜙in

0 ) − 𝜕2
𝑧 𝜙in

0 )𝜙in
1 𝑑𝑧 = 0,

where we have used partial integration with matching conditions
(1.28)–(1.30), as well as (1.32). We therefore have

0 = ∫
∞

−∞
(𝑊 ″(𝜙in

0 ) − 𝜕2
𝑧 )𝜙in

1 𝜕𝑧𝜙in
0 𝑑𝑧 = ( 𝜈

𝑀
− 𝜅) ∫

∞

−∞
(𝜕𝑧𝜙in

0 )2𝑑𝑧.

With (1.34) we have 0 ≠ ∫∞
−∞

(𝜕𝑧𝜙in
0 )2𝑑𝑧, and we therefore find the

condition for the moving interface

𝜈 = 𝑀𝜅. (1.35)

We find that the sharp interface limit of the Allen–Cahn equation is
given by two domains Ω1 and Ω2 with an interface Γ between them
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moving by the mean curvature flow (1.35).

When using the same techniques to derive the sharp interface limit
of the Cahn–Hilliard equation (1.4)–(1.5), one finds the Mullins–
Sekerka free boundary problem, i.e., in the two domains Ω1 and Ω2
one has to solve

Δ𝜇out
0 = 0, (1.36)

with the interface conditions on Γ given by

𝜇out
0 = 𝐶𝜅, 𝜈 = 𝑀J∇𝜇out

0 ⋅ nK,

with a constant 𝐶 depending on the exact form of the double well
function 𝑊(𝜙) (e.g. 𝐶 = 1/3 for 𝑊(𝜙) = 8𝜙(1 − 𝜙)2), and J⋅K
denoting the jump of a quantity over the interface Γ.

1.4 Upscaling in Porous Media

In a porous medium, two different length scales are encountered. The
first is the pore-scale, where the location of each phase is resolved.
At a larger scale, the so-called Darcy-scale, averaged quantities are
used to describe the behavior of the system. On the pore-scale, the
detailed interaction of the phases can be modeled. But the geometric
complexity of the pore-scale limits the size of pore-scale simulations,
and therefore Darcy-scale models are used in most situations of
practical relevance. In this context, upscaling techniques are used to
derive Darcy-scale models from pore-scale models.

One set of such techniques are volume averaging techniques, see for
example [Bahar et al. 2016; Quintard and Whitaker 1988; Quintard
and Whitaker 1994; Quintard and Whitaker 1999; Tartakovsky et
al. 2007; Whitaker 1999; Whitaker 1986], and thermodynamically
constrained averaging theory (TCAT), as done in [Gray and Miller
2005; Jackson et al. 2012; Rybak et al. 2015]. We focus in this
work on asymptotic expansions and homogenization techniques (see
e.g. [Hornung 1996] for an introduction). Rigorous results can be
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obtained via two-scale convergence [Allaire 1992] or 𝐻-convergence
[Tartar 1990]. We refer to [Davit et al. 2013] for a comparison
between volume averaging and homogenization techniques.

As a first step of homogenization, we identify the scale separation
parameter 𝛽 as the ratio of typical pore-scale length to typical Darcy-
scale length. We assume that 𝛽 is small, and will later consider the
limit 𝛽 → 0 to derive averaged models.

The derived Darcy-scale models depend on the relation between
the time scales of the different processes (diffusion, advection, and
reaction) at the pore-scale, where different relations lead to differ-
ent upscaled models. These relations can be expressed through
dimensionless numbers like Péclet and Damköhler numbers, after the
pore-scale model is brought to non-dimensional form. As we investi-
gate the limit 𝛽 → 0 we are interested in the order of magnitude of
these non-dimensional numbers with respect to the scale separation
parameter 𝛽.

In this work we assume the time scales of diffusion, advection and
reaction to be in balance, i.e., of order 𝑂(𝛽0). The resulting Darcy-
scale model reflects non-equilibrium chemical kinetics. One also
might consider equilibrium kinetics, either introduced at the pore-
scale or through a regime of high Damköhler number. For equilibrium
kinetics at scale of pores, the pore-scale models need to be adapted,
with impact on the upscaled models (see e.g. [Battiato, Tartakovsky,
et al. 2009]). Homogenization techniques can still be employed in
other regimes, including high Péclet and Damköhler numbers, but
in particular the former needs to remain within a regime that avoids
turbulent flows and allows diffusion to dominate at the scale of pores.
We mention [Allaire and Hutridurga 2012; Battiato and Tartakovsky
2011; Bringedal, Berre, et al. 2016b; Choquet and Mikelić 2009;
Kumar, van Noorden, et al. 2011; Mikelić, Devigne, et al. 2006;
Quintard and Whitaker 1994; van Duijn, Mikelić, et al. 2008; Wood
et al. 2011; Wood 2007] for the derivation of Darcy-scale models by
either homogenization or volume averaging, and under dominating
advection or for fast reaction kinetics. A comprehensive discussion
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y1
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y

Figure 1.4: Pore-scale coordinates y and Darcy-scale coordinates
x for homogenization. Left: Periodic porous medium with
unit cell. Right: Thin strip geometry.

can be found in [Battiato, Tartakovsky, et al. 2009], addressing
models with mixing-controlled heterogeneous reactions at different
scales and under various regimes for the Péclet and Damköhler
numbers.

For the homogenization, we additionally have to make assumptions
on the geometry of the porous medium. We focus in this work on
two cases, see Figure 1.4. In a periodic porous medium, the pore-scale
contains a unit cell, which is periodically repeating. The typical
pore-scale length is given by the size of the unit cell. We focus on
this geometry in Chapter 5. In a thin strip, the scale separation
is given by the length of the thin strip being much bigger than its
width. The typical pore-scale length is given by the width of the
thin strip. This simplified geometry depicts a long and thin pore.
We focus on this geometry in Chapters 6 and 7.

As the next step, we assume asymptotic expansions in terms of 𝛽
of the unknown variables in the pore-scale model. For a generic
unknown variable 𝑢 we write

𝑢(𝑡, x) = 𝑢0(𝑡, x, y) + 𝛽𝑢1(𝑡, x, y) + 𝛽2𝑢2(𝑡, x, y) + … ,
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where 𝑢𝑘, 𝑘 ∈ ℕ0 do not depend on 𝛽. We denote by x the Darcy-
scale coordinate, and by y the pore-scale coordinate, see Figure 1.4.
The asymptotic expansion does explicitly depend on the pore-scale
coordinate, and we require 𝑢𝑘(𝑡, x, ⋅) to be periodic in the case of
a periodic porous medium. We insert these asymptotic expansions
into the equations of the pore-scale model and group by powers of 𝛽.
Terms 𝑢𝑘 of the expansion not depending on y are now new Darcy-
scale variables. We find equations for the Darcy-scale variables by
averaging over y in the pore-scale equations. Some terms might not
upscale, and still depend on the geometry of the pore-scale, and
we use cell problems to determine the average of these terms. The
resulting models are of multi-scale type, with Darcy-scale equations
and (decoupled) cell problems at each macroscopic point.

In the following, we give an overview over existing literature con-
cerning upscaling including mineral precipitation and dissolution.
Models at the Darcy-scale have been considered from a theoretical
point of view in [Knabner et al. 1995], where consistent reaction rates
are formulated for the dissolution and precipitation processes, and
traveling waves solutions are found. The existence and uniqueness
of such solutions are further analyzed in [van Duijn and Knabner
1997]. At the pore-scale, the existence of weak solutions is proved
in [van Duijn and Pop 2004], while uniqueness is obtained in [van
Noorden, Pop, and Röger 2007]. Also, [van Duijn and Pop 2004]
analyzes the occurrence of dissolution fronts in a thin strip, intro-
ducing a free boundary separating regions where mineral is present
from those which are mineral-free. In [Kumar, Neuss-Radu, et al.
2016], homogenization techniques are employed to prove rigorously
that the Darcy-scale model in [Knabner et al. 1995] is the upscaled
counterpart of the pore-scale model in [van Duijn and Pop 2004].
We also mention the homogenization of sulfate corrosion of concrete
in [Fatima et al. 2011] as a dissolution process with more complex
chemistry.

In all cases mentioned above, the mineral layer is assumed to have
a negligible thickness when compared even to the microscale (the
pores) and therefore the presence of a mineral is accounted in form of
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a concentration. A different approach is adopted in [van Noorden and
Pop 2007], where the mineral layer is assumed to have a non-negligible
thickness and therefore precipitation and dissolution can alter the
flow domain at the microscale. The existence and uniqueness of a
weak solution for this free-boundary model is proved, however, in the
simplified case of a one-dimensional domain. The work [van Noorden
2009a] extends this by considering a general porous medium with
periodic grains, and a level set formulation is used to account for the
presence of the free boundary at the pore-scale. These models were
later extended to include temperature-dependence [Bringedal, Berre,
et al. 2016a], where the effective properties were considered further
in [Bringedal and Kumar 2017]. A similar model is considered in
[Schulz et al. 2017], but restricted to pore-scale diffusion processes in
evolving domains. There a Darcy-scale model is derived, for which
the existence of strong solutions is proved up to clogging. In [Schulz
2019] the model is extended towards stokes flow and weak solvability
is investigated. In [Ray et al. 2019] a two-scale model is proposed,
using a level set formulation at the pore-scale.

For the geometry of a thin strip (in two spatial dimensions) or tube
(in three dimensions), we mention [van Noorden 2009b] for a model
describing precipitation and dissolution for one fluid phase, which
has been extended and upscaled in [Agosti et al. 2016; Bringedal,
Berre, et al. 2015; Kumar, van Noorden, et al. 2011; Kumar, Wheeler,
et al. 2013], and [Lunowa et al. 2021; Mikelić 2009; Mikelić and Paoli
2000; Picchi and Battiato 2018; Sharmin, Bringedal, et al. 2020] for
unsaturated single-phase flow or two-phase flow models. We also
mention [van Noorden, Pop, Ebigbo, et al. 2010] for the upscaling of
biofilm growth in a thin strip.

Pore-scale phase field models are upscaled in [Baňas and Mahato
2017; Bunoiu et al. 2020; Daly and Roose 2015; Metzger and Knabner
2021; Schmuck et al. 2013; Schmuck et al. 2012; Sharmin, Bastidas,
et al. 2022]. Kinetic reactions at phase field interfaces have been
introduced and upscaled in [Redeker et al. 2016; van Noorden and
Eck 2011].
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The
Allen–Cahn–Navier–Stokes

Model 2
In this chapter we derive an Allen–Cahn model for a domain that
is altered due to dissolution and precipitation. More precisely, it
consists of a fluid domain and a mineral domain. Dissolved ions can
form a mineral, hence they can leave the fluid domain and rather
become part of the stationary mineral domain. Due to this, the space
available for flow (the fluid domain) is reduced whereas the mineral
domain is increasing. Oppositely, the mineral domain shrinks as
minerals dissolve into ions becoming part of the fluid. In contrast to
the upcoming Chapter 3 we are only interested in a single fluid phase.
This allows us to upscale this model later in Chapter 5 without the
additional difficulties arising from fluid–fluid interfaces.

This chapter is organized as follows. In Section 2.1 we first present
a sharp interface formulation, and based on this the phase field for-
mulation is introduced. Next, in Section 2.2 we show that the phase
field formulation reduces to the sharp interface formulation when
the width of the diffuse interface approaches zero. Two numerical
examples showing the behavior of the phase field formulation are
included in Section 2.3. In particular, we show how the flow affects
the dissolution process.
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2.1 The Reactive Transport Problem For
Single-Phase Flow

Before introducing the phase field formulation, we formulate first
the corresponding sharp interface model including a free boundary.
Both models are restricted to the case where only one fluid phase
is present, which, in the case of a porous medium, can be seen
as a single-phase, fully saturated flow. Moreover, the density and
viscosity of the fluid are assumed constant. Furthermore, we only
consider a simplified electrochemical system, where the precipitate
is formed at the boundaries of the flow domain (the pore walls) and
is the product of the reaction between two ions diffusing into and
transported by the flowing fluid. If the diffusion coefficients of the
two ions are the same, whereas the system is electro-neutral, one
can simplify the chemistry by only considering one equation for the
solute concentration, as knowing the concentration of one solute and
using the electro-neutrality of the system the other concentration is
obtained straightforwardly (see [Knabner et al. 1995; van Duijn and
Pop 2004; van Noorden and Pop 2007]).

The models below are given in a dimensional framework. The non-
dimensionalization is discussed in Chapter 5, in Section 5.1.2.

2.1.1 The Sharp Interface Formulation

We start with the sharp interface formulation, which motivates later
the phase field model. In this case, we let Ω ⊂ ℝ𝑁, 𝑁 ∈ {2, 3} denote
the entire domain (the porous medium), which is divided into two
disjoint sub-domains: one occupied by the fluid, and another occupied
by the mineral. The mineral layer is the result of precipitation and
dissolution, and has therefore a variable thickness that is not known
a-priori. Hence, the domains occupied by the fluid and by the
mineral are both time-dependent. Letting 𝑡 ≥ 0 stand for the time
variable, and denoting by Ω𝑓(𝑡) the (time-dependent) fluid domain,
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the conservation laws for the fluid, its momentum and for the solute
are:

∇ ⋅ v = 0 in Ω𝑓(𝑡), (2.1a)
𝜌1𝜕𝑡v + 𝜌1∇ ⋅ (v ⊗ v) + ∇𝑝 = 𝛾𝑓∇2v in Ω𝑓(𝑡), (2.1b)

𝜕𝑡𝑐 + ∇ ⋅ (v𝑐) = 𝐷∇2𝑐 in Ω𝑓(𝑡). (2.1c)

Here v is velocity and 𝑝 is pressure in the fluid, and 𝜌1 and 𝛾𝑓 are
the constant density and viscosity of the fluid. Finally, 𝑐 is solute
concentration and 𝐷 its diffusivity.

In the mineral domain Ω𝑚(𝑡), the mineral is immobile and has a
constant concentration 𝑐∗, which reduces (2.1a)–(2.1c) to

v = 0 in Ω𝑚(𝑡).

In what follows we assume that the concentration in the mineral is
always larger than the one in the fluid, namely 𝑐∗ > 𝑐(𝑥, 𝑡) for all
𝑡 ≥ 0 and 𝑥 ∈ Ω𝑓(𝑡).

We let Γ(𝑡) stand for the free boundary separating Ω𝑓(𝑡) and Ω𝑚(𝑡).
Observe that for any time 𝑡 one has

Ω = Ω𝑓(𝑡) ∪ Ω𝑚(𝑡) ∪ Γ(𝑡), and Ω𝑓(𝑡) ∩ Ω𝑚(𝑡) = ∅.

At Γ(𝑡), to guarantee the mass balance we adopt the Rankine–
Hugoniot boundary conditions for the fluid and for the solute. We
assume that the chemistry does not lead to any volume change, which
means that one mineral mole takes exactly the same volume as the
one occupied in the fluid by the ion moles forming the mineral (see
[Bringedal, Berre, et al. 2016a; van Noorden 2009a]). With this, the
conditions at the moving interface are

𝜈𝑛 − 𝛼𝜅 = − 1
𝑐∗ 𝑟(𝑐) on Γ(𝑡), (2.2a)

v = 0 on Γ(𝑡), (2.2b)
𝜈𝑛(𝑐∗ − 𝑐) = n ⋅ 𝐷∇𝑐 on Γ(𝑡), (2.2c)
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where 𝜈𝑛 is the speed of the moving interface in the normal direction
n pointing into the mineral, 𝛼 is the mobility of the interface, and 𝜅
is 𝑁 − 1 times the mean curvature of the moving interface.

Observe that (2.2a) is describing the movement of the free boundary
due to precipitation and dissolution. More precisely, the function 𝑟 is
the difference between the precipitation rate and the dissolution rate.
Without being restricted to this choice, we use a simple reaction rate
inspired by the mass action kinetics, namely

𝑟(𝑐) = 𝑟𝑝(𝑐) − 𝑟𝑑 = 𝑘 ( 𝑐2

𝑐2
eq

− 1) , (2.3)

where 𝑐eq is the (known) equilibrium concentration for which 𝑐∗ > 𝑐eq,
and 𝑘 is a reaction constant of dimension mol

m2 s . This choice of
reaction rate corresponds to a precipitation rate increasing with
ion concentration and a constant dissolution rate. Note that, to
avoid dissolution whenever no mineral is present, in [Knabner et al.
1995; van Duijn and Pop 2004] the dissolution rate is given as a
multi-valued rate involving the Heaviside graph.

As follows from (2.2a), next to the precipitation and dissolution, the
free boundary is also moving due to surface curvature. The latter
effect is more common for two-phase flow, but can also occur for
interfaces separating a fluid and solid phase. This assumption is
natural when minimizing the surface free energy [Adamson and Gast
1967; Schlögl 1972]. In our case, 𝛼 is very small.

The last two conditions at Γ(𝑡) are ensuring the mass balance for
the fluid and for the solute. Since we assume no volume change in
connection with the chemistry, the normal component of the fluid
velocity is zero at the moving boundary. Combined with the no-slip
condition it follows that the fluid velocity v is zero at the moving
boundary. Finally, (2.2c) is the Rankine–Hugoniot condition for
the ions. The flux on the right-hand side is due to diffusion as the
convective flux is zero, following from (2.2b). Also, the mineral is
immobile, so the flux in the mineral sub-domain is 0 whereas the
concentration 𝑢∗ is fixed.
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Similar sharp interface models were previously implemented using
the level set approach, see [Bringedal, Berre, et al. 2016a; Bringedal
and Kumar 2017; Schulz et al. 2017; van Noorden 2009a].

2.1.2 The Phase Field Formulation

An alternative to the sharp-interface formulation given above is to
consider a phase-field formulation. In this case one uses a phase
field, which is an approximation of the characteristic function. The
non-dimensional phase field 𝜙 is close to and approaches 1 in the
fluid phase, and to 0 in the mineral, and has a smooth transition
of (dimensional) width 𝑂(𝜀) > 0 separating the phases. In other
words, 𝜀 > 0 is a phase field parameter related to the thickness of the
diffusive transition region. It is to be expected that when passing 𝜀
to 0, one obtains in the limit the original sharp-interface model. In
consequence, the phase-field approach replaces the interface between
the two phases by a smooth transition region where diffusive effects
are included. The advantage is that the model equations can now be
defined on a stationary domain (here Ω) and not in time-evolving
domains. This approach, however, requires the flow and transport
equations to also be defined in the mineral phase as well. Here we
extend the phase field models in [Redeker et al. 2016; van Noorden
and Eck 2011] to include flow:

𝜀2𝜕𝑡𝜙 + 𝛼𝑊 ′(𝜙) = 𝛼𝜀2∇2𝜙 − 4𝜀𝜙(1 − 𝜙) 1
𝑐∗ 𝑟(𝑐), (2.4a)

∇ ⋅ (𝜙v) = 0, (2.4b)
𝜌1𝜕𝑡(𝜙v) + 𝜌1∇ ⋅ (𝜙v ⊗ v) = −𝜙∇𝑝 + 𝛾𝑓𝜙∇2(𝜙v)

− 𝑑(𝜙, 𝜀)v + 1
2

𝜌1v𝜕𝑡𝜙,
(2.4c)

𝜕𝑡(𝜙(𝑐 − 𝑐∗)) + ∇ ⋅ (𝜙v𝑐) = 𝐷∇ ⋅ (𝜙∇𝑐). (2.4d)

The model is explained in detail below.
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2.1.2.1 Comments on the Phase Field Equation (2.4a)

The parameter 𝜀 > 0 appearing in the phase field equation is assumed
small and is related to the width of the diffuse interface. Further,
𝑊(𝜙) = 8𝜙2(1 − 𝜙)2 is the double-well potential, which ensures
that the phase field mainly attains values (close to) 0 and 1 for
small values of 𝜀. Formally, this follows from the observation that,
if 𝜀 is small, the term 𝑊 ′(𝜙) dominates in (2.4a), implying that 𝜙
approaches one of the three equilibrium values 0, 1/2, 1. Later we
show that 1/2 is an unstable equilibrium, from which the conclusion
follows.

The reaction rate 𝑟(𝑐) and diffusion parameter 𝛼 are the same as
in the sharp interface formulation. Note that, due to the 4𝜙(1 − 𝜙)
factor, the reaction term is non-zero only in the diffuse transition zone
between the two phases and this factor assures that 𝜙 stays between 0
and 1. Note that in sharp-interface models further dissolution, after
all mineral is dissolved, is usually avoided by using a multi-valued
dissolution rate based on a Heaviside graph (see [Knabner et al. 1995;
van Duijn and Pop 2004]), which complicates the analysis and the
development of numerical schemes (see [Agosti et al. 2016; Kumar,
Pop, et al. 2013]). This is superfluous for the phase field formulation
proposed here as in the absence of mineral only the water phase
is present, implying 𝜙 ≡ 1 and therefore no dissolution can take
place.

2.1.2.2 Comments on the Flow Equations (2.4b) and (2.4c)

The flow equations are now also defined in the mineral phase. To
ensure that flow only occurs in the fluid and not in the mineral,
some modifications have been made: Firstly, the flow velocity v and
pressure gradient ∇𝑝 have become 𝜙v and 𝜙∇𝑝. This leaves the flow
equations unchanged in the fluid phase when 𝜙 = 1, whereas these
quantities are vanishing in the mineral phase where 𝜙 = 0.
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Secondly, the term 𝑑(𝜙, 𝜀)v is added. Here, 𝑑(𝜙, 𝜀) is decreasing
in the first argument, surjective, twice differentiable and fulfills
𝑑(1, 𝜀) = 0 and 𝑑(0, 𝜀) > 0. This way, v = 0 is the only possible
solution when 𝜙 = 0 (also see assumption A.4 in [Garcke, Hecht,
et al. 2015]). Moreover, this term must also ensure that the velocities
in the diffuse transition zone between 𝜙 = 0 and 𝜙 = 1 are low and
therefore works as an interpolation function for velocities in this
zone. In [Beckermann et al. 1999], dealing with a similar model for
melting and solidification, an artificial friction term is introduced
to ensure the desired behavior for 𝜙v inside the diffuse interface.
Using the current notation, their friction term would correspond to
𝑑(𝜙, 𝜀) = 𝐾(1−𝜙)2𝜙

𝜀2 for some constant 𝐾 [Beckermann et al. 1999].
However, as will be explained in Remark 2.2, a term of 𝑂(𝜀−2) would
hamper the phase field model to approach the sharp interface model
when 𝜀 ↘ 0, and is therefore not adopted here.

A similar idea is adopted in [Garcke, Hecht, et al. 2015], focusing
on shape optimization, where the term 𝑑(𝜙, 𝜀) = 𝐾√

𝜀
(1−𝜙)𝑛

𝜙+𝑛 is applied.
The constant 𝑛 > 0 determines the shape of the function 𝑑. More
precisely, a larger value of 𝑛 leads to a function that is close to an
affine one, behaving as (1−𝜙). In [Garcke, Hecht, et al. 2015], 𝑛 = 10
was found to work better regarding numerical results. Inspired by
[Garcke, Hecht, et al. 2015], we let here 𝑑(𝜙, 𝜀) = 𝐾

𝜀
(1−𝜙)𝑛

𝜙+𝑛 with
𝑛 = 10. In Section 5.2.1.1 we show that this gives good numerical
results for the present model. However, any function 𝑑 fulfilling the
requirements listed previously can be adopted, the specific choice
being rather based on the impact on the numerical behavior.

Finally, the term 1
2𝜌1v𝜕𝑡𝜙 added to (2.4c) accounts for the combined

flow with accumulation of the phase field variable, to ensure conserva-
tion of kinetic energy when there is precipitation. Note that the two
time derivatives can be combined and rewritten to 𝜌1

√
𝜙𝜕𝑡(

√
𝜙v), a

formulation used in e.g. [Boyer, Lapuerta, et al. 2010].
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2.1.2.3 Comments on the Ion Transport Equation (2.4d)

Compared to [Redeker et al. 2016], the only difference appearing in
the ion transport equation (2.4d) is in the presence of the convective
term. Note that the time derivative can be rewritten as 𝜕𝑡(𝜙𝑐 + (1 −
𝜙)𝑐∗). This is nothing but the derivative of the phase field weighted
convex combination of ion concentrations 𝑐 (in the fluid phase) and
the mineral concentration 𝑐∗ (in the mineral phase). Recalling that
in the mineral phase there is no diffusive or convective transport,
(2.4d) represents the total mass balance of the species.

2.1.2.4 Decreasing Energy of the Phase Field Formulation

The energy associated with the model (2.4) is given by

𝐹 = 1
2

𝜌1𝜙v2 + 𝛼𝜀−1𝑊(𝜙) + 1
2

𝛼𝜀|∇𝜙|2 + 𝜙𝑔(𝑐),

and is the sum of the kinetic energy, the free energy of the phase field,
and the energy of the ions. The function 𝑔(𝑐) is defined implicitly as
a solution to the equation

1
𝑐∗ 𝑟(𝑐) = 𝑔(𝑐) − 𝑔′(𝑐)𝑐 + 𝑔′(𝑐)𝑐∗.

As 𝑟(𝑐) is increasing with 𝑐, 𝑔(𝑐) is convex for 𝑐 < 𝑐∗. Differentiating
the above, we get that

𝜕𝑡(𝜙𝑔(𝑐)) = 𝑔′(𝑐)𝜕𝑡(𝜙(𝑐 − 𝑐∗)) + 1
𝑐∗ 𝑟(𝑐)𝜕𝑡𝜙.

When considering (2.4) on a bounded domain Ω with no-slip bound-
ary conditions for v and zero Neumann boundary conditions for 𝜙
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and 𝑐 at the boundary 𝜕Ω, one gets

d
d𝑡

∫
Ω

𝐹𝑑x = ∫
Ω

[−𝛾𝑓∇(𝜙v) ∶ ∇(𝜙v) − 𝑑(𝜙, 𝜀)v2 − 𝐷𝜙𝑔″(𝑐)|∇𝑐|2

− 𝜀−1(𝜒 − 1
𝑐∗ 𝑟(𝑐))(𝜒 − 4𝜙(1 − 𝜙) 1

𝑐∗ 𝑟(𝑐))]𝑑x,

where 𝜒 = 𝛼𝜀∇2𝜙 − 𝛼𝜀−1𝑊 ′(𝜙). The first three terms on the right-
hand side describe energy dissipation due to viscosity, friction close to
the mineral, and diffusion of ions. The fourth term might be positive
and thus lead to an increasing energy. This is the case if curvature
effects (see (2.2a)) counteract the ion reaction. However, for fixed 𝜀,
we get a bounded energy growth as in [Redeker et al. 2016]. Note
that the increasing energy is possible due to the factor 4𝜙(1 − 𝜙) in
the reactive term in (2.4a). Using a multi-valued Heaviside graph for
the dissolution rate instead of the 4𝜙(1−𝜙)-factor, as commented on
in Section (2.1.2.1), would result in a model with decreasing energy,
while a regularized Heaviside graph would not. To limit the values of
𝜙 between 0 and 1 and to ease the following analysis and numerical
implementation, we choose to keep the factor 4𝜙(1 − 𝜙) and not use
a Heaviside graph.

2.1.3 The Regularized Phase Field Formulation

The model (2.4) is formulated in the full domain Ω. In doing so, the
term 𝑑(𝜙, 𝜀)v is included to ensure that v = 0 in the mineral phase.
Observe that the ion concentration 𝑐 and the fluid pressure 𝑝 are also
defined in the region occupied by the mineral in the sharp interface
formulation. For 𝑐, a possible extension in the mineral domain is
𝑐∗, but this may lead to difficulties related to the regularity of 𝑐
in the transition from the phase field model to the sharp interface
one, when 𝜀 → 0. Moreover, there is no indication about how to
extend 𝑝 in the mineral domain. At the same time, the model in
(2.4) does not provide any information about what values 𝑐 and 𝑝
should attain in the mineral domain. Although the structure of
the phase field equation (2.4a) assures that 𝜙 never reaches 0 (nor
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1), unless initialized so or if appearing on the boundary 𝜕Ω, 𝜙 can
become arbitrarily close to 0 (and 1). From a numerical point of
view, this can lead to a badly conditioned discretization, as the last
two equations in (2.4) are close to degenerate whenever 𝜙 ↘ 0 and
cannot be used to determine 𝑐 and 𝑝 in the mineral. To avoid this,
we regularize the model by adding a small, non-dimensional 𝛿 > 0
to the phase field 𝜙 in the mass, momentum and solute conservation
equations. The regularized model becomes

𝜀2𝜕𝑡𝜙 + 𝛼𝑊 ′(𝜙) = 𝛼𝜀2∇2𝜙−4𝜀𝜙(1 − 𝜙) 1
𝑐∗ 𝑟(𝑐), (2.5a)

∇ ⋅ ((𝜙 + 𝛿)v) = 0, (2.5b)
𝜌1𝜕𝑡((𝜙 + 𝛿)v) + 𝜌1∇ ⋅ ((𝜙 + 𝛿)v ⊗ v) = −(𝜙 + 𝛿)∇𝑝

+𝛾𝑓(𝜙 + 𝛿)∇2((𝜙 + 𝛿)v) − 𝑑(𝜙, 𝜀)v + 1
2

𝜌1v𝜕𝑡𝜙, (2.5c)

𝜕𝑡((𝜙 + 𝛿)(𝑐 − 𝑐∗)) + ∇ ⋅ ((𝜙 + 𝛿)v𝑐) = 𝐷∇ ⋅ ((𝜙 + 𝛿)∇𝑐). (2.5d)

Note that this regularization is only needed to facilitate the numerical
discretization. For completeness, we use it also in the analysis given
below.

Remark 2.1: The results for decreasing and limited growth of the free
energy discussed in Section 2.1.2.4 are also valid for the regularized
formulation. To see this, one only needs to replace 𝜙 by 𝜙 + 𝛿 in the
terms associated with the kinetic energy and the energy of the ions.

2.2 The Sharp Interface Limit

As stated before, the phase field model can be seen as an approxi-
mation of the sharp interface model, defined in the entire domain
and where the free boundary is replaced by a diffuse interface region.
To justify this, we investigate the limit of the phase field model in
(2.5) as 𝜀, the width of the diffuse transition zone, approaches zero
and show that this limit is exactly the model in Section 2.1.1 For
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this we follow the ideas of [Caginalp and Fife 1988], as presented in
Section 1.3.

We investigate the behavior of the solution as 𝜀 ↘ 0 by expanding
the unknowns in terms of 𝜀 and equating terms of similar order.
This is done in two different ways, close to the diffuse interface (the
inner expansions) and away from it (the outer expansions), which are
connected by applying matching conditions in the transition region
where both expansions are valid.

Throughout this matched asymptotic analysis we take the regular-
ization parameter as 𝛿 = 𝜀/𝐿ref with a typical length scale 𝐿ref
(independent of 𝜀). This choice is made for convenience as 𝛿 is not
needed in the sharp-interface model. In subsequent sections, 𝛿 and 𝜀
can be chosen independently.

2.2.1 Outer Expansions

We employ outer expansions in powers of 𝜀 as presented in Section 1.3
for the primary variables 𝜙, v, 𝑝 and 𝑐.

With the same argument presented in Section 1.3.1 we find that the
leading order terms of (2.5a) are given by 𝑊 ′(𝜙out

0 ) = 0 and only
allow for the two stable solutions 𝜙out

0 = 0 and 𝜙out
0 = 1.

Using the outer expansions in the flow equations (2.5b) and (2.5c)
and the ion conservation (2.5d), it is straightforward to show that
the original sharp interface model equations (2.1) are recovered for
the points in Ω𝑓

0(𝑡). Moreover, for the flow equations one also obtains
vout

0 = 0 in Ω𝑚
0 (𝑡).

2.2.2 Inner Expansions

We now apply the inner expansions and the matching conditions
(as presented in Section 1.3) to the phase field model to recover the
boundary conditions at the evolving interface.
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2.2.2.1 Phase Field Equation

For the leading order terms of the phase field equation (2.5a) we use
the same argument as presented in Section 1.3.1 and find that 𝜙in

0 is
given by

𝜙in
0 (𝑡, s, 𝑧) = 𝜙in

0 (𝑧) = 1
1 + 𝑒4𝑧 = 1

2
(1 − tanh(2𝑧)). (2.6)

For the 𝑂(𝜀) terms one obtains

(𝑊 ″(𝜙in
0 ) − 𝜕2

𝑧 )𝜙in
1 = (𝜈𝑛,0 − 𝛼𝜅0)𝜕𝑧𝜙in

0 − 4𝜙in
0 (1 − 𝜙in

0 ) 1
𝑐∗ 𝑟(𝑐in

0 ).

As in Section 1.3.1 the left-hand side can be viewed as a Fredholm
operator of index zero, depending on 𝜙in

0 and applied to 𝜙in
1 . There-

fore, the equation has a solution if and only if the right-hand side is
orthogonal to the kernel of the Fredholm operator, which contains
𝜕𝑧𝜙in

0 . Since 𝜈𝑛,0, 𝜅0 and 𝑐in
0 are independent of 𝑧 (the latter is shown

in the following section), the solvability condition implies

0 = ∫
∞

−∞
((𝜈𝑛,0 − 𝛼𝜅0)𝜕𝑧𝜙in

0 − 4𝜙in
0 (1 − 𝜙in

0 ) 1
𝑐∗ 𝑟(𝑐in

0 )) 𝜕𝑧𝜙in
0 𝑑𝑧

= (𝜈𝑛,0 − 𝛼𝜅0) ∫
∞

−∞
(𝜕𝑧𝜙in

0 )2𝑑𝑧

− 4 1
𝑐∗ 𝑟(𝑐in

0 ) ∫
∞

−∞
𝜙in

0 (1 − 𝜙in
0 )𝜕𝑧𝜙in

0 𝑑𝑧

= (𝜈𝑛,0 − 𝛼𝜅0 + 1
𝑐∗ 𝑟(𝑐in

0 )) ∫
∞

−∞
(𝜕𝑧𝜙in

0 )2𝑑𝑧,

where we have used the relation

𝜕𝑧𝜙in
0 = −4𝜙in

0 (1 − 𝜙in
0 ) (2.7)

following from (1.33) in Section 1.3.1. As ∫∞
−∞

(𝜕𝑧𝜙in
0 )2𝑑𝑧 > 0 we
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have

0 = (𝜈𝑛,0 − 𝛼𝜅0 + 1
𝑐∗ 𝑟(𝑐in

0 )).

Applying matching conditions for 𝑐 at the moving interface we obtain
the condition

𝜈𝑛,0 = 𝛼𝜅0 − 1
𝑐∗ 𝑟(𝑐out

0 (𝑡, y1/2−)),

which is the first boundary condition (2.2a) at the moving interface.

2.2.2.2 Mass Conservation Equation

The dominating 𝑂(𝜀−1) term arising from inserting the inner expan-
sions into (2.5b) is

𝜕𝑧(𝜙in
0 vin

0 ) ⋅ n0 = 0. (2.8)

By integrating with respect to 𝑧 and using matching conditions, we
obtain

vout
0 (𝑡, y1/2−) ⋅ n0 = 0.

In other words, the normal component of the velocity is zero at the
moving interface. To conclude the same for the tangential component,
we consider the momentum conservation equation.

2.2.2.3 Momentum Conservation Equation

The dominating 𝑂(𝜀−2) term in the momentum equation (2.5c) is

𝛾𝑓𝜙in
0 𝜕2

𝑧 (𝜙in
0 vin

0 ) = 0.

Note that 𝜙in
0 > 0. Integrating with respect to 𝑧 and using matching

conditions results in

vout
0 (𝑡, y1/2−) = 0,
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which is the second boundary condition (2.2b) at the moving inter-
face.

Remark 2.2: Note that choosing 𝑑(𝜙, 𝜀) = 𝐾𝜙(1−𝜙)2

𝜀2 as in [Beck-
ermann et al. 1999], would lead to the dominating 𝑂(𝜀−2) terms
being

𝛾𝑓𝜙in
0 𝜕2

𝑧 (𝜙in
0 vin

0 ) = 𝐾𝜙in
0 (1 − 𝜙in

0 )2vin
0 .

Although 𝛾𝑓 and 𝐾 are constants, and 𝜙in
0 is known through (2.6),

solving this equation for vin
0 is not straightforward, and therefore it

is unclear whether vout
0 (𝑡, y1/2−) = 0 is recovered in this case.

2.2.2.4 Ion Conservation Equation

The dominating 𝑂(𝜀−2) term obtained by inserting the inner expan-
sions into (2.5d) is

𝜕𝑧(𝜙in
0 𝜕𝑧𝑐in

0 ) = 0.

Integrating with respect to 𝑧 and using matching conditions and the
fact that 𝜙in

0 > 0, we obtain

𝜕𝑧𝑐in
0 = 0,

hence 𝑐in
0 = 𝑐in

0 (𝑡, s) as mentioned in the previous section.

Taking advantage of 𝜕𝑧𝑐in
0 = 0 and of (2.8), the 𝑂(𝜀−1) terms sat-

isfy
−𝜈𝑛,0(𝑐in

0 − 𝑐∗)𝜕𝑧𝜙in
0 = 𝐷𝜕𝑧(𝜙in

0 𝜕𝑧𝑐in
1 ).

Integrating with respect to 𝑧 from −∞ to +∞ and applying matching
conditions, lead to

𝜈𝑛,0(𝑐out
0 (𝑡, y1/2−) − 𝑐∗) = −𝐷∇𝑐out

0 (𝑡, y1/2−) ⋅ n0,

which is the third boundary condition (2.2c) at the moving inter-
face.
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2.3 Numerical Investigation of the Phase Field
Model

We consider two numerical examples showing the applicability and
the potential of the model (2.5), by studying the dissolution of a
mineral crystal located in a channel and subject to a flow field. The
first example is from the benchmark study [Molins, Soulaine, et al.
2020] and we assess how the phase field model (2.5) behaves for a spe-
cific case compared to the results in the benchmark study. Secondly,
we make a qualitative assessment of how the mineral dissolution
process is affected by the strength of the flow field, inspired by the
sharp-interface simulations in [Molins, Trebotich, et al. 2017].

2.3.1 Dissolution of a Calcite Crystal

We consider the benchmark problem II from [Molins, Soulaine, et al.
2020]. Here, calcite dissolves through the chemical reaction

CaCO3(𝑠) + H+(𝑙) → Ca2+(𝑙) + HCO−
3 (𝑙).

Since H+ is needed for calcite to dissolve, we model this as a one-way
reaction where (2.5d) is replaced by

𝜕𝑡((𝜙+𝛿)(𝑐𝐻+ +𝑐∗))+∇⋅((𝜙+𝛿)v𝑐𝐻+) = 𝐷∇⋅((𝜙+𝛿)∇𝑐𝐻+), (2.9)

and using the simple, linear reaction rate

𝑟(𝑐𝐻+) = −𝑘𝑐𝐻+ (2.10)

in (2.5a). This means there is no precipitation, and the dissolution
rate increases with larger access to H+. Note the change in sign in
the time derivative in (2.9) compared to (2.5d). This is since H+ is
consumed for calcite to dissolve, and not produced. Writing the time
derivative as 𝜕𝑡(𝜙𝑐𝐻+ − (1 − 𝜙)𝑐∗)) as in Section 2.1.2.3, shows that
we are conserving the difference of H+ and the mineral, reflecting
that as one calcite molecule dissolves, one H+ atom is consumed. We
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do not model the concentrations of the solutes Ca2+ and HCO−
3 as

they do not affect the reaction rate.

We follow the same setup as [Molins, Soulaine, et al. 2020] by consid-
ering a two-dimensional channel of length 1 mm and width 0.5 mm,
where a circular calcite crystal of initial radius 0.1 mm is centered in
(0.5, 0.25) mm. A uniform flow field of given velocity vin = 0.0012
m/s is applied at 𝑥 = 0 mm. Initially and at the inlet a concentration
of 𝑐𝐻+ = 10 mol/m3 is applied. Top and bottom of the channel are
no-slip boundaries, while fluid can leave through the outlet at 𝑥 = 1
mm. We refer to Table 2.1 for all specified parameters to model
(2.5a)–(2.5c) and (2.9). All parameters not related to the phase field
are taken from [Molins, Soulaine, et al. 2020].

Table 2.1: Parameters corresponding to benchmark II in [Molins,
Soulaine, et al. 2020], and phase-field parameters.

Parameter Symb. Value Units
Fluid density 𝜌1 103 kg m−3

Fluid viscosity 𝛾𝑓 10−3 kg m−1 s−1

Diffusion coefficient 𝐷 10−9 m2 s−1

Inlet velocity vin 0.0012 m s−1

Reaction rate constant in
(2.10)

𝑘 8.9 × 10−3 mol m−2 s−1

Inlet and inital
concentration

𝑐𝐻+ 10 mol m−3

Calcite molar density 𝑐∗ 27100 mol m−3

Phase field interface width 𝜀 2.5 × 10−5 m
Phase field mobility 𝛼 2.8 × 10−14 m2 s−1

Phase field regularization 𝛿 10−6 -
Flow dissipation;
𝑑(𝜙, 𝜀) = 10𝐾(1−𝜙)

𝜀(𝜙+10)

𝐾 25 kg m−2 s−1

The model equations are discretized using a finite volume method
on a uniform, rectangular staggered grid of 200 × 200 grid cells.
The phase field, pressure and solute are defined in the centers of



2.3 Numerical Investigation of the Phase Field Model 41

the control volumes, while the velocity is defined at the center of
the edges. Convective fluxes are approximated by an upstream
approximation and diffusive fluxes are discretized using a two-point
approximation. The model is discretized in time using the backward
Euler scheme with a constant time-step size Δ𝑡 = 1.35 s until the
end time 𝑡 = 2700 s = 45 min. The resulting nonlinear systems of
equations are solved using Newton iterations in each time step, with
the previous time step as initial guess.

Figure 2.1 shows the shape of the calcite crystal initially, and after
15, 30 and 45 minutes. The shapes are shown by plotting the
𝜙 = 0.5 isolines of the phase field. The initially circular calcite
crystal dissolves unevenly due to the accessibility of H+ varying with
the flow around the crystal. Since the flow takes place from the left
to the right, the dissolution is strongest at the left part of the calcite
crystal, and reduces while moving to the right part of the crystal.
A similar effect when considering calcite precipitation instead of
dissolution is investigated and quantified in Chapter 8.

Comparing to the corresponding Figure 8 in [Molins, Soulaine, et al.
2020], we see the same qualitative change in shape. The crystal dis-
solves slightly faster in our approach compared to [Molins, Soulaine,
et al. 2020], which could be due to the non-conservative property of
the Allen–Cahn equation.

2.3.2 Effect of Flow Field Strength on Dissolution

We consider a qualitative comparison with respect to how mineral
dissolves when located in a flow field of different strengths inspired
by the setup in [Molins, Trebotich, et al. 2017, Sec. 3.1]. We
are especially interested in the correlation between flow velocity
and effective dissolution rate of the mineral, as our investigation in
Chapter 8 shows analogous findings for calcite precipitation. As in
the previous test, we consider a channel of length 1 mm and width
0.5 mm, with an initially circular mineral located in (0.5, 0.25) mm
having radius 0.1 mm. At 𝑥 = 0 a uniform flow field of a given
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Figure 2.1: The mineral shape while dissolving (zoomed-in view
of the channel where the calcite is being present initially).
The evolution of the calcite boundary at t = 0, 15 min, 30
min and 45 min (from the outermost curve to the innermost
one). The axis scales are in mm.

velocity is applied, the fluid can flow out at 𝑥 = 1, while top and
bottom are no-slip boundaries. We now use the original model (2.5)
and reaction rate (2.3). To trigger dissolution of the mineral we
apply an equilibrium concentration 𝑐eq = 0.5 mol/m3, and use for
the solute an initial concentration of 𝑐eq and a Dirichlet boundary
condition at the inlet of 𝑐eq/2. The Péclet and Damköhler numbers
are defined as

Pe = 𝐿𝑞in
𝐷

, Da = 𝑘
𝑐eq𝑞in

,

where 𝐷 = 5 × 10−9 is the diffusivity of the solute, 𝑘 = 1.9 × 10−5 is
the reaction constant, and 𝐿 is the length of the channel. By varying
𝑞in between (a) 1.2 × 10−5 m/s, (b) 1.2 × 10−4 m/s, (c) 1.2 × 10−3

m/s and (d) 0.012 m/s we consider the four Péclet and Damköhler
numbers given in Table 2.2, which are the same cases as applied in
[Molins, Trebotich, et al. 2017]. We use a mineral concentration of
𝑐∗ = 1 mol/m3. This is an artificially low value of a mineral density,
but causes the mineral to change shape faster as it dissolves. For
the phase field we use the same parameters as in Table 2.1.
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Table 2.2: Non-dimensional numbers in the four simulations.
Simulation (a) (b) (c) (d)
Péclet number 2.4 24 240 2400
Damköhler number 3.173 0.317 0.032 0.003

The model (2.5) is discretized using the same control volume method
as before using a uniform, rectangular staggered grid of 200 × 200
grid cells. The model is time stepped using backward Euler with a
constant time-step size Δ𝑡 = Δ𝑦/𝑞in and the nonlinear systems of
equations are solved using Newton iterations in each time step, with
the previous time step as initial guess.

The four simulations are carried out until the mineral is dissolved
completely. Figure 2.2 shows the isolines 𝜙 = 0.5 at different time
steps to indicate the shapes of the mineral as it dissolves. Although
we consider a different chemical system than in [Molins, Trebotich,
et al. 2017], we see how the later isolines go from being circular for
low velocities to more elongated at larger velocities as in [Molins,
Trebotich, et al. 2017, Figure 2]. For low velocities, the reaction rate is
quite similar for the entire mineral surface, although with an increase
at the front where lower solute concentrations are first met. At
larger velocity, dissolution is faster on the sides as dissolved solute is
more efficiently transported away triggering further dissolution. The
mineral generally dissolves faster when the Péclet number increases,
although the same reaction rate has been used. This is caused by the
dissolving mineral creating a local increase in the solute concentration,
which is transported away more quickly when the flow velocity is
large. We see how the interplay between velocity and diffusion gives
different shapes of the mineral as it dissolves, and also different
effective reaction rates [Dentz et al. 2011]. These observations are
analogous to our observations for calcite precipitation in Chapter 8.
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Figure 2.2: The mineral shapes while dissolving (zoomed-in view
of the channel where the calcite is being present initially).
Black line shows initial shape, while increasingly brighter
green shows the shape at later time steps. Cases (a)-(d)
correspond to the cases in Table 2.2. The last isolines are at
times (a) 𝑡 = 3.4 s, (b) 𝑡 = 1.6 s, (c) 𝑡 = 1.1 s, (d) 𝑡 = 0.79
s. The axis scales are in mm.



The
Cahn–Hilliard–Navier–Stokes

Model 3
In this chapter we propose and analyze a mathematical model that
governs the incompressible flow of two immiscible fluids that interact
with each other and a third solid phase composed of a pure mineral
material. This mineral is supposed to be solvable in exactly one of
the fluid phases. Analogous to Chapter 2 we account for the process
of precipitation enlarging the domain occupied by the solid phase,
as well as dissolution transferring solid material to the fluid phase.
For a pertinent example one might think of a mixture of water, oil
and sodium chloride, the latter being present as solid, and resolved
in water only.

Notably, our model incorporates a Navier-slip condition at the fluid–
solid interfaces instead of a no-slip condition. Without the slip
condition, the contact point is non-moving, and classical results
[Pukhnachev and Solonnikov 1982] show that the sharp interface
model would not be well posed. Existing phase field models with a
Navier-slip condition (see [Qian et al. 2003; Qian et al. 2006; Xu, Di,
et al. 2018]) describe the solid only as a fixed outer boundary, while
our model allows for a dynamic diffuse fluid–solid interface.

The structure of this chapter is as follows. First, we explain the
underlying sharp interface ansatz in Section 3.1.1 that fixes the
transmission condition between the bulk phases via conservation
constraints, reactive mass exchange and the interfaces’ curvature
influence. The phase field model itself, called 2𝑓1𝑠-model, is derived
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in Section 3.1.2, see equations (3.26)–(3.31). To avoid degenera-
tion a modification with a small parameter 𝛿 is necessary, leading
to the 𝛿-2𝑓1𝑠-model in Section 3.1.3, see equations (3.45)–(3.50).
By construction, solutions of the 𝛿-2𝑓1𝑠-model obey the physical
constraints of total mass, volume fraction and ion concentration
conservation. Introducing a new free energy function it is proven
that classical solutions of the phase field model obey the second law
of thermodynamics (see Theorem 3.1.1 in Section 3.1.5). We relate
the 𝛿-2𝑓1𝑠-model for simplified scenarios to previously suggested
phase field models in Section 3.1.6.

To validate our model we investigate the sharp interface limit in
Section 3.2 using matched asymptotic expansions. The analysis
identifies all binary transmission conditions (and bulk equations) as
proposed for the sharp interface ansatz in Section 3.1.1. Notably,
this includes the Navier-slip condition as presented in Section 3.1.1.4.
This result is novel, not only for ternary mixtures but also in the
fundamental context of binary fluid–solid interfaces.

Based on the finite element method we introduce a numerical scheme
for the 𝛿-2𝑓1𝑠-model in Section 3.3 and illustrate the capabilities of
the 𝛿-2𝑓1𝑠-model by numerical examples in Section 3.4.

3.1 The Reactive Transport Problem for
Multi-Phase Flow

3.1.1 The Sharp Interface Formulation

In this section we present the free boundary problem which is the basis
for the phase field approach that is introduced in Section 3.1.2. While
most of the governing equations and coupling conditions resemble
standard choices, we introduce a novel ansatz for the momentum
in the solid phase and for its coupling to the fluid phases. In
Section 3.1.1.4 we show that this approach realizes a Navier-slip
boundary condition for the fluid–solid interface.
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Analogous to Chapter 2 we introduce a domain Ω ⊂ ℝ𝑁, 𝑁 ∈ {2, 3},
and assume that it is the disjoint union of domains Ω1(𝑡), Ω2(𝑡) and
Ω3(𝑡) for all times 𝑡 ∈ [0, 𝑇 ]. We interpret Ω1(𝑡), Ω2(𝑡), Ω3(𝑡) as bulk
domains which are occupied by fluid phase 1 (e.g. water), fluid phase
2 (e.g. oil) and a solid phase, respectively. All bulk domains are
time-dependent, as the fluid bulk domains can change by convection
and the solid bulk domain by precipitation and dissolution processes.
As displayed in Figure 3.1 we denote the interface between Ω𝑖 and Ω𝑗
by Γ𝑖𝑗 (𝑖 < 𝑗). The normal unit vector n ∈ ℝ𝑁 of the interface Γ𝑖𝑗 is
supposed to point into Ω𝑗. We call Γ12 the fluid–fluid interface, and
Γ13 and Γ23 fluid–solid interfaces. By 𝜈 ∈ ℝ we denote the normal
velocity of the interface Γ𝑖𝑗.

Γ12

Γ13

Γ23

n

n

nΩ1
Fluid phase

Ω2
Fluid phase

Ω3
Solid phase

Figure 3.1: Partition of Ω into bulk domains Ω1, Ω2, Ω3 and
interfaces Γ12, Γ13, Γ23.
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3.1.1.1 The Bulk Equations

We consider the incompressible flow of the viscous fluid phase 𝑖
in Ω𝑖(𝑡), 𝑖 ∈ {1, 2}. Then, for a velocity field v = v(𝑡, x) ∈ ℝ𝑁

and pressure 𝑝 = 𝑝(𝑡, x) ∈ ℝ the dynamics is governed by the
incompressible Navier–Stokes equations,

∇ ⋅ v = 0, (3.1)
𝜕𝑡(𝜌𝑖v) + ∇ ⋅ (𝜌𝑖v ⊗ v) + ∇𝑝 = ∇ ⋅ (2𝛾𝑖∇𝑠v), (3.2)

in Ω𝑖(𝑡), 𝑖 ∈ {1, 2}, 𝑡 ∈ (0, 𝑇 ). Here, the fluid density 𝜌𝑖 > 0 and
the viscosity 𝛾𝑖 > 0 are assumed to be constant but are allowed
to be different for each fluid phase. We choose 𝜌1 = 𝜌3, see Re-
mark 3.1 for details. The symmetric Jacobian ∇𝑠v is given by
∇𝑠v = 1

2 (∇v + (∇v)⊤).

Furthermore, we assume the presence of ions that can dissolve in
fluid phase 1 but not in fluid phase 2. Thus, we account for the
ion-concentration 𝑐 = 𝑐(𝑡, x) ≥ 0 in Ω1(𝑡) which is supposed to
satisfy the standard transport-diffusion equation

𝜕𝑡𝑐 + ∇ ⋅ (v𝑐) − 𝐷Δ𝑐 = 0 (3.3)

in Ω1, 𝑡 ∈ (0, 𝑇 ), using a constant diffusion rate 𝐷 > 0. In the solid
phase we assume to have a constant ion-concentration 𝑐∗ > 0.

Albeit the solid phase should be immobile we impose an artificial
velocity field v = v(𝑡, x) for it that is assumed to satisfy the elliptic
law

∇ ⋅ (2𝛾3∇𝑠v) − 𝜌3𝑑0v = 0 (3.4)

in Ω3, 𝑡 ∈ (0, 𝑇 ), with constants 𝛾3, 𝑑0 > 0 and density of the solid
phase 𝜌3 > 0. Notably equation (3.4) has no physical meaning, but
are essential to establish a slip condition for the tangential fluid
velocity at the fluid–solid interfaces Γ13(𝑡) and Γ23(𝑡).
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∇𝑐 ⋅ n = 0

𝜈 = −𝑟(𝑐) + 𝛼𝜎13𝜅
𝐷∇𝑐 ⋅ n = 𝜈(𝑐∗ − 𝑐)

𝜈 = 0Ω1
Transport of ions

Ω2

Ω3

𝜈 = v ⋅ n
J(𝑝𝐼 − 𝛾∇𝑠v) ⋅ nK = 𝜎12𝜅n

v ⋅ n = 0
1
2𝜈𝜌1v ⋅ 𝝉 = J𝛾𝝉(∇𝑠v)nK

v ⋅ n = 0
J𝛾𝝉(∇𝑠v)nK = 0Ω1

Navier–Stokes

Ω2
Navier–Stokes

Ω3
Elliptic law

for v

Figure 3.2: The bulk equations and interface conditions of the
sharp interface model. Left: Equations for ion transport
and surface reaction. Right: Flow equations and interface
conditions, omitting the condition JvK = 0 that is valid at all
interfaces.
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3.1.1.2 The Interface Conditions

We proceed describing the interfacial dynamics between the bulk
domains. The velocity field v ∶ Ω1(𝑡)∪Ω2(𝑡)∪Ω3(𝑡) → ℝ𝑁 is assumed
to be continuous across all domains, i.e.,

JvK = 0 on Γ12, Γ13 and Γ23. (3.5)

Here J𝑎K is the jump of a quantity 𝑎(x) across an interface Γ𝑖𝑗, i.e.,

J𝑎K(x) = lim
𝜉→0+

(𝑎(x + 𝜉n) − 𝑎(x − 𝜉n)) for x ∈ Γ𝑖𝑗.

The interface conditions between two fluids are determined by the
balance laws for mass and momentum. They are given for the
Navier–Stokes system by

𝜈 = v ⋅ n on Γ12, (3.6)
J(𝑝𝐼 − 2𝛾∇𝑠v) ⋅ nK = 𝜎12𝜅n on Γ12, (3.7)

involving the normal velocity 𝜈 of the interface, the sum 𝜅 of principal
curvatures (i.e., 𝑁 − 1 times the mean curvature) and the (constant)
surface tension coefficient 𝜎12 > 0 between the two fluids.

For the fluid–solid interfaces Γ13 and Γ23 we impose the conditions

v ⋅ n = 0 on Γ13 and Γ23,
(3.8)

1
2

𝜈𝜌1v ⋅ 𝝉 = J2𝛾𝝉(∇𝑠v)nK ∀𝝉 ∈ ℝ𝑁, 𝝉 ⟂ n on Γ13 and Γ23.
(3.9)

Condition (3.8) is the usual no-penetration condition for fluid flow.
Condition (3.9) gives, together with (3.4), a slip condition for the
tangential flow, see Section 3.1.1.4 for details.
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Remark 3.1: Instead of (3.8) one can impose the more general mass
conservation −v𝜌1 ⋅ n = 𝜈J𝜌K on Γ13. This allows for a volume
change related to the reaction process. Under the assumption that the
solid phase has the same density as fluid phase 1, i.e., 𝜌3 = 𝜌1, there
is no volume change, and we recover (3.8). For the sake of simplicity
we present the technically less involved computations resulting from
(3.8).

It remains to fix the normal velocity of the fluid–solid interfaces Γ13
and Γ23, which is given by the rates of precipitation and dissolution.
We assume that reactions can only take place between fluid phase
1 and the solid phase, excluding reactions across Γ23. Precisely, we
choose

𝜈 = −𝑟(𝑐) + 𝛼𝜎13𝜅 on Γ13, (3.10)
𝜈 = 0 on Γ23. (3.11)

Analogous to Chapter 2 the reaction rate function 𝑟 = 𝑟(𝑐) depends
only on the ion concentration 𝑐 in fluid 1 and models both, dissolution
and precipitation. We follow [Knabner et al. 1995], and assume 𝑟(𝑐)
to be monotonically increasing in 𝑐.

Remark 3.2: As already discussed in Chapter 2, a simple choice for a
reaction rate 𝑟(𝑐) would be given by modeling the rate of precipitation
using a quadratic mass action law and the rate of dissolution using
a constant rate. With reaction rate 𝑘, equilibrium concentration 𝑐eq
(with 𝑐eq < 𝑐∗), this means

𝑟(𝑐) = 𝑟𝑝(𝑐) − 𝑟𝑑 = 𝑘 ( 𝑐2

𝑐2
eq

− 1) .

The term 𝛼𝜎13𝜅 in (3.10) models curvature effects acting on the
precipitation and dissolution process. While in previous works [Re-
deker et al. 2016] and in the Allen–Cahn–Navier–Stokes model of
Chapter 2 the sharp interface limit of the phase field models required
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a positive 𝛼, we also allow for 𝛼 = 0 in our analysis. We need to
distinguish between the cases with and without curvature effects,
i.e., 𝛼 > 0 and 𝛼 = 0, for the free energy functional in Section 3.1.5
and for the asymptotic analysis in Section 3.2.2.

Finally, we need a transmission condition that ensures the conserva-
tion of ions. Recall that we assume a constant ion concentration 𝑐∗

in the solid bulk domain Ω3. For Γ13 and Γ12 we thus impose the
Rankine–Hugoniot like conditions

𝐷∇𝑐 ⋅ n = 𝜈(𝑐∗ − 𝑐) on Γ13, (3.12)
∇𝑐 ⋅ n = 0 on Γ12. (3.13)

3.1.1.3 The Contact Angle Condition

The set of points where the three bulk domains Ω1(𝑡), Ω2(𝑡), Ω3(𝑡)
meet consists of manifolds Γ123 with codimension 2. In the two-
dimensional case the domains meet at isolated points, while in the
three-dimensional case they meet at curves. Let us consider the
two-dimensional case first.

Given the surface tension coefficients 𝜎12, 𝜎13, 𝜎23 > 0 we impose
the contact angle condition

sin(𝛽1)
𝜎23

= sin(𝛽2)
𝜎13

= sin(𝛽3)
𝜎12

, (3.14)

at Γ123, where 𝛽𝑖 is the contact angle of Ω𝑖 at the contact point. Note
that the 𝛽𝑖 are uniquely determined through (3.14) and 𝛽1+𝛽2+𝛽3 =
2𝜋.

In the three-dimensional case, we impose condition (3.14) on the
plane perpendicular to Γ123, i.e., the plane with normal vector tan-
gent to the contact curve.

With this, the description of the sharp interface formulation is com-
plete. It consists of the bulk equations (3.1)–(3.4), the interface
conditions (3.5)–(3.13) and the contact angle condition (3.14).
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Classical results [Pukhnachev and Solonnikov 1982] show that pre-
scribing both, a non-moving contact point and a contact angle, leads
to an ill-posed model. It is therefore necessary for the well-posedness
of the sharp interface formulation that we have the interface con-
dition (3.9) instead of a no-slip condition. For 𝛽3 = 𝜋 the contact
point can move over a smooth solid phase Ω3. We approximate this
setting by choosing 𝜎12 much smaller than 𝜎13, 𝜎23.

Additional boundary conditions have to be imposed on 𝜕Ω, for
example a Navier-slip condition for v and a homogeneous Neumann
boundary condition for 𝑐. For the sake of brevity we do not consider
expansions close to the boundary 𝜕Ω in the sharp interface limit in
Section 3.2.

3.1.1.4 The Navier-Slip Condition

Before we conclude this section on the sharp interface model, we
investigate the effect of the bulk equation (3.4) for v in the solid
domain Ω3 together with the boundary conditions (3.9) at the bound-
ary of Ω3. Given a slip length 𝐿slip > 0, the Navier-slip condition
reads

v ⋅ 𝝉 = −2𝐿slip𝝉(∇𝑠v)n for all 𝝉 ∈ ℝ𝑁, 𝝉 ⟂ n, (3.15)

at the interfaces Γ13 and Γ23, where all variables are evaluated from
the side of the fluid bulk phase. We show that classical solutions to
the sharp interface formulation (3.1)–(3.14) approximately satisfy
(3.15) with

𝐿slip = 𝛾1√ 2
𝜌3𝑑0𝛾3

. (3.16)

For the sake of simplicity we consider the simple geometry

Ω3 = {x ∈ ℝ𝑁, x1 < 0} , Ω1 = ℝ𝑁\Ω3, Ω2 = ∅,
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and let all unknowns only depend on x1. Then (3.4) reads as

2𝛾3𝜕2
x1

v(x1) − 𝜌3𝑑0v(x1) = 0.

Assuming a bounded velocity profile for x1 → −∞ we find

v = C𝑒√ 𝜌3𝑑0
2𝛾3

x1 ,

with some vector constant C ∈ ℝ𝑁. In the solid bulk domain Ω3 we
find up to the boundary x1 → 0−

𝜕n(v ⋅ 𝝉) = −𝜕x1
(v ⋅ 𝝉) = −√𝜌3𝑑0

2𝛾3
v ⋅ 𝝉 . (3.17)

Assume that there is no reaction, so that (3.9) reduces on the half-
space geometry to

J𝛾𝜕n(v ⋅ 𝝉)K = 0. (3.18)

Recall that by (3.5) v is continuous across the interface Γ13. There-
fore, with (3.17) and (3.18) we find at the boundary of Ω1, i.e., for
x1 → 0+, the Navier-slip condition (3.15), (3.16).

In a more general geometry we also expect this behavior, as long
as the exponential decay of v in the interior of Ω3 is sufficiently
fast. A lengthy calculation shows that for a radial Ω3 with radius
𝑅 we require 𝜌3𝑑0/𝛾3 ≫ 1/𝑅2. As both, 𝑑0 > 0 and 𝛾3 > 0, are
non-physical parameters, the slip length 𝐿slip can be chosen while
keeping a large quotient 𝑑0/𝛾3.

On the left-hand side of (3.9) we have the term 1
2𝜈𝜌1v ⋅ 𝝉. This term

appears in the sharp interface limit in Section 3.2.3. In general, we
expect the normal velocity 𝜈 of a fluid–solid interface to be small, so
this term has minor influence on the slip length.

Remark 3.3: To realize a no-slip condition one can choose a large
𝑑0 in (3.4). Recalling (3.16), this leads to the slip length 𝐿slip
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approaching zero. At the same time the quotient 𝑑0/𝛾3 becomes large
and therefore v decays fast in the solid domain.

This is different to the approach considered in Chapter 2, where the
choice 𝛾3 = 0 was made. Our analysis in this chapter does not hold
in that case. Instead, Equation (3.4) directly results in v = 0 in the
solid domain Ω3 and the continuity of v in (3.5) implies a no-slip
condition for the fluid. When considering the sharp interface limit
for 𝛾3 = 0 in Section 2.2, we do not get the tangential stress balance
(3.9), as it would over-determine the system.

3.1.2 The 2𝑓1𝑠-Phase Field Model

3.1.2.1 Preliminaries

To establish a phase field model in our case we introduce the fields

𝜙1(𝑡, x), 𝜙2(𝑡, x), 𝜙3(𝑡, x) ∶ [0, 𝑇 ] × Ω → ℝ,

that approximate the indicator function of the respective phase in
the sharp interface model. We summarize the fields in the vector-
valued function 𝜱 = (𝜙1, 𝜙2, 𝜙3)⊤ and call 𝜱 = e𝑖 a pure phase,
with e𝑖 ∈ ℝ3 being the 𝑖-th unit vector. In contrast to the sharp
interface formulation, 𝜙𝑖 runs smoothly between 0 and 1 in a small
layer around the interface. The width of this diffuse transition zone
is controlled by a new parameter 𝜀 > 0. In the limit 𝜀 → 0 the layer
collapses to the interface, and we expect to regain the sharp interface
formulation (3.1)–(3.14). For this we consider the sharp interface
limit by asymptotic expansions in 𝜀 in Section 3.2.

Understanding the smooth phase field parameter 𝜙𝑖 as a volume
fraction of the 𝑖-th phase we want to ensure that 𝜱 satisfies for all
𝑡 ∈ [0, 𝑇 ] and x ∈ Ω the conservation constraint

3
∑
𝑖=1

𝜙𝑖(𝑡, x) = 1, (3.19)
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and additionally the range restriction 𝜙𝑖(𝑡, x) ∈ [0, 1]. However,
the phase field dynamics relies on the fourth–order Cahn–Hilliard
evolution, which does not satisfy a priori such a maximum principle.
We enforce the relaxed constraint 𝜙𝑖(𝑡, x) ∈ (−𝛿, 1 + 𝛿) for some
small 𝛿 > 0 by using an unbounded potential function. To do so, we
define first a double-well potential 𝑊dw(𝜙) by

𝑊dw(𝜙) = 450𝜙4(1 − 𝜙)4 + 𝛿ℓ (𝜙
𝛿

) + 𝛿ℓ (1 − 𝜙
𝛿

) , (3.20)

ℓ(𝑥) = {
𝑥2

1+𝑥 𝑥 ∈ (−1, 0),
0 𝑥 ≥ 0,

see also Figure 3.3.

Remark 3.4: Note that for 𝛿 → 0 the double-well function 𝑊dw(𝜙𝑖)
converges point-wise to a potential of double-obstacle type, i.e.,

𝑊dw,0(𝜙) = 450𝜙4(1 − 𝜙)4 + ℓ𝑜 (𝜙) + ℓ𝑜 (1 − 𝜙) ,

ℓ𝑜(𝑥) = {
∞ 𝑥 < 0,
0 𝑥 ≥ 0,

𝜙𝑖

𝑊dw(𝜙𝑖)

0 1−𝛿 1 + 𝛿

Figure 3.3: Left: Plot of the double well potential 𝑊dw. Right:
Contour plot of 𝑊0(Φ) on the plane ∑𝑖 𝜙𝑖 = 1 in barycentric
coordinates.
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and we need to interpret 𝑊 ′
dw,0 as a set-valued subderivative. The

Cahn–Hilliard equation with double obstacle-potential has been thor-
oughly studied, see for example [Blowey and Elliott 1991]. This
ansatz results in a model including variational inequalities, which we
aim to avoid because of the merely technical complexity in the sharp
interface limit and numerical implementation. Instead, we relate the
non-dimensional 𝛿 and the dimensional 𝜀 in the sharp interface limit
in Section 3.2 by 𝜀 = 𝐿ref𝛿, where 𝐿ref is a characteristic length scale
independent of 𝜀.

While we do not show the existence and uniqueness of solutions to
the 𝛿-2𝑓1𝑠-model presented in the upcoming Section 3.1.3, we expect
the techniques of [Blowey and Elliott 1991] to also be applicable to
𝑊dw.

Remark 3.5 (General properties of the double-well potential): The
choice in (3.20) for 𝑊dw is a specific one fitting the phase field
model exactly to the sharp interface model, see the analysis in Sec-
tion 3.2. In general 𝑊dw should be symmetric, i.e., 𝑊dw(𝜙) =
𝑊dw(1 − 𝜙), it should have minima at 𝜙 = 0 (and 𝜙 = 1) and satisfy
lim𝜙→−𝛿+ 𝑊dw(𝜙) = ∞. Furthermore, we need 𝑑

𝑑𝜙√𝑊dw(𝜙)∣
𝜙=0+

=
0 to prevent bulk reactions in the leading order of the sharp interface
limit in Section 3.2.1. This results in the use of a polynomial of
degree eight.

To define now the potential function 𝑊(𝜱) ∶ ℝ3 → ℝ we note that
its choice based on the double-well function 𝑊dw induces different
surface energies for each of the interfaces by different scalings (see
also Remark 3.6). Based on [Boyer, Lapuerta, et al. 2010; Boyer and
Lapuerta 2006] we consider

𝑊0(𝜱) =
3

∑
𝑖=1

Σ𝑖𝑊dw(𝜙𝑖), (3.21)

with scaling coefficients Σ𝑖 > 0 (𝑖 = 1, 2, 3), see also Figure 3.3.
Because 𝑊0(𝜱) is only a reasonable choice for states 𝜱 from the
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plane ∑𝑖 𝜙𝑖 = 1 we introduce, as a generalization of [Zhang and
Wang 2016], a projection 𝑃 of ℝ3 onto this plane by

𝑃𝜱 = 𝜱 + Σ𝑇(1 − 𝜙1 − 𝜙2 − 𝜙3) ⎛⎜
⎝

Σ−1
1

Σ−1
2

Σ−1
3

⎞⎟
⎠

, 1
Σ𝑇

= 1
Σ1

+ 1
Σ2

+ 1
Σ3

.

(3.22)

With the projection we finally define the potential 𝑊(𝜱) ∶= 𝑊0(𝑃𝜱).
Note that 𝑊(𝜱) ∶ ℝ3 → ℝ is a function with a minimum in each of
the pure phases 𝜱 = e𝑖. Moreover, the choice ensures in particular
that 𝜱 satisfies the constraint (3.19). An equivalent formulation
by introducing a Lagrange multiplier for the constraint is given in
[Boyer and Lapuerta 2006].

Remark 3.6 (Relation of Σ𝑖 and 𝜎𝑖𝑗): Consider the two–phase case
satisfying 𝜙𝑖 + 𝜙𝑗 = 1 for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗. In this case there are
only transition zones between the pure phases 𝜱 = e𝑖 and 𝜱 = e𝑗.
Then 𝑊 reduces to the scaled double-well potential:

𝑊(𝜱) = Σ𝑖𝑊dw(𝜙𝑖) + Σ𝑗𝑊dw(𝜙𝑗) = (Σ𝑖 + Σ𝑗)𝑊dw(𝜙𝑖).

In the asymptotic analysis in Section 3.2.2 the scaling factor Σ𝑖+Σ𝑗 is
identified as the surface energy 𝜎𝑖𝑗 of the sharp interface formulation
(3.1)–(3.14). We therefore have 𝜎𝑖𝑗 = Σ𝑖 + Σ𝑗, 𝑖, 𝑗 ∈ {1, 2, 3}, which
leads to

Σ𝑖 = 1
2

(𝜎𝑖𝑗 + 𝜎𝑖𝑘 − 𝜎𝑗𝑘) , 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} , 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖.
(3.23)

In the literature, see e.g. [Harkins and Feldman 1922], −Σ𝑖 is known
as wetting or spreading coefficient. In a more general setting than
ours, a negative value of Σ𝑖 implies 𝜎𝑗𝑘 > 𝜎𝑖𝑗 + 𝜎𝑖𝑘, i.e., an interface
of phases 𝑗 and 𝑘 is energetically less favorable than a thin film of
phase 𝑖 in between these phases, phase 𝑖 is “spreading”.
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In our model the surface energy 𝜎12 induces surface tension effects be-
tween the two fluids and 𝜎13 impacts the precipitation and dissolution
process. A desirable setting for the contact angle condition (3.14)
was 𝜎12 ≪ 𝜎13, 𝜎23. This translates with (3.23) to the condition
Σ3 ≫ Σ1, Σ2. Note that still Σ1, Σ2, Σ3 > 0, and we satisfy the
conditions posed in [Boyer and Lapuerta 2006] to avoid a mixture of
all three phases in the transition regions.

3.1.2.2 The 2𝑓1𝑠-Model

We proceed to present the complete phase field model coupling the
Cahn–Hilliard equations with the Navier–Stokes system, describing
two fluid phases plus one solid phase (2𝑓1𝑠). The total fluid fraction
𝜙𝑓 and the ion–dissolving fluid fraction 𝜙𝑐 are given by

𝜙𝑓(𝜱) ∶= 𝜙1 + 𝜙2, 𝜙𝑐 ∶= 𝜙1. (3.24)

Furthermore, we define the total density and the fluid density by

𝜌(𝜱) ∶= 𝜌1𝜙1 + 𝜌2𝜙2 + 𝜌3𝜙3, 𝜌𝑓(𝜱) ∶= 𝜌1𝜙1 + 𝜌2𝜙2. (3.25)

To govern the three-phase dynamics we introduce for 𝜀 > 0 the
2𝑓1𝑠-model

∇ ⋅ (𝜙𝑓v) = 0, (3.26)
𝜕𝑡(𝜌𝑓v) + ∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v) = −𝜙𝑓∇𝑝 + ∇ ⋅ (2𝛾(𝜱)∇𝑠v)

− 𝜌3𝑑(𝜙𝑓, 𝜀)v + S + 1
2

𝜌1v𝑅𝑓,
(3.27)

𝜕𝑡(𝜙𝑐𝑐) + ∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) = 𝐷∇ ⋅ (𝜙𝑐∇𝑐) + 𝑅𝑐, (3.28)
𝜕𝑡𝜙𝑖 + ∇ ⋅ (𝜙𝑖v + J𝑖) = 𝑅𝑖, 𝑖 ∈ {1, 2} , (3.29)

𝜕𝑡𝜙3 + ∇ ⋅ J3 = 𝑅3, (3.30)

𝜇𝑖 =
𝜕𝜙𝑖

𝑊(𝜱)
𝜀

−𝜀Σ𝑖Δ𝜙𝑖, 𝑖 ∈ {1, 2, 3} , (3.31)
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in (0, 𝑇 ) × Ω. The flux terms are given by

J𝑖 = − 𝜀
Σ𝑖

∇𝜇𝑖, and J𝑓 = 𝜌1J1 + 𝜌2J2, J𝑐 = J1. (3.32)

The reaction terms 𝑅1, 𝑅2, 𝑅3, 𝑅𝑐, 𝑅𝑓 modeling precipitation and
dissolution of ions satisfy

𝑅3 = −𝑅1, 𝑅2 = 0, 1
𝑐∗ 𝑅𝑐 = −𝑅3, 𝑅𝑓 = 𝑅1. (3.33)

It remains to fix 𝑅1, which will be derived in Section 3.1.5 as a
constitutive relation from thermodynamical considerations.

The term S models the effective surface tension between the two
fluids. There are a multitude of choices even for the two-phase case,
see [Kim 2005] for an overview. As generalization to the three-phase
case which assures thermodynamical consistency (see Theorem 3.1.5)
we use

S = −𝜇2𝜙𝑓∇ (𝜙1
𝜙𝑓

) − 𝜇1𝜙𝑓∇ (𝜙2
𝜙𝑓

) . (3.34)

The 2𝑓1𝑠-model (3.26)–(3.31) is complemented by initial conditions
and is subject to the boundary conditions

v = 0, (3.35)
∇𝑐 ⋅ nΩ = 0, (3.36)

∇𝜙𝑖 ⋅ nΩ = 0, 𝑖 ∈ {1, 2, 3} , (3.37)
∇𝜇𝑖 ⋅ nΩ = 0, 𝑖 ∈ {1, 2, 3} , (3.38)

on (0, 𝑇 ) × 𝜕Ω. Here nΩ ∈ ℝ𝑁 is the outer normal unit vector on
𝜕Ω.

3.1.2.3 Comments on the Incompressibility Equation (3.26)

As in Chapter 2, requiring 𝜙𝑓v to be divergence free replaces the
usual incompressibility constraint on v alone. We follow here the
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idea of volume averaging presented in [Abels, Garcke, et al. 2012],
instead of the classical approach by [Lowengrub and Truskinovsky
1998]. The latter would not lead to a divergence-free formulation
which we favor for numerical reasons. Note that v in (3.26) has
then to be understood as the velocity of the fluid fraction instead of
some average velocity of the full mixture. In particular, the ansatz
prevents advection of the phase parameter 𝜙3 of the solid phase in
the governing equation (3.30).

Remark 3.7: We assume like in Section 3.1.1 that the densities
𝜌1 and 𝜌3 equal. Otherwise, the reaction process would lead to
a change in volume, see also Remark 3.1, and we would lose the
incompressibility constraint (3.26). Note that the relation 𝑅3 = −𝑅1
in (3.33) is a special case of the more general mass conservation
relation 𝑅1𝜌1 +𝑅3𝜌3 = 0 accounting for change in volume. Equation
(3.26) would read in this case as

∇ ⋅ (𝜙𝑓v) = 𝑅1 + 𝑅3.

3.1.2.4 Comments on the Momentum Equations (3.27)

The momentum equations are formulated for the combined momen-
tum 𝜌𝑓(𝜱)v of the two fluid phases and involve the pressure-like
term 𝜙𝑓∇𝑝. Note that this term is not in divergence form anymore,
due to the fact that the solid phase is assumed to be immobile and
can thus act as a sink or source for momentum. This becomes clear
by rewriting

𝜙𝑓∇𝑝 = ∇(𝜙𝑓𝑝) − 𝑝∇𝜙𝑓.

The first term on the right-hand side is now in divergence form. The
second term contributes in the interfacial region between the solid
and the fluid phases, with ∇𝜙𝑓 being orthogonal to the interface
here. It is therefore a normal force acting between the solid phase
and the fluid phases.
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The viscosity 𝛾 in (3.27) depends on the phase field parameter 𝜱. We
choose harmonic averaging of the bulk viscosities from Section 3.1.1,
i.e.,

𝛾(𝜱) = (𝜙1𝛾−1
1 + 𝜙2𝛾−1

2 + 𝜙3𝛾−1
3 )−1 . (3.39)

Whereas 𝛾1 and 𝛾2 are physical quantities, note that 𝛾3 does not
represent a physical viscosity and is used for the Navier-slip condition
instead.

Note that the viscosity term here is written as ∇ ⋅ (2𝛾(𝜱)∇𝑠v). This
is in contrast to the Allen–Cahn–Navier–Stokes Model of Chapter 2,
where this term was formulated as 𝛾𝑓𝜙𝑓∇2(𝜙𝑓v). The term of the
Allen–Cahn Model vanishes for 𝜙𝑓 = 0, resulting in v = 0 in the
solid phase for the sharp interface limit. We choose here a term that
does not vanish for 𝜙𝑓 = 0 to realize the Navier-slip condition.

In [Abels, Garcke, et al. 2012] a thermodynamically consistent Cahn–
Hilliard model for two-phase flow is constructed by adding a flux
term in the momentum equations. We generalize this approach to
an additional solid phase by the term ∇ ⋅ (J𝑓 ⊗ v) and obtain a
thermodynamically consistent model, see Theorem 3.1.1 below. The
phase field parameter gets transported by both, the fluid fraction
velocity v and the Cahn–Hilliard fluxes J𝑖. This leads to an additional
transport of the momentum of each fluid phase with its respective
flux J𝑖.

Next, we discuss the term 𝑑(𝜙𝑓, 𝜀)v. As in Chapter 2, 𝑑(⋅, 𝜀) can be
any smooth, decreasing function with 𝑑(1, 𝜀) = 0, 𝑑(0, 𝜀) = 𝑑0 > 0
for a constant 𝑑0 independent of 𝜀. This term ensures that v is small
in the solid phase. Similar ideas have been used in [Beckermann et al.
1999; Garcke, Hinze, Kahle, and Fong Lam 2017]. While these works
get v = 0 in the solid phase, we use the variable to allow for slip at
the fluid–solid interface instead, see Section 3.1.1.4. In practice, we
choose 𝑑(𝜙𝑓, 𝜀) = 𝑑0(1 − 𝜙𝑓)2.
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3.1.2.5 Comments on the Ion Transport Equation (3.28)

The equation for the dissolved ion concentration 𝑐 consists of trans-
port, diffusion and reaction. Analogously to the momentum equa-
tions, we introduce the additional term ∇ ⋅ (J𝑐𝑐) to account for
the transport caused by the Cahn–Hilliard equation. The rate of
diffusion scales with 𝜙𝑐, such that there is no diffusion through other
phases.

3.1.2.6 Comments on the Cahn–Hilliard Equations (3.29), (3.30),
(3.31)

The phase field parameters 𝜙𝑖 are governed by a Cahn–Hilliard
evolution. It is well known that one can interpret this evolution as a
gradient flow to the Ginzburg–Landau free energy

𝑓(𝜱, ∇𝜱) = 𝑊(𝜱)
𝜀

+
3

∑
𝑖=1

𝜀Σ𝑖
2

|∇𝜙𝑖|2. (3.40)

Pure phases 𝜱 = e𝑖 are minima of the potential 𝑊(𝜱). Phase
transitions, that are characterized by large gradients, are penalized
in (3.40) through the term |∇𝜙𝑖|2. These two energy contributions
get weighted by the parameter 𝜀, resulting in phase transitions with
a width of order 𝜀. Following [Boyer, Lapuerta, et al. 2010; Boyer
and Lapuerta 2006] the coefficients Σ𝑖 have no influence on the width
of the diffuse transition zone.

The Cahn–Hilliard equations (3.29), (3.30), (3.31) are coupled to the
Navier–Stokes equations (3.26), (3.27) through the advection of 𝜙1
and 𝜙2. The solid phase 𝜙3 is not advected, leading to an effective
total flow velocity of 𝜙𝑓v, as described above.

As we show in Section 3.1.4, solutions to our model satisfy ∑3
𝑖=1 𝜙𝑖 =

1 and ∑3
𝑖=1 𝜇𝑖/Σ𝑖 = 0. As a consequence one of the equations for

the three phase field parameters can be eliminated.
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3.1.3 The 𝛿-2𝑓1𝑠-Phase Field Model

For the 2𝑓1𝑠-model we are not able to achieve thermodynamical
consistency without the following modification. We need to avoid
that quantities like 𝜙𝑓 and 𝜌𝑓 from (3.24) and (3.25) can attain
negative values, leading to a degeneration of the model. Therefore,
we redefine these quantities using the small parameter 𝛿 which has
been used to define the double-well potential in (3.20). This approach
is analogous to the Regularized Allen–Cahn–Navier–Stokes model in
Section 2.1.3, where we prevented degeneration of the model in the
case 𝜙𝑓 = 0. We define

̃𝜙𝑓 ∶= 𝜙1 + 𝜙2 + 2𝛿𝜙3, (3.41)
̃𝜌𝑓(𝜱) ∶= 𝜌1𝜙1 + 𝜌2𝜙2 + (𝜌1 + 𝜌2)𝛿, (3.42)

̃𝛾(𝜱) ∶= (𝜙1𝛾−1
1 + 𝜙2𝛾−1

2 + 𝜙3𝛾−1
3 + (𝛾−1

1 + 𝛾−1
2 + 𝛾−1

3 )𝛿)−1 ,
(3.43)

̃𝜙𝑐 ∶= 𝜙1 + 𝛿. (3.44)

It is straightforward to see that these quantities are positive if
𝜙𝑖 > −𝛿 and (3.19) hold. Note that the double-well function 𝑊dw(𝜙𝑖)
from (3.20) diverges at 𝜙𝑖 = −𝛿 and 𝜙𝑖 = 1 + 𝛿. This implies
𝜙𝑖 ∈ (−𝛿, 1+𝛿) by establishing an energy estimate in Section 3.1.5.

We proceed to formulate the 𝛿-2𝑓1𝑠-model by

∇ ⋅ ( ̃𝜙𝑓v) = 0, (3.45)

𝜕𝑡( ̃𝜌𝑓v) + ∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v) = − ̃𝜙𝑓∇𝑝 + ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)

− 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v + ̃S + 1
2

𝜌1v𝑅𝑓,
(3.46)

𝜕𝑡( ̃𝜙𝑐𝑐) + ∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) = 𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐) + 𝑅𝑐, (3.47)
𝜕𝑡𝜙𝑖 + ∇ ⋅ (𝜙𝑖v + J𝑖) = 𝑅𝑖, 𝑖 ∈ {1, 2} , (3.48)

𝜕𝑡𝜙3 + ∇ ⋅ (2𝛿𝜙3v + J3) = 𝑅3, (3.49)
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𝜇𝑖 =
𝜕𝜙𝑖

𝑊(𝜱)
𝜀

−𝜀Σ𝑖Δ𝜙𝑖, 𝑖 ∈ {1, 2, 3} , (3.50)

in (0, 𝑇 ) × Ω. The modification also affects the surface tension term
S, such that we are led to replace S in (3.27) by ̃S with

̃S = −𝜇2
̃𝜙𝑓∇ (𝜙1

̃𝜙𝑓
) − 𝜇1

̃𝜙𝑓∇ (𝜙2
̃𝜙𝑓
) − 2𝛿𝜙3∇(𝜇3 − 𝜇1 − 𝜇2).

(3.51)

From here on we consider only the 𝛿-2𝑓1𝑠-model (3.45)–(3.50).

3.1.4 Conservation of Total Mass, Ions and Volume Fraction

Consider the 𝛿-2𝑓1𝑠-model with boundary conditions (3.35)–(3.38).
The phase field equations are written in divergence form, so it is
easy to see that for classical solutions we have

𝑑
𝑑𝑡

∫
Ω

𝜙𝑖 𝑑x = ∫
Ω

𝑅𝑖 𝑑x,

i.e., the phase field variables are balanced by the reaction terms only.
Using (3.33) this implies that the total mass 𝜌(𝜱) from (3.25) is
conserved,

𝑑
𝑑𝑡

∫
Ω

𝜌(𝜱) 𝑑x = ∫
Ω

𝜌1𝑅1 + 𝜌2𝑅2 + 𝜌1𝑅3 𝑑x = 0.

Moreover, the total amount of ions, given by ̃𝜙𝑐𝑐 + 𝜙3𝑐∗, is invariant
because (3.33) implies

𝑑
𝑑𝑡

∫
Ω

̃𝜙𝑐𝑐 + 𝜙3𝑐∗ 𝑑x = ∫
Ω

𝑅𝑐 + 𝑐∗𝑅3 𝑑x = 0.

Finally, classical solutions of the 𝛿-2𝑓1𝑠-model obey also (3.19) pro-
vided (3.19) is satisfied initially. This is due to our construction of the
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triple-well function 𝑊(𝜱) = 𝑊0(𝑃𝜱) with the projection 𝑃 from in
(3.22). The function 𝑊 is constant in the direction (Σ−1

1 , Σ−1
2 , Σ−1

3 )⊤,
therefore

3
∑
𝑖=1

𝜇𝑖
Σ𝑖

= 1
𝜀

3
∑
𝑖=1

𝜕𝜙𝑖
𝑊(𝜱)
Σ𝑖

− 𝜀Δ
3

∑
𝑖=1

𝜙𝑖

=
𝜕(Σ−1

1 ,Σ−1
2 ,Σ−1

3 )⊤𝑊(𝜱)
𝜀

− 𝜀Δ1 = 0,

(3.52)

and thus we get the desired conservation of volume fractions as

𝑑
𝑑𝑡

3
∑
𝑖=1

𝜙𝑖 =
3

∑
𝑖=1

𝑅𝑖 − ∇ ⋅ ( ̃𝜙𝑓v) + 𝜀Δ
3

∑
𝑖=1

𝜇𝑖
Σ𝑖

= 0.

3.1.5 Thermodynamical Consistency

Interpreting the Cahn–Hilliard equation as a gradient flow of the
Ginzburg–Landau energy (3.40) and following the ideas in [Abels,
Garcke, et al. 2012] the 𝛿-2𝑓1𝑠-model can be shown to be thermody-
namically consistent. We find a free energy functional satisfying a
dissipation inequality along the evolution of the 𝛿-2𝑓1𝑠-model. In
our case it is

𝐹(𝜱, ∇𝜱, 𝑣, 𝑐) = ∫
Ω

1
2

̃𝜌𝑓|v|2 + 𝑓(𝜱, ∇𝜱) + 1
̃𝛼
𝑔(𝑐) ̃𝜙𝑐 𝑑x. (3.53)

This free energy functional consists of three parts: The kinetic energy
of the fluid phases, the Ginzburg–Landau energy (3.40), and a third
term ̃𝛼−1𝑔(𝑐) ̃𝜙𝑐. The last term represents the free energy associated
with the fluid–ions mixture, depending only on the ion concentration.
Note that even with no kinetic energy present, precipitation and
dissolution can increase the surface area between the fluid and the
solid phase (and thus the Ginzburg–Landau energy 𝑓), so they have
to decrease the free mixture energy 𝑔(𝑐) at the same time.
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With this in mind, we choose the specific form of the up to now
unspecified function 𝑅1 as

𝑟(𝑐) ∶= 𝑔(𝑐) + 𝑔′(𝑐)(𝑐∗ − 𝑐), 𝑅1 = −𝑞(𝜱)
𝜀

(𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3) .
(3.54)

The choice of 𝑟(𝑐) is the result of the following argument. Consider
(3.47)–(3.50) for the case that v ≡ 0 and that 𝜱 and 𝑐 are constant in
space. From equations (3.47), (3.48) we can infer the conservation of
ions 𝜕𝑡( ̃𝜙𝑐𝑐 + (1 − ̃𝜙𝑐)𝑐∗) = 0, and have therefore an implicit relation
for 𝑐 = 𝑐( ̃𝜙𝑐). The reaction 𝑟 is driven by the free energy ̃𝛼−1𝑔(𝑐) ̃𝜙𝑐
and should be given by the derivative of this term with respect to

̃𝜙𝑐, i.e.,

𝑟 = 𝑑
𝑑 ̃𝜙𝑐

(𝑔(𝑐( ̃𝜙𝑐)) ̃𝜙𝑐) = 𝑔(𝑐) + 𝑔′(𝑐) ̃𝜙𝑐
𝑑

𝑑 ̃𝜙𝑐
𝑐( ̃𝜙𝑐).

After direct calculation we recover the formula for 𝑟(𝑐) in (3.54).
As stated in Section 3.1.1.2 we consider reaction terms 𝑟(𝑐) that
are increasing in 𝑐. A short calculation shows that there is in fact
a bijection between convex functions 𝑔(𝑐) and increasing functions
𝑟(𝑐). We therefore assume 𝑔(𝑐) to be convex in the following.

The reaction term 𝑅1 does not only depend on 𝑟 but also on the
phase field potentials 𝜇1 and 𝜇3. These represent the influence of
curvature effects on the reaction. As described in (3.10) this effect
should scale with a chosen constant 𝛼 ∈ [0, ∞). The case 𝛼 = 0
requires extra care. We therefore introduce a modified 𝛼 as

̃𝛼 = {
𝛼 for 𝛼 > 0,
𝛿 for 𝛼 = 0.

(3.55)

Furthermore, we localize the reaction to the fluid–solid interface by
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choosing the non-negative function 𝑞(𝜱) as

𝑞(𝜱) = {
30𝜙2

1𝜙2
3 for 𝜙1, 𝜙3 ∈ [0, 1],

0 otherwise.

Remark 3.8: This is a similar choice as in [Redeker et al. 2016],
where fluid motion is ignored. The situation is more intricate here.
In general, we require 𝑞 = 0 when 𝜙1 = 0 or 𝜙3 = 0. Furthermore,
across an interface between phase 𝜱 = e1 and phase 𝜱 = e3 we
require 𝑞(𝜱) = √2𝑊dw(𝜙1), which results in the constant prefactor
in 𝑞(𝜱).

To derive a thermodynamically consistent model we had to introduce
the flux terms in (3.32) and the specific choice of the reaction 𝑅1 in
(3.54), and can now prove the following theorem.

Theorem 3.1.1. Classical solutions to the 𝛿-2𝑓1𝑠-model, which obey
the boundary conditions (3.35)–(3.38) and satisfy 𝐹(𝜱, ∇𝜱, 𝑣, 𝑐) < ∞
initially, fulfill for all 𝑡 ∈ (0, 𝑇 ] the free energy dissipation inequality

𝑑
𝑑𝑡

𝐹(𝜱, ∇𝜱, 𝑣, 𝑐)

= ∫
Ω

−2 ̃𝛾(𝜱)∇v ∶ ∇𝑠v − 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v2 − 𝜀
3

∑
𝑖=1

1
Σ𝑖

|∇𝜇𝑖|2

− ̃𝛼−1𝐷𝑔″(𝑐) ̃𝜙𝑐|∇𝑐|2 − 𝑞(𝜱)
𝜀 ̃𝛼

(𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3)2 𝑑x

≤ 0.

Proof. We treat the time derivative of each of the terms in (3.53)
separately. Let us start with 𝜕𝑡( ̃𝜙𝑐𝑔(𝑐)). Using integration by parts
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and the homogeneous boundary conditions we have

∫
Ω

𝑔′(𝑐)∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) 𝑑x

= ∫
Ω

(∇𝑔(𝑐)) ⋅ (𝜙𝑐v + J𝑐) + 𝑔′(𝑐)𝑐∇ ⋅ (𝜙𝑐v + J𝑐) 𝑑x

= ∫
Ω

−(𝑔(𝑐) − 𝑔′(𝑐)𝑐)∇ ⋅ (𝜙𝑐v + J𝑐) 𝑑x.

(3.56)

Using (3.47), (3.48) and (3.56) we calculate

∫
Ω

𝜕𝑡(𝑔(𝑐) ̃𝜙𝑐) 𝑑x (3.57)

= ∫
Ω

𝑔′(𝑐)𝜕𝑡( ̃𝜙𝑐𝑐) + (𝑔(𝑐) − 𝑔′(𝑐)𝑐)𝜕𝑡
̃𝜙𝑐 𝑑x

= ∫
Ω

𝑔′(𝑐)(𝑅𝑐 − ∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) + 𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐))

+ (𝑔(𝑐) − 𝑔′(𝑐)𝑐)(𝑅1 − ∇ ⋅ (𝜙1v + J1)) 𝑑x

= ∫
Ω

𝑔′(𝑐)𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐) + 𝑅1(𝑔(𝑐) − 𝑔′(𝑐)𝑐 + 𝑔′(𝑐)𝑐∗) 𝑑x

= ∫
Ω

𝑔′(𝑐)𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐) + 𝑟(𝑐)𝑅1 𝑑x. (3.58)

We require some results from vector calculus: For vector fields A, B
we have

∇ ⋅ (A ⊗ B) = (∇ ⋅ A)B + (A ⋅ ∇)B,

B ⋅ ((A ⋅ ∇)B) = 1
2

(A ⋅ ∇)|B|2.
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Using this and partial integration we get

∫
Ω

v ⋅ (∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v)) 𝑑x

= ∫
Ω

v ⋅ ((∇ ⋅ (𝜌𝑓v + J𝑓))v + ((𝜌𝑓v + J𝑓) ⋅ ∇)v) 𝑑x

= ∫
Ω

v2∇ ⋅ (𝜌𝑓v + J𝑓) + 1
2

((𝜌𝑓v + J𝑓) ⋅ ∇)v2 𝑑x

= ∫
Ω

1
2

v2∇ ⋅ (𝜌𝑓v + J𝑓) 𝑑x.

(3.59)

Also, note that

𝜕𝑡 ̃𝜌𝑓 = 𝜌1𝜕𝑡𝜙1 + 𝜌2𝜕𝑡𝜙2

= 𝜌1(𝑅1 − ∇ ⋅ (𝜙1v + J1)) + 𝜌2(𝑅2 − ∇ ⋅ (𝜙2v + J2))
= 𝜌1𝑅1 − ∇ ⋅ (𝜌𝑓v + J𝑓).

(3.60)

With (3.46), (3.59) and (3.60) we can calculate the time derivative
of the kinetic energy as

𝑑
𝑑𝑡

∫
Ω

1
2

̃𝜌𝑓|v|2 𝑑x

= ∫
Ω

v ⋅ 𝜕𝑡( ̃𝜌𝑓v) − 1
2

v2𝜕𝑡 ̃𝜌𝑓 𝑑x

= ∫
Ω

−v ⋅ (∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v)) − ̃𝜙𝑓v ⋅ ∇𝑝

+ v ⋅ (∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)) − 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v2 + ̃S ⋅ v

+ v ⋅ 1
2

𝜌1v𝑅𝑓 − 1
2

v2𝜌1𝑅1 + 1
2

v2∇ ⋅ (𝜌𝑓v + J𝑓) 𝑑x

= ∫
Ω

v ⋅ (∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)) − 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v2 + ̃S ⋅ v 𝑑x.

(3.61)

Next we consider the surface tension terms. Note that by (3.45)

0 = ∇ ⋅ ( ̃𝜙𝑓v) = ∇ ⋅ (𝜙1v) + ∇ ⋅ (𝜙2v) + ∇ ⋅ (2𝛿𝜙3v),
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and using this, partial integration and (3.51) we find

∫
Ω

𝜇1∇ ⋅ (𝜙1v) + 𝜇2∇ ⋅ (𝜙2v) + 𝜇3∇ ⋅ (2𝛿𝜙3v) 𝑑x

= ∫
Ω

−𝜇2∇ ⋅ (𝜙1v) − 𝜇1∇ ⋅ (𝜙2v)

+ (𝜇3 − 𝜇1 − 𝜇2)∇ ⋅ (2𝛿𝜙3v) 𝑑x

= ∫
Ω

−𝜇2
̃𝜙𝑓∇ (𝜙1

̃𝜙𝑓
) ⋅ v − 𝜇1

̃𝜙𝑓∇ (𝜙2
̃𝜙𝑓
) ⋅ v

− 2𝛿𝜙3∇(𝜇3 − 𝜇1 − 𝜇2) ⋅ v 𝑑x

= ∫
Ω

̃S ⋅ v 𝑑x.

(3.62)

With (3.62) we calculate the time derivative of the Ginzburg–Landau
energy (3.40) to be

𝑑
𝑑𝑡

∫
Ω

𝑓(𝜱, ∇𝜱) 𝑑x = ∫
Ω

3
∑
𝑖=1

( 𝜕𝑓
𝜕𝜙𝑖

− ∇ ⋅ 𝜕𝑓
𝜕∇𝜙𝑖

) 𝜕𝑡𝜙𝑖 𝑑x

= ∫
Ω

3
∑
𝑖=1

𝜇𝑖𝜕𝑡𝜙𝑖 𝑑x

= ∫
Ω

3
∑
𝑖=1

𝜇𝑖(𝑅𝑖 − ∇ ⋅ J𝑖) − 𝜇1∇ ⋅ (𝜙1v)

− 𝜇2∇ ⋅ (𝜙2v) − 𝜇3∇ ⋅ (2𝛿𝜙3v) 𝑑x

= ∫
Ω

(𝜇1 − 𝜇3)𝑅1 −
3

∑
𝑖=1

𝜇𝑖∇ ⋅ J𝑖 − ̃S ⋅ v 𝑑x.

(3.63)

Finally, we calculate with (3.58), (3.61) and (3.63)

𝑑
𝑑𝑡

𝐹(𝜱, ∇𝜱, 𝑣, 𝑐) 𝑑x

= 𝑑
𝑑𝑡

∫
Ω

1
2

̃𝜌𝑓|v|2 + 𝑓(𝜱, ∇𝜱) + ̃𝛼−1𝑔(𝑐) ̃𝜙𝑐 𝑑x
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= ∫
Ω

v ⋅ (∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)) − 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v2 + ̃S ⋅ v

+ (𝜇1 − 𝜇3)𝑅1 −
3

∑
𝑖=1

𝜇𝑖∇ ⋅ J𝑖 − ̃S ⋅ v

+ ̃𝛼−1𝐷𝑔′(𝑐)∇ ⋅ ( ̃𝜙𝑐∇𝑐) + ̃𝛼−1𝑟(𝑐)𝑅1 𝑑x

= ∫
Ω

−2 ̃𝛾(𝜱)∇v ∶ ∇𝑠v − 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v2 +
3

∑
𝑖=1

∇𝜇𝑖 ⋅ J𝑖

− ̃𝛼−1𝐷𝑔″(𝑐) ̃𝜙𝑐|∇𝑐|2 + ̃𝛼−1 (𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3) 𝑅1 𝑑x.

A straightforward calculation shows ∇v ∶ ∇𝑠v ≥ 0. The assertion of
the theorem follows by inserting the definitions of J𝑖 (3.32) and 𝑅1
(3.54).

3.1.6 Algebraic Consistency

If one of the three phases is not present, we obtain simplified scenarios
which reduce to phase field models that are partly known from
literature.
We study the cases with one phase already absent initially. As
in [Boyer and Lapuerta 2006] we first show that this phase does
not appear at a later point in time. Afterwards we investigate the
reduced two-phase models that arise from this simplification.

Let in the following 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖. We consider the
case 𝜙𝑖 = 0 and 𝜙𝑘 + 𝜙𝑗 = 1. Using (3.21) and (3.22) we calculate

𝜕𝜙𝑖
𝑊(𝜱) = 𝜕𝜙𝑖

𝑊0(𝑃𝜱)

= (1 − Σ𝑇
Σ𝑖

) 𝜕𝜙𝑖
𝑊0(𝜱) − Σ𝑇

Σ𝑗
𝜕𝜙𝑗

𝑊0(𝜱) − Σ𝑇
Σ𝑘

𝜕𝜙𝑘
𝑊0(𝜱)

= (Σ𝑖 − Σ𝑇) 𝜕𝜙𝑖
𝑊dw(𝜙𝑖) − Σ𝑇𝜕𝜙𝑗

𝑊dw(𝜙𝑗)

− Σ𝑇𝜕𝜙𝑘
𝑊dw(𝜙𝑘)

= 0. (3.64)
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For the last step recall the definition of 𝑊dw, (3.20), to see that
𝜕𝜙𝑖

𝑊dw(𝜙𝑖) = 0. Furthermore, with 𝜙𝑘 + 𝜙𝑗 = 1 and the symmetry
of 𝑊dw(𝜙𝑖) with respect to 𝜙𝑖 = 1/2 we have

𝜕𝜙𝑗
𝑊dw(𝜙𝑗) = 𝜕𝜙𝑗

𝑊dw(1 − 𝜙𝑗) = −𝜕𝜙𝑘
𝑊dw(𝜙𝑘).

Using the calculation (3.64) we find 𝜙𝑖 ≡ 0, 𝜇𝑖 ≡ 0 as a solu-
tion to (3.48)/(3.49), (3.50) with homogeneous boundary conditions
(3.35)–(3.38). Under the assumption of uniqueness this implies 𝜙𝑖 ≡ 0
for all times if 𝜙𝑖 is not present in the initial data.

Before we consider special choices we point out another simplification
for two-phase flow. With the two conditions 𝜙𝑖 = 0 and 𝜙𝑗 + 𝜙𝑘 = 1
we can reduce the model to a model for a single phase-field variable,
say 𝜙𝑗. Using (3.21) and (3.22) we calculate

𝜕𝜙𝑗
𝑊(𝜱) = 𝜕𝜙𝑗

𝑊0(𝑃𝜱)

= (1 − Σ𝑇
Σ𝑗

) 𝜕𝜙𝑗
𝑊0(𝜱) − Σ𝑇

Σ𝑘
𝜕𝜙𝑘

𝑊0(𝜱) − Σ𝑇
Σ𝑖

𝜕𝜙𝑖
𝑊0(𝜱)

= (Σ𝑗 − Σ𝑇) 𝜕𝜙𝑗
𝑊dw(𝜙𝑗) − Σ𝑇𝜕𝜙𝑘

𝑊dw(𝜙𝑘)

− Σ𝑇𝜕𝜙𝑖
𝑊dw(𝜙𝑖)

= Σ𝑗𝜕𝜙𝑗
𝑊dw(𝜙𝑗),

and define

𝜇 ∶=
𝜇𝑗

Σ𝑗
=

𝜕𝜙𝑗
𝑊dw(𝜙𝑗)

𝜀
− 𝜀Δ𝜙𝑗.

3.1.6.1 Solid Phase plus one Fluid Phase (𝛿-1𝑓1𝑠)

We consider first the two cases 𝑖 = 1 and 𝑖 = 2, i.e., one of the two
fluid phases is not present in the model. As a phase field variable
we choose the indicator of the remaining fluid phase, meaning that
for 𝑖 = 1 we choose 𝑗 = 2 and for 𝑖 = 2 we choose 𝑗 = 1. Note that
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as calculated above 𝜇𝑖 = 0 and J𝑖 = 0. The model 𝛿-2𝑓1𝑠-model
reduces to

∇ ⋅ ( ̃𝜙𝑓v) = 0, (3.65)

𝜕𝑡( ̃𝜌𝑓v) + ∇ ⋅ ((𝜙𝑗v − 𝜀∇𝜇) ⊗ 𝜌𝑗v) = − ̃𝜙𝑓∇𝑝 + ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)

−𝜌3𝑑( ̃𝜙𝑓, 𝜀)v + ̃S + 1
2

𝜌1v𝑅𝑓,
(3.66)

𝜕𝑡( ̃𝜙𝑐𝑐) + ∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) = 𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐) + 𝑅𝑐, (3.67)
𝜕𝑡𝜙𝑗 + ∇ ⋅ (𝜙𝑗v − 𝜀∇𝜇) = 𝑅𝑗, (3.68)

𝜇 =
𝜕𝜙𝑗

𝑊dw(𝜙𝑗)
𝜀

− 𝜀Δ𝜙𝑗, (3.69)

in (0, 𝑇 )×Ω. This is a 1𝑓1𝑠-model for a fluid fraction ̃𝜙𝑓 = 2𝛿 +(1−
2𝛿)𝜙𝑗. Previously suggested phase field models for single phase flow
with precipitation [van Noorden and Eck 2011] and the model from
Chapter 2 are based on the Allen–Cahn equation and were only able
to ensure a global bound on but no dissipation of the free energy.
By Theorem 3.1.1 the 𝛿-1𝑓1𝑠-model (3.65)–(3.69) for single phase
flow with precipitation/dissolution is also the first phase field model
that ensures energy dissipation. We also refer to [Witterstein 2010;
Witterstein 2011] for a two-phase flow model with phase change that
satisfies a free energy inequality. By modeling the solid phase as a
fluid with very high viscosity this model could also be used for the
fluid–solid case.

The effective surface tension term reduces to

̃S = −2𝛿𝜙3∇(𝜇3 − 𝜇𝑗) = 2𝛿𝜎𝑗3(1 − 𝜙𝑗)∇𝜇,

and is only there to keep consistency with the modified ̃𝜙𝑓.

In the case 𝑖 = 2 this model is fully coupled. But for 𝑖 = 1 there is no
fluid present that dissolves the ions (𝜙𝑐 = 𝜙1 = 0). Then 𝑅𝑓 = 𝑅𝑐 =
𝑅𝑗 = 0 and the ion conservation law (3.67) is decoupled from the
other equations and equals the diffusion equation 𝛿𝜕𝑡𝑐 = 𝛿𝐷Δ𝑐.
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We use a modified version of the 𝛿-1𝑓1𝑠 model (3.65)–(3.69) in
Chapter 8 to model EICP in a micro-fluidic cell.

3.1.6.2 Two Fluid Phases (𝛿-2𝑓0𝑠)

We consider the case of two fluid phases. We have 𝜙3 = 0 and reduce
the model to the phase field variable 𝜙1. Note that 𝜙𝑓 = ̃𝜙𝑓 =
𝜙1 + 𝜙2 = 1 and Σ−1

1 𝜇1 + Σ−1
2 𝜇2 = 0. With this the 𝛿-2𝑓1𝑠-model

reduces to

∇ ⋅ v = 0, (3.70)

𝜕𝑡( ̃𝜌𝑓v) + ∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v) + ∇𝑝 = ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v) + ̃S,
(3.71)

𝜕𝑡( ̃𝜙𝑐𝑐) + ∇ ⋅ ((𝜙𝑐v + J𝑐)𝑐) = 𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐), (3.72)
𝜕𝑡𝜙1 + v ⋅ ∇𝜙1 = ∇ ⋅ (𝜀∇𝜇), (3.73)

𝜇 =
𝜕𝜙1

𝑊dw(𝜙1)
𝜀

− 𝜀Δ𝜙1.
(3.74)

Note that equation (3.72) does not couple back to the other equations,
it is just an advection-diffusion equation for the ion concentration
𝑐.

Let us calculate

J𝑓 = 𝜌1J1 + 𝜌2J2 = −𝜀(𝜌1∇𝜇 − 𝜌2∇𝜇) = 𝜀(𝜌2 − 𝜌1)∇𝜇,

and

̃S = −𝜇2∇𝜙1 − 𝜇1∇𝜙2

= Σ2𝜇∇𝜙1 − Σ1𝜇∇(1 − 𝜙1)
= 𝜎12𝜇∇𝜙1

= 𝜎12 (
𝜕𝜙1

𝑊dw(𝜙1)
𝜀

− 𝜀Δ𝜙1) ∇𝜙1
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= 𝜎12 (∇𝑊dw(𝜙1)
𝜀

+ 𝜀∇ (|∇𝜙1|2

2
) − 𝜀∇ ⋅ (∇𝜙1 ⊗ ∇𝜙1)) .

We can absorb the first two terms by defining a modified pressure ̂𝑝.
Overall, the momentum equation can now be expressed as

𝜕𝑡( ̃𝜌𝑓v) + ∇ ⋅ (𝜌𝑓v ⊗ v) + ∇ ⋅ ((𝜌2 − 𝜌1)𝜀∇𝜇 ⊗ v) + ∇ ̂𝑝
= ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v) − 𝜎12𝜀∇ ⋅ (∇𝜙1 ⊗ ∇𝜙1).

The system is, except for the 𝛿-modification of ̃𝜌𝑓 and ̃𝛾, the diffuse-
interface model proposed by [Abels, Garcke, et al. 2012] for two-phase
flow.

3.2 The Sharp Interface Limit

We use matched asymptotic expansions to show that the formal
asymptotic limit of the 𝛿-2𝑓1𝑠-model for 𝜀 → 0 is given by the
sharp interface formulation (3.1)–(3.14) presented in Section 3.1.1.
This technique for the sharp interface limit has been pioneered in
[Caginalp and Fife 1988] and is explained in Section 1.3.

We assume now, that away from the interfaces we can write solutions
to the 𝛿-2𝑓1𝑠-model in terms of outer expansions of the unknowns 𝜱,
v, 𝑝, 𝑐, 𝜇1, 𝜇2, 𝜇3 as described in Section 1.3. Close to the interfaces
we assume the existence of inner expansions in the same unknowns.

Analogous to Section 2.2 an important choice of scaling is 𝛿 = 𝜀/𝐿ref,
with a characteristic length scale 𝐿ref independent of 𝜀. With this
choice the 𝛿-modifications vanish in the sharp interface limit 𝜀 → 0.
Note that also the structure of the triple-well function 𝑊(𝜱) now
depends on 𝜀. For ease of presentation we set 𝐿ref = 1.

We are interested in a regime of solutions where bulk phases, char-
acterized through small gradients in the phase field parameter 𝜱,
are separated by interfaces. In this regime we assume that 𝜇𝑖 is
only of order 𝑂(1), not of order 𝑂(𝜀−1). This can be expected on
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an 𝑂(1)-timescale, for a detailed discussion, see [Pego and Penrose
1989]. In this regime we also assume that the three bulk phases meet
in the two-dimensional case at isolated points, called triple points.
In the three-dimensional case they meet at curves, called contact
lines.

We assume that we have classical solutions of the 𝛿-2𝑓1𝑠-model with
finite free energy (3.53). This implies in particular 𝜙𝑖 ∈ (−𝛿, 1+𝛿).

The minimizers of the Ginzburg–Landau free energy (3.40) that
connect 𝜱 = e𝑖 with 𝜱 = e𝑗 only attain values along the edge
between e𝑖 and e𝑗 because we followed the construction in [Boyer
and Lapuerta 2006]. As in [Dunbar et al. 2019] we therefore assume
that there are no third-phase contributions in the interfacial layers.
See (3.76) below for the exact formulation of this assumption.

We first investigate the bulk phases of the system. For the interfaces
between two phases we need to investigate leading order terms and
first order terms of the inner expansions. In particular, we recover
all transmission conditions between the phases as introduced in
Section 3.1.1. Finally, we consider the triple point by a special
expansion.

3.2.1 Outer Expansions

Expansion of (3.50), 𝑂(𝜀−1): We first note that 𝜙out
𝑖 (0, ⋅) ∈ [0, 1],

as otherwise a small 𝜀 would result in 𝑊(𝜱out) = ∞. With some
lengthy calculations we find that stable solutions to the leading
order are exactly the local minima of 𝑊 on the plane ∑𝑖 𝜙𝑖 = 1 as
seen in Figure 3.3. Solutions are therefore the pure phases 𝜱out

0 =
e𝑘, 𝑘 ∈ {1, 2, 3}. Additionally, we get from terms containing the
diverging function ℓ in (3.20) the restriction 𝜙out

𝑖,1 , 𝜙out
𝑗,1 ≥ 0, 𝜙out

𝑘,1 ≤ 0
(𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖). The set of points where 𝜱out

0 = e𝑘 corresponds to
the bulk domain Ω𝑘 of the sharp interface formulation described in
Section 3.1.1.
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Expansion of (3.45), 𝑂(1): Recall the definition of 𝜙𝑓 in (3.41).
For the case 𝜱out

0 = e3 we do not retrieve any equation because
𝜙𝑓 = 𝑂(𝜀). Otherwise, we get

∇ ⋅ vout
0 = 0,

which is equation (3.1) of the sharp interface formulation.

Expansion of (3.47), 𝑂(1): In the case 𝜱out
0 = e1 we have ̃𝜙𝑐 =

1 + 𝑂(𝜀). Also note that 𝑞(𝜱out) = 𝑂(𝜀2), as both 𝑞(𝜱out
0 ) = 0 and

𝜕𝜙𝑖
𝑞(𝜱out

0 ) = 0 for 𝑖 ∈ {1, 2, 3}. With this we find

𝑅𝑐 = −𝑐∗ 𝑞(𝜱out)
𝜀

(𝑟(𝑐out) + ̃𝛼𝜇out
1 − ̃𝛼𝜇out

3 ) = 𝑂(𝜀).

The leading order terms of (3.47) are therefore

𝜕𝑡𝑐out
0 + ∇ ⋅ (vout

0 𝑐out
0 ) = 𝐷Δ𝑐out

0 ,

which is equation (3.3) of the sharp interface formulation. In the
other cases 𝜱out

0 = e2, 𝜱out
0 = e3 we do not recover any equation.

Note that in Chapter 8 we will make a choice with 𝑞(𝜱) = 0 in a
neighborhood of the pure phases, to ensure that 𝑅𝑐 vanishes, even if
the reaction term 𝑟(𝑐out) scales as 𝜀−1.

Expansion of (3.46), 𝑂(1): For 𝜱out
0 = e1 or 𝜱out

0 = e2 we have
̃𝜙𝑓 = 1 + 𝑂(𝜀). With this we can expand the surface tension term ̃S

as

̃S = −𝜇out
2,0𝜀∇𝜙out

1,1 − 𝜇out
1,0𝜀∇𝜙out

2,1

− 2𝜀𝜙out
3,0∇(𝜇out

3,0 − 𝜇out
1,0 − 𝜇out

2,0) + 𝑂(𝜀2)
= 𝑂(𝜀).
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Analogous to 𝑅𝑐 above we also have 𝑅𝑓 = 𝑂(𝜀) and by construction
𝑑(𝜙𝑓, 𝜀) = 𝑂(𝜀). We retrieve the momentum equations (3.2), e.g. for
𝜱out

0 = e1

𝜕𝑡(𝜌1vout
0 ) + ∇ ⋅ (vout

0 ⊗ (𝜌1vout
0 )) + ∇𝑝out

0 = ∇ ⋅ (2𝛾(𝜱out
0 )∇𝑠vout

0 ).

On the other hand, for 𝜱out
0 = e3 the highest order terms result in

∇ ⋅ (2𝛾(𝜱out
0 )∇𝑠vout

0 ) − 𝜌3𝑑(0, 𝜀)vout
0 = 0,

which is equation (3.4) of the sharp interface formulation.

3.2.2 Inner Expansions, Leading Order

As seen in Section 3.2.1, there are three stable phases, namely
𝜱out

0 = e1, e2, e3. We therefore need to focus on the interfaces
between these phases. To do so, we introduce

Γ𝑖𝑗(𝑡) = {x ∈ Ω ∶ 𝜙𝑖(𝑡, x) = 𝜙𝑗(𝑡, x), 𝜙𝑖(𝑡, x) > 1/3} . (3.75)

By our assumption, Γ𝑖𝑗 is a smooth (𝑑 − 1)-dimensional manifold
embedded in Ω and depending on time. We can apply the technique
described in Section 1.3 to construct inner expansions of the un-
knowns 𝜱, v, 𝑝, 𝑐, 𝜇1, 𝜇2, 𝜇3 for each of the three interfaces Γ12,
Γ13 and Γ23.

Expansion of (3.50), 𝑂(𝜀−1): As discussed at the beginning of
Section 3.2 we assume no third-phase contributions in the interfacial
layer. In detail, this means that at the interface Γ𝑖𝑗 we assume
𝜙in

𝑘,0 = 0, where 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗 is the index of the third phase. We
get

𝜙in
𝑖,0 + 𝜙in

𝑗,0 = 1. (3.76)
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The leading order expansion of (3.50) for the third phase 𝑘 reads

0 = (Σ𝑘 − Σ𝑇)ℓ′(𝜙in
𝑘,1) − Σ𝑇𝑊 ′

dw(𝜙in
𝑖,0) − Σ𝑇𝑊 ′

dw(𝜙in
𝑗,0).

As 𝜙in
𝑖,0 + 𝜙in

𝑗,0 = 1 we conclude ℓ′(𝜙in
𝑘,1) = 0 and with this 𝜙in

𝑘,1 ≥ 0.
The asymptotic expansion of (3.50) for phase 𝑗 results in

0 = (Σ𝑗 − Σ𝑇) 𝑊 ′
dw(𝜙in

𝑗,0) − Σ𝑇𝑊 ′
dw(𝜙in

𝑖,0) − Σ𝑇ℓ′(𝜙in
𝑘,1) − Σ𝑗𝜕𝑧𝑧𝜙in

𝑗,0

= Σ𝑗 (𝑊 ′
dw(𝜙in

𝑗,0) − 𝜕𝑧𝑧𝜙in
𝑗,0) .

(3.77)

The matching condition (1.28) implies 𝜙in
𝑗,0(−∞) = 0 and 𝜙in

𝑗,0(∞) =
1. Following from the definition of Γ𝑖𝑗 in (3.75) we also get 𝜙in

𝑗,0(0) =
1
2 . With a lengthy calculation we find the unique solution to (3.77),
implicitly given by

𝑧 = 1
30

( 1
1 − 𝜙in

𝑗,0
− 1

𝜙in
𝑗,0

+ 2 log (
𝜙in

𝑗,0

1 − 𝜙in
𝑗,0

)) . (3.78)

Note that if we multiply (3.77) by 𝜕𝑧𝜙in
𝑗,0, integrate and use the

matching conditions (1.28), (1.29) we find the equipartition of en-
ergy

𝑊dw(𝜙in
𝑗,0) = 1

2
(𝜕𝑧𝜙in

𝑗,0)2 . (3.79)

The leading order expansion of the Ginzburg–Landau free energy
(3.40) reads

𝑓(𝜱in, ∇𝜱in)

= 𝜀−1𝑊(𝜱in
0 ) + 𝜀−1Σ𝑖

1
2

(𝜕𝑧𝜙in
𝑖,0)2 + 𝜀−1Σ𝑗

1
2

(𝜕𝑧𝜙in
𝑗,0)2 + 𝑂(1)

= 𝜀−1(Σ𝑖 + Σ𝑗) (𝑊dw(𝜙in
𝑗,0) + 1

2
(𝜕𝑧𝜙in

𝑗,0)2) + 𝑂(1).
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We can define the surface energy 𝜎𝑖𝑗 as the integral over the Ginzburg–
Landau free energy,

𝜎𝑖𝑗 ∶ = ∫
∞

−∞
(Σ𝑖 + Σ𝑗) (𝑊dw(𝜙in

𝑗,0) + 1
2

(𝜕𝑧𝜙in
𝑗,0)2) 𝑑𝑧

= (Σ𝑖 + Σ𝑗) ∫
∞

−∞
2𝑊dw(𝜙in

𝑗,0) 𝑑𝑧

= (Σ𝑖 + Σ𝑗) ∫
1

0
√2𝑊dw(𝜙in

𝑗,0) 𝑑𝜙in
𝑗,0

= Σ𝑖 + Σ𝑗,

(3.80)

where we have used (3.79), a coordinate transformation and an
explicit calculation after inserting (3.20).

Expansion of (3.45), 𝑂(𝜀−1): Using the transformation rules, the
leading order is

𝜕𝑧(𝜙in
𝑓,0vin

0 ) ⋅ n = 0.

Note that with the considerations above, we have 𝜙in
𝑓,0 = 𝜙in

1,0 +𝜙in
2,0 >

0 across all interfaces. For Γ12 we find by integrating and using
matching condition (1.28)

vin
0 (𝑧) ⋅ n = vout

0 (𝑡, x+) ⋅ n = vout
0 (𝑡, x−) ⋅ n ∀𝑧 ∈ (−∞, ∞),

(3.81)

while for Γ13 and Γ23 we find with 𝜙in
𝑓,0(∞) = 0

vin
0 (𝑧) ⋅ n = vout

0 (𝑡, x−) ⋅ n = 0 ∀𝑧 ∈ (−∞, ∞). (3.82)

This is equation (3.8) of the sharp interface formulation.

Expansion of (3.47), 𝑂(𝜀−2): We only consider the cases of Γ12
and Γ13. Then ̃𝜙in

𝑐 = 𝜙in
1,0 + 𝑂(𝜀) and 𝜙in

1,0 > 0. We note that 𝑅𝑐 is
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of order 𝜀−1. Therefore, we have in leading order

𝜕𝑧(𝜙in
1,0𝜕𝑧𝑐in

0 ) = 0.

Then the matching conditions (1.28), (1.29) at 𝑧 = −∞ imply

𝑐in
0 (𝑧) = 𝑐out

0 (𝑡, x−) ∀𝑧 ∈ (−∞, ∞). (3.83)

Expansion of (3.46), 𝑂(𝜀−2): Again, note that 𝑅𝑓 is of order 𝜀−1.
Expanding the surface tension term ̃S we find

̃S = 𝜀−1 (−𝜇in
2,0𝜙in

𝑓,0𝜕𝑧 (
𝜙in

1,0

𝜙in
𝑓,0

) − 𝜇in
1,0𝜙in

𝑓,0𝜕𝑧 (
𝜙in

2,0

𝜙in
𝑓,0

)) n + 𝑂(1)

= 𝑂(𝜀−1).

With this the leading order expansion of (3.46) is

0 = 𝜕𝑧(𝛾(𝜱in
0 )((𝜕𝑧vin

0 ) ⊗ n + n ⊗ (𝜕𝑧vin
0 )))n

= 𝜕𝑧(𝛾(𝜱in
0 )𝜕𝑧vin

0 ).

To get to the second line we have used that (3.81), (3.82) imply
𝜕𝑧vin

0 ⋅ n = 0. Integrating and using the matching condition (1.29)
gives

0 = 𝛾(𝜱in
0 )𝜕𝑧vin

0 .

As 𝛾(𝜱in
0 ) is positive, we find

𝜕𝑧vin
0 = 0. (3.84)

With matching condition (1.28) we conclude

vin
0 (𝑧) = vout

0 (𝑡, x−) = vout
0 (𝑡, x+) ∀𝑧 ∈ (−∞, ∞). (3.85)

This equation is the continuity of v, given by (3.5), in the sharp
interface formulation.
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Expansion of (3.48), (3.49), 𝑂(𝜀−1): We consider the interface Γ13.
We obtain for the phase field equations (3.49) for phase 3 and (3.48)
for phase 1 in leading order

−𝜈𝜕𝑧𝜙in
3,0 − 1

Σ3
𝜕𝑧𝑧𝜇in

3,0 = 𝑞(𝜱in
0 ) (𝑟(𝑐in

0 ) + ̃𝛼0𝜇in
1,0 − ̃𝛼0𝜇in

3,0) ,

−𝜈𝜕𝑧𝜙in
1,0 − 1

Σ1
𝜕𝑧𝑧𝜇in

1,0 = −𝑞(𝜱in
0 ) (𝑟(𝑐in

0 ) + ̃𝛼0𝜇in
1,0 − ̃𝛼0𝜇in

3,0) .

Note that by (3.55) we have ̃𝛼 = 𝛼 + 𝑂(𝜀). With the notation
𝜇3−1 ∶= 𝜇in

3,0 − 𝜇in
1,0 we get

− 𝜈Σ3𝜕𝑧𝜙in
3,0 + 𝜈Σ1𝜕𝑧𝜙in

1,0 − 𝜕𝑧𝑧𝜇3−1

= (Σ1 + Σ3)𝑞(𝜱in
0 ) (𝑟(𝑐in

0 ) − 𝛼𝜇3−1) .

As there are no third-phase contributions in leading order we have
𝜕𝑧𝜙in

1,0 + 𝜕𝑧𝜙in
3,0 = 0. By construction of 𝑞 (see Remark 3.8) and the

equipartition of energy (3.79) it holds 𝑞(𝜱in
0 ) = 𝜕𝑧𝜙in

3,0. We have

−𝜈(Σ3 + Σ1)𝜕𝑧𝜙in
3,0 − 𝜕𝑧𝑧𝜇3−1 = (Σ1 + Σ3)𝜕𝑧𝜙in

3,0 (𝑟(𝑐in
0 ) − 𝛼𝜇3−1) .

(3.86)

We interpret (3.86) as an ordinary differential equation for 𝜇3−1.
From the matching condition (1.29) we get the asymptotic bound-
ary conditions 𝜕𝑧𝜇3−1(−∞) = 𝜕𝑧𝜇3−1(∞) = 0. Now we need to
distinguish between the cases 𝛼 = 0 and 𝛼 > 0.

For 𝛼 = 0, integrating over equation (3.86) results in

−𝜈(Σ3 + Σ1) = (Σ3 + Σ1)𝑟(𝑐in
0 ). (3.87)

This is a compatibility condition for the existence of solutions to
(3.86) (note that 𝑟(𝑐in

0 ) is constant because of (3.83)). When fulfilled,
any constant function is a solution to (3.86).

For 𝛼 > 0 consider first the homogeneous part of (3.86),

( − 𝜕𝑧𝑧 + (Σ1 + Σ3)(𝜕𝑧𝜙in
3,0)𝛼)𝜇 = 0.
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This allows only for the solution 𝜇 = 0. Therefore, the unique
solution to (3.86) is given by

𝜇3−1(𝑧) = 1
𝛼

(𝜈 + 𝑟(𝑐in
0 )).

Rearranging this, we can express the velocity of the interface as

𝜈 = 𝛼𝜇3−1(𝑧) − 𝑟(𝑐in
0 ). (3.88)

Note that this expression also holds true for the case 𝛼 = 0, following
from (3.87).

Expansion of (3.48), 𝑂(𝜀−1): Consider Γ23. Arguing similar as
above we find that the leading order expansion

−𝜈𝜕𝑧𝜙in
2,0 − 1

Σ1
𝜕𝑧𝑧𝜇in

2,0 = 0

allows for each constant function 𝜇in
2,0 as a solution, as long as the

compatibility condition

𝜈 = 0 (3.89)

is fulfilled. With the same argument applied to the equation for 𝜙1
we conclude 𝜇in

1,0 to be constant.

The compatibility condition (3.89) corresponds to (3.11) in the sharp
interface formulation.

Expansion of (3.48), 𝑂(𝜀−1): Consider Γ12. Analogous to the result
above we get the compatibility condition

𝜈 = vin
0 ⋅ n, (3.90)

and all constant functions 𝜇in
1,0, 𝜇in

2,0 are solutions.
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The compatibility condition (3.90) corresponds to (3.6) in the sharp
interface formulation.

3.2.3 Inner Expansions, First Order

Expansion of (3.47), 𝑂(𝜀−1): We only consider the interfaces Γ12
and Γ13. Substituting (3.33), (3.54) and the inner expansions we
obtain with (3.83)

− 𝜈𝜕𝑧(𝜙in
1,0𝑐in

0 ) + 𝜕𝑧(𝜙in
1,0𝑐in

0 vin
0 ) ⋅ n − 1

Σ1
𝜕𝑧(𝑐in

0 𝜕𝑧𝜇in
1,0)

= 𝐷𝜕𝑧(𝜙in
1,0𝜕𝑧𝑐in

1 ) − 𝑐∗𝑞(𝜱in
0 )(𝑟(𝑐in

0 ) + 𝛼𝜇in
1,0 − 𝛼𝜇in

3,0).
(3.91)

In the case of the fluid–solid interface Γ13 we have vin
0 ⋅ n = 0 and

𝑞(𝜱in
0 ) = √2𝑊dw(𝜙in

1,0) = 𝜕𝑧𝜙in
3,0, so by integrating we conclude

𝜈𝑐in
0 = −𝐷𝜕𝑧𝑐in

1 (−∞) − 𝑐∗(𝑟(𝑐in
0 ) + 𝛼𝜇in

1,0 − 𝛼𝜇in
3,0).

With (3.88) and matching condition (1.30) we get

𝜈(𝑐∗ − 𝑐in
0 ) = 𝐷∇𝑐out

0 (𝑡, x−) ⋅ n, (3.92)

which describes (3.12) of the sharp interface formulation.

If we consider the fluid–fluid interface Γ12 instead, we have 𝑞(𝜱in
0 ) = 0

and conclude from (3.91)

𝑐in
0 ((vin

0 ⋅ n − 𝜈)𝜕𝑧𝜙in
1,0 − 1

Σ1
𝜕𝑧𝑧𝜇in

1,0) = 𝐷𝜕𝑧(𝜙in
1,0𝜕𝑧𝑐in

1 ).

With (3.90) and by integrating and matching conditions (1.29),
(1.30)

0 = ∇𝑐out
0 (𝑡, x−) ⋅ n,

which corresponds to (3.13) of the sharp interface formulation.
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Expansion of (3.50), 𝑂(1): At an interface Γ𝑖𝑗, consider the differ-
ence 𝜇𝑖 − 𝜇𝑗. With (3.50) we can write

𝜇𝑖 − 𝜇𝑗 = 1
𝜀

(Σ𝑖𝑊 ′
dw(𝜙𝑖) − Σ𝑗𝑊 ′

dw(𝜙𝑗)) − 𝜀Σ𝑖Δ𝜙𝑖 + 𝜀Σ𝑗Δ𝜙𝑗.

As 0 < 𝜙in
𝑖,0 < 1 and 𝜙in

𝑖,0 + 𝜙in
𝑗,0 = 1 the 𝑂(1) terms of this expansion

are given by

𝜇in
𝑖,0 − 𝜇in

𝑗,0

= Σ𝑖𝑊 ″
dw(𝜙in

𝑖,0)𝜙in
𝑖,1 − Σ𝑗𝑊 ″

dw(𝜙in
𝑗,0)𝜙in

𝑗,1

− Σ𝑖 (−𝜅𝜕𝑧𝜙in
𝑖,0 + 𝜕𝑧𝑧𝜙in

𝑖,1) + Σ𝑗 (−𝜅𝜕𝑧𝜙in
𝑗,0 + 𝜕𝑧𝑧𝜙in

𝑗,1)
= (𝑊 ″

dw(𝜙in
𝑖,0) − 𝜕𝑧𝑧) (Σ𝑖𝜙in

𝑖,1 − Σ𝑗𝜙in
𝑖,1) + (Σ𝑖 + Σ𝑗)𝜅𝜕𝑧𝜙in

𝑖,0.
(3.93)

We want to multiply (3.93) by 𝜕𝑧𝜙in
𝑖,0 and integrate over 𝑧. For this

we calculate

∫
∞

−∞
(𝜕𝑧𝜙in

𝑖,0) (𝑊 ″
dw(𝜙in

𝑖,0) − 𝜕𝑧𝑧) (Σ𝑖𝜙in
𝑖,1 − Σ𝑗𝜙in

𝑖,1) 𝑑𝑧

= ∫
∞

−∞
(𝜕𝑧𝜙in

𝑖,0)𝑊 ″
dw(𝜙in

𝑖,0) (Σ𝑖𝜙in
𝑖,1 − Σ𝑗𝜙in

𝑖,1)

− (𝜕𝑧𝑧𝑧𝜙in
𝑖,0) (Σ𝑖𝜙in

𝑖,1 − Σ𝑗𝜙in
𝑖,1) 𝑑𝑧

= ∫
∞

−∞
𝜕𝑧 (𝑊 ′

dw(𝜙in
𝑖,0) − 𝜕𝑧𝑧𝜙in

𝑖,0) (Σ𝑖𝜙in
𝑖,1 − Σ𝑗𝜙in

𝑖,1) 𝑑𝑧

= 0,

where we have used integration by parts, equation (3.77) and match-
ing conditions (1.28), (1.29) to get to the second line. The last
equality follows from (3.77). Overall, we get from (3.93)

∫
∞

−∞
(𝜇in

𝑖,0 − 𝜇in
𝑗,0)𝜕𝑧𝜙in

𝑖,0 𝑑𝑧 = ∫
∞

−∞
(Σ𝑖 + Σ𝑗)𝜅(𝜕𝑧𝜙in

𝑖,0)2 𝑑𝑧.

Using the definition of 𝜎𝑖𝑗 in (3.80) and the fact that 𝜇in
𝑖,0 − 𝜇in

𝑗,0
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does not depend on 𝑧 (for Γ13 see (3.88), for Γ23 and Γ12 see the
expansions of (3.48), 𝑂(𝜀−1)) we find

𝜇in
𝑗,0 − 𝜇in

𝑖,0 = (Σ𝑖 + Σ𝑗)𝜅 = 𝜎𝑖𝑗𝜅. (3.94)

With this the compatibility condition (3.88) for the reactive interface
Γ13 reads

𝜈 = 𝛼𝜎13𝜅 − 𝑟(𝑐in
0 ), (3.95)

which is the interface condition (3.10) of the sharp interface formu-
lation.

Expansion of (3.46), 𝑂(𝜀−1): Let us look at the case of the fluid–
fluid interface Γ12. Condition (3.84) simplifies the analysis. In
particular, we have

∇ ⋅ (2 ̃𝛾(𝜱in)∇𝑠v) = 1
𝜀

𝜕𝑧(𝛾(𝜱in
0 )((𝜕𝑧vin

1 ) ⊗ n + ∇Γvin
0

+ n ⊗ (𝜕𝑧vin
1 ) + (∇Γvin

0 )⊤))n + 𝑂(1),
(3.96)

and the surface tension

̃S = 1
𝜀

(−𝜇in
2,0𝜕𝑧𝜙in

1,0 − 𝜇in
1,0𝜕𝑧𝜙in

2,0) n + 𝑂(1) = 𝑂(𝜀).

With this, equation (3.46) at order 𝑂(𝜀−1) reads as

− 𝜈𝜕𝑧(𝜌in
𝑓,0vin

0 ) + (𝜕𝑧𝜌in
𝑓,0)(n ⋅ vin

0 )vin
0 + 𝜕𝑧𝑝in

0 n
+ 𝜇in

2,0𝜕𝑧𝜙in
1,0n + 𝜇in

1,0𝜕𝑧𝜙in
2,0n

=𝜕𝑧(𝛾(𝜱in
0 )((𝜕𝑧vin

1 ) ⊗ n + ∇Γvin
0 + n ⊗ (𝜕𝑧vin

1 ) + (∇Γvin
0 )⊤))n.

With (3.90) the first two terms cancel out. Using the fact that 𝜇in
1,0

and 𝜇in
2,0 are constant, integrating over 𝑧 and applying matching
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condition (1.31) yields

J𝑝Kn + 𝜇in
1,0n − 𝜇in

2,0n = J𝛾(𝜱out
0 )(∇vout

0 + (∇vout
0 )⊤)Kn.

We use (3.94) to conclude the interface condition

J𝑝𝐼 − 2𝛾∇𝑠vout
0 Kn = 𝜎12𝜅n,

corresponding to (3.7) of the sharp interface formulation.

Expansion of (3.46)⋅𝝉, 𝑂(𝜀−1): Finally, for the fluid–solid interface
Γ13, we again use conditions (3.84) and (3.96). With this, equation
(3.46) at order 𝑂(𝜀−1) reads as

− 𝜈𝜕𝑧(𝜌in
𝑓,0vin

0 ) + 𝜙in
𝑓,0𝜕𝑧𝑝in

0 n

− 𝜇in
2,0𝜙in

𝑓,0𝜕𝑧 (
𝜙in

1,0
̃𝜙in
𝑓,0

) n − 𝜇in
1,0𝜙in

𝑓,0𝜕𝑧 (
𝜙in

2,0
̃𝜙in
𝑓,0

) n

=𝜕𝑧(𝛾(𝜱in
0 )((𝜕𝑧vin

1 ) ⊗ n + ∇Γvin
0 + n ⊗ (𝜕𝑧vin

1 ) + (∇Γvin
0 )⊤))n

+ 1
2

𝜌1vin
0 𝑞(𝜱in

0 )𝜈,

where we used (3.88), for the reaction term. We only consider the
tangential component of this equation. For this, we multiply with
an arbitrary vector 𝝉 ⟂ n and get

− 𝜈𝜕𝑧(𝜌in
𝑓,0vin

0 ⋅ 𝝉)

=𝝉𝜕𝑧(𝛾(𝜱in
0 )((𝜕𝑧vin

1 ) ⊗ n + ∇Γvin
0 + n ⊗ (𝜕𝑧vin

1 ) + (∇Γvin
0 )⊤))n

+ 1
2

𝜈𝜌1𝜕𝑧𝜙in
3,0vin

0 ⋅ 𝝉 .

Integrating and using (1.28) and (1.31) we get the interface condi-
tion

1
2

𝜈𝜌1vout
0 ⋅ 𝝉 = J2𝛾𝝉(∇𝑠vout

0 )nK, (3.97)
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which is condition (3.9) of the sharp interface formulation for Γ13. For
Γ23 the analogous calculation only differs by the vanishing reaction
term and (3.89). The left-hand side of (3.97) vanishes, but as 𝜈 = 0
on Γ23 the result (3.97) is valid on both Γ13 and Γ23.

We remark that the left-hand side term in (3.97) exists due to the fact
that the 𝛿-2𝑓1𝑠-model preserves kinetic energy instead of momentum
during precipitation and dissolution.

Remark 3.9: Considering the normal component of (3.46) at a
fluid–solid interface leads to

𝜙in
𝑓,0𝜕𝑧 (𝑝in

0 − 𝜇in
2,0

𝜙in
1,0
̃𝜙in
𝑓,0

− 𝜇in
1,0

𝜙in
2,0
̃𝜙in
𝑓,0

) = 𝜕𝑧(2𝛾(𝜱in
0 )𝜕𝑧vin

1 ⋅ n).

As we do not expect the right-hand side to vanish, 𝜙in
𝑓,0𝜕𝑧𝑝in

0 has to
balance this term. That means that in the region where 𝜙in

𝑓,0 gets
small, the assumption of 𝜕𝑧𝑝in

0 = 𝑂(1) is no longer valid. Indeed,
numerical simulations show that 𝑝 can oscillate in the solid part of a
fluid–solid interface.

3.2.4 Triple Point Expansions

As we have three bulk phases 𝜱out
0 = e1, e2, e3 there are regions

where these three phases meet. In the two-dimensional case we

Γ12

Γ13

Γ23

𝝉12

𝝉13

𝝉23

Figure 3.4: Vectors at the triple junction.
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assume that the three phases meet at isolated points, called triple
points. In the three-dimensional case we assume they meet at curves,
called contact lines.

In two dimensions the analysis of the triple points

Γ123(𝑡) = {x ∈ Ω ∶ 𝜱(𝑡, x) = (1/3, 1/3, 1/3)⊤}

can be done exactly as in [Bronsard and Reitich 1993; Garcke, Nestler,
et al. 1998]. For this one introduces local coordinates around a
x̂ ∈ Γ123 and assumes that solutions to the 𝛿-2𝑓1𝑠-model can be
written in terms of triple point expansions in these local coordinates.
After matching the triple point expansions with the inner expansions
of the three interfaces Γ12, Γ13, Γ23 one obtains in leading order the
condition

0 = ∑
𝑖𝑗∈{12,13,23}

𝜎𝑖𝑗𝝉𝑖𝑗, (3.98)

where 𝝉𝑖𝑗 is the tangential unit vector of Γ𝑖𝑗 at ̂x, as shown in
Figure 3.4.

Condition (3.98) is equivalent to the contact angle condition (3.14)
in the sharp interface formulation.

For the three-dimensional case, the analysis of the contact lines can
be done exactly as in [Dunbar et al. 2019]. We recover (3.14) on the
plane perpendicular to the contact line.

3.3 Discretization and Implementation

We use a Galerkin finite element method on a conforming triangular
mesh 𝒯 to discretize the 𝛿-2𝑓1𝑠-model (3.45)–(3.50) in space. For
this we use Taylor–Hood elements [Taylor and Hood 1973] for v
and 𝑝, i.e., Lagrange elements of order 2 for the velocity (with zero
Dirichlet boundary conditions on 𝜕Ω) and Lagrange elements of
order 1 for the pressure (with zero mean value over Ω). We denote
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these spaces by v ∈ (𝒫2,0(𝒯))𝑁 and by 𝑝 ∈ 𝒫1,0(𝒯). For the ion
concentration and phase field variables, we discretize with Lagrange
elements of order 1 and solve for 𝑐, 𝜙1, 𝜙2, 𝜇1 and 𝜇2 in 𝒫1(𝒯). We
recover 𝜙3 and 𝜇3 through the relations (3.19) and (3.52).

For the time discretization, we divide the time interval [0, 𝑇 ] into
subintervals [𝑡𝑛, 𝑡𝑛+1], 𝑛 = 0, … , 𝑁𝑡 −1 with respective length Δ𝑡,𝑛 =
𝑡𝑛+1 − 𝑡𝑛. Given the values of 𝑝𝑛, v𝑛, 𝑐𝑛, 𝜙𝑛

1 , 𝜙𝑛
2 , 𝜇𝑛

1 , 𝜇𝑛
2 at time 𝑡𝑛

we search for functions 𝑝𝑛+1, v𝑛+1, 𝑐𝑛+1, 𝜙𝑛+1
1 , 𝜙𝑛+1

2 , 𝜇𝑛+1
1 , 𝜇𝑛+1

2 in
the respective finite element spaces. For this we discretize in time
by the implicit Euler method. The weak formulation for the finite
element method is then given as follows, and has to be satisfied for all
test functions ̌𝑝 ∈ 𝒫1,0(𝒯), v̌ ∈ (𝒫2,0(𝒯))𝑁, ̌𝑐 ∈ 𝒫1(𝒯), ̌𝜙1 ∈ 𝒫1(𝒯),

̌𝜙2 ∈ 𝒫1(𝒯), ̌𝜇1 ∈ 𝒫1(𝒯), ̌𝜇2 ∈ 𝒫1(𝒯)

0 = ∫
Ω

̌𝑝∇ ⋅ ( ̃𝜙𝑛+1
𝑓 v𝑛+1) 𝑑𝑥, (3.99)

0 = ∫
Ω

̃𝜌𝑛+1
𝑓

v𝑛+1 − v𝑛

Δ𝑡,𝑛
⋅ v̌ 𝑑𝑥

+ ∫
Ω

(((𝜌𝑛+1
𝑓 v𝑛+1 + J𝑛+1

𝑓 ) ⋅ ∇) v𝑛+1) ⋅ v̌ 𝑑𝑥

+ ∫
Ω

̃𝜙𝑛+1
𝑓 ∇𝑝𝑛+1 ⋅ v̌ 𝑑𝑥 + ∫

Ω
2 ̃𝛾(𝜱𝑛+1)∇𝑠v𝑛+1 ∶ ∇v̌ 𝑑𝑥

+ ∫
Ω

𝜌3𝑑( ̃𝜙𝑛+1
𝑓 , 𝜀)v𝑛+1 ⋅ v̌ 𝑑𝑥 − ∫

Ω
S̃𝑛+1 ⋅ v̌

+ ∫
Ω

1
2

𝜌1𝑅𝑛+1
𝑓 v𝑛+1 ⋅ v̌ 𝑑𝑥,

(3.100)
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0 = ∫
Ω

̃𝜙𝑛+1
𝑐 (𝑐𝑛+1 − 𝑐∗) − ̃𝜙𝑛

𝑐 (𝑐𝑛 − 𝑐∗)
Δ𝑡,𝑛

̌𝑐 𝑑𝑥

+ ∫
Ω

𝐷 ̃𝜙𝑛+1
𝑐 ∇𝑐𝑛+1 ⋅ ∇ ̌𝑐 𝑑𝑥 − ∫

Ω
(𝑐𝑛+1 − 𝑐∗)J𝑛+1

𝑐 ⋅ ∇ ̌𝑐 𝑑𝑥

+ ∫
Ω

̌𝑐∇ ⋅ (𝜙𝑛+1
𝑐 v𝑛+1(𝑐𝑛+1 − 𝑐∗)) 𝑑𝑥,

(3.101)

0 = ∫
Ω

𝜙𝑛+1
𝑖 − 𝜙𝑛

𝑖
Δ𝑡,𝑛

̌𝜙𝑖 𝑑𝑥 − ∫
Ω

J𝑛+1
𝑖 ⋅ ∇ ̌𝜙𝑖 𝑑𝑥

+ ∫
Ω

̌𝜙𝑖∇ ⋅ (𝜙𝑛+1
𝑖 v𝑛+1) 𝑑𝑥 − ∫

Ω
𝑅𝑛+1

𝑖
̌𝜙𝑖 𝑑𝑥, 𝑖 ∈ {1, 2} ,

(3.102)

0 = ∫
Ω

𝜇𝑛+1
𝑖 ̌𝜇𝑖 𝑑𝑥 − ∫

Ω

𝜕𝜙𝑖
𝑊(Φ𝑛+1)

𝜀
̌𝜇𝑖 𝑑𝑥

− ∫
Ω

𝜀Σ𝑖∇𝜙𝑛+1
𝑖 ∇ ̌𝜇𝑖 𝑑𝑥, 𝑖 ∈ {1, 2} ,

(3.103)

together with the closure relations derived from (3.19) and (3.52)

𝜙𝑛+1
3 = 1 − 𝜙𝑛+1

1 − 𝜙𝑛+1
2 ,

𝜇𝑛+1
3 = −Σ3 (𝜇𝑛+1

1
Σ1

+ 𝜇𝑛+1
2
Σ2

) .

Here the terms ̃𝜙𝑛+1
𝑓 , 𝜌𝑛+1

𝑓 , ̃𝜌𝑛+1
𝑓 , ̃𝜙𝑛+1

𝑐 , J𝑛+1
𝑐 , J𝑛+1

𝑖 , J𝑛+1
𝑓 , 𝑅𝑛+1

𝑖 ,
̃S𝑛+1 are to be understood as in their original definitions, with all

variables replaced by the finite element functions at time 𝑡𝑛+1, e.g.

̃𝜙𝑛+1
𝑓 = 𝜙𝑛+1

1 + 𝜙𝑛+1
2 + 2𝛿𝜙𝑛+1

3 ,

J𝑛+1
𝑖 = − 𝜀

Σ𝑖
∇𝜇𝑛+1

𝑖 ,

𝑅𝑛+1
1 = −𝑞(𝜱𝑛+1)

𝜀
(𝑟(𝑐𝑛+1) + ̃𝛼𝜇𝑛+1

1 − ̃𝛼𝜇𝑛+1
3 ) ,
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S̃𝑛+1 = −𝜇𝑛+1
2

̃𝜙𝑛+1
𝑓 ∇ (𝜙𝑛+1

1
̃𝜙𝑛+1
𝑓

) − 𝜇𝑛+1
1

̃𝜙𝑛+1
𝑓 ∇ (𝜙𝑛+1

2
̃𝜙𝑛+1
𝑓

)

− 2𝛿𝜙𝑛+1
3 ∇(𝜇𝑛+1

3 − 𝜇𝑛+1
1 − 𝜇𝑛+1

2 ).

In comparison to a fully implicit Euler discretization of (3.45)–(3.50),
we have made two reformulations of the 𝛿-2𝑓1𝑠-model. For the
momentum equation (3.100) we first note that from (3.48) we find

𝜕𝑡 ̃𝜌𝑓 + ∇ ⋅ (𝜌𝑓v + J𝑓) = 𝜌1𝑅𝑓.

With this we rewrite (3.46) as

̃𝜌𝑓𝜕𝑡v + ((𝜌𝑓v + J𝑓) ⋅ ∇)v = − ̃𝜙𝑓∇𝑝 + ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)

− 𝜌3𝑑( ̃𝜙𝑓, 𝜀)v + ̃S − 1
2

𝜌1v𝑅𝑓.

We use an implicit Euler discretization in time to obtain (3.100).

For the ion equation (3.101) we first reformulate the 𝛿-2𝑓1𝑠-model
so that there is no reaction term in the ion equation. For this we
calculate (3.47)-𝑐∗(3.48)

𝜕𝑡( ̃𝜙𝑐(𝑐 − 𝑐∗)) + ∇ ⋅ ((𝜙𝑐v + J𝑐)(𝑐 − 𝑐∗)) = 𝐷∇ ⋅ ( ̃𝜙𝑐∇𝑐).

Note that this formulation is very similar to the ion balance equation
(2.5d) from Chapter 2. We discretize this formulation by implicit
Euler to obtain (3.101).

Remark 3.10: While the continuous 𝛿-2𝑓1𝑠-model is equipped with
a free energy that is decreasing in time, we can not prove the same
for the FEM formulation (3.99)–(3.103). Such energy decreasing
schemes exist in literature for Cahn–Hilliard–Navier–Stokes systems
(see e.g. [Grün and Klingbeil 2014; Minjeaud 2013]) and are much
more intricate in the choice of discretization. The challenge in
generalizing these schemes to the 𝛿-2𝑓1𝑠 model is to include the
fluid–ion mixture energy 𝑔(𝑐) and the reaction term 𝑟(𝑐), as they
both depend non-linear on the ion concentration 𝑐.



94 3 The Cahn–Hilliard–Navier–Stokes Model

We solve the full system (3.99)–(3.103) either monolithically or
using an operator splitting between the Navier–Stokes equations
(3.99)–(3.100) and the Cahn–Hilliard equations (3.101)–(3.103), i.e.,
we solve for v𝑛+1 and 𝑝𝑛+1 while keeping the unknowns 𝑐𝑛+1, 𝜙𝑛+1

1 ,
𝜙𝑛+1

2 , 𝜇𝑛+1
1 , 𝜇𝑛+1

2 fixed and vice versa. In the case of only one fluid
phase present, the coupling between the two operators is rather weak,
and the operator splitting scheme usually converges in two to four
iterations. As such, it is faster than a monolithic solve of the full
system, and we therefore prefer the operator splitting in applications
with only one fluid phase (see Chapter 8). With two fluid phases
present, there exists a fluid–fluid interface that gets transported with
the fluid velocity, and therefore the Navier–Stokes and Cahn–Hilliard
operators are coupled much stronger. In this case the monolithic
solve is faster than iterating between the two operators.

While we do not prove the existence of solutions to the discrete
system (3.99)–(3.103), we find in practice solutions for sufficiently
small time step Δ𝑡,𝑛. We employ an adaptive time step, decreasing
Δ𝑡,𝑛 in case our numerical solvers do not converge.

The implementation was done in the finite element framework PDE-
Lab [Bastian et al. 2010]. This has the advantage that we can use
DUNE-ALUGrid [Alkämper et al. 2016] as a grid interface, which
provides us with adaptive mesh refinement on an unstructured grid
of simplices. We use ∇𝜱𝑛 as an indicator for refinement, and ensure
that at least five grid cells are located across every interface. We solve
the resulting non-linear system with Newton’s method including the
line search strategy, and use the GMRES method to solve the linear
system in each Newton step, with ILU factorization as a precondi-
tioner. The development of more suitable block-preconditioners for
the linear system based on [Bosch et al. 2018; Garcke, Hinze, and
Kahle 2016] should lead to a significant speed-up.
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3.4 Numerical Investigation of the Phase Field
Model

3.4.1 Nucleus in Channel Flow

For the first numerical example, let us illustrate the capability of
the 𝛿-2𝑓1𝑠-model. We consider initially a solid nucleus (𝜙3, red) in a
channel flow (𝜙1, dark blue). Attached is a part of the second fluid
phase (𝜙2, light blue). The initial datum is displayed in Figure 3.5,
top left. The upper and lower boundaries are impermeable, with
boundary conditions (3.35)–(3.38). The left(right) boundary acts
as an inflow(outflow) boundary. Due to a flow from the left, the
second fluid phase gets pushed behind the nucleus (see Figure 3.5,
top right/bottom left). Because the ion concentration at the inflow
boundary is oversaturated, the nucleus begins to grow as can clearly
be seen from the last graph in Figure 3.5. The contact angle at
the triple junction is constant throughout the simulation, following
(3.14). Notably, the new formulation of the Navier-slip condition
leads to tangential flow around the nucleus.

3.4.2 Variable Slip Length

Next, we investigate the Navier-slip condition (3.15), (3.16). For
this, we construct in Ω = [0, 1]2 a test case with a planar fluid–solid
interface at 𝑥 = 1/4, as shown in Figure 3.6. For the left boundary we
impose boundary conditions (3.35)–(3.38), while we impose for the
right boundary (3.36)–(3.38) together with the constant tangential
velocity v = (0, 1)⊤. The top and bottom boundary are chosen to
be periodic. We choose 𝑟(𝑐) ≡ 0 to have a stationary fluid–solid
interface. This setting matches the one dimensional analysis in
Section 3.1.1.4.

After a short time, the model evolves into a stationary state with
a linear velocity profile in the fluid phase, as shown in Figure 3.6.
In Figure 3.7 we plot a cross-section at 𝑦 = 1/2 for two different
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choices of 𝑑(0). Note in particular that v decays exponentially in
the solid phase, and this can happen over a width larger than 𝜀 (see
Figure 3.7 on the right-hand side). Of course, the effective fluid flux
v𝜙𝑓 still is approximately zero in the solid phase.

With equation (3.16) we can predict the slip length 𝐿slip of the
model. To compare the predicted slip length with the diffuse interface
model, we calculate the velocity profile for a sharp interface at
𝑥 = 1/4, with 𝐿slip from (3.16). As seen in Figure 3.7 there is a good
agreement between diffuse and sharp interface model, i.e., equation
(3.16) predicts the slip length accurately.
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Figure 3.5: Growth of a solid nucleus in a channel flow, with
attached fluid phase 𝜱 = e2. Top left: initial data, top right:
𝑡 = 0.5, bottom left: 𝑡 = 2, bottom right: 𝑡 = 8.
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𝑥
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Figure 3.6: Navier-slip at a fluid–solid interface with solid phase
(𝜙3, red) on the left and first fluid phase (𝜙1, blue) on the
right side. The arrows show the fluid velocity v at the
cross-section 𝑦 = 1/2.

Figure 3.7: Cross-section 𝑦 = 0.5 for 𝜀 = 0.005, 𝛾1 = 0.5,
𝛾3 = 0.01. Left: 𝑑(0) = 400, right: 𝑑(0) = 200. Plotted are
𝜙1 in blue, |v| in red and the velocity for the corresponding
sharp interface in black.
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On the pore-scale, flow induced by non-stationary fluid–fluid inter-
faces can occur on a time scale much faster than precipitation. For
example, in the event of Haines jumps the fluid in pores is displaced
in the time of milliseconds [Berg et al. 2013], while in contrast, EICP
is changing the pore-scale geometry over several hours (see Chap-
ter 8). This means in particular, that in some events the velocity of
fluid–fluid interfaces can be much higher than the velocity of reac-
tive fluid–solid interfaces. While the 𝛿-2𝑓1𝑠-model from Chapter 3
is able to describe both flow and precipitation simultaneously, the
difference in time scales provides a challenge: To describe the fast
moving fluid–fluid interfaces, a high mobility in the Cahn–Hilliard
equation is necessary. But then the evolution of fluid–solid interfaces
is dominated by the Cahn–Hilliard equation instead of the slower
precipitation, resulting e.g. in corners smoothing out over time (see
Section 4.3 for an example).

To accommodate for the fast time scale, we propose in this chap-
ter a model for the flow of two immiscible fluids together with
a solid phase that does not change in time. For this we mod-
ify the 𝛿-2𝑓1𝑠-model (3.45)–(3.50) from Chapter 3 to exclude any
evolution of the solid phase. The resulting model, called 𝐷𝐷-2𝑓1𝑠-
model, is of diffuse-domain type. It consists of the two-phase Cahn–
Hilliard–Navier–Stokes model (1.15)–(1.19) of [Abels, Garcke, et al.
2012] in a domain confined by a diffuse solid boundary.
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The vision is to use the 𝛿-2𝑓1𝑠-model and the 𝐷𝐷-2𝑓1𝑠-model in a
model-adaptive framework: The 𝛿-2𝑓1𝑠-model is used to describe
flow and precipitation on a slow time scale. In the case that surface
tension effects lead to a fast evolution of fluid–fluid interfaces, one
can switch to the 𝐷𝐷-2𝑓1𝑠-model to describe such events until a
stationary configuration of fluid–fluid interfaces is found. As both
models describe all interfaces as diffuse interfaces, the phase field
vector 𝜱 can be directly transferred between the models.

When describing a stationary solid phase, there are several advantages
of the 𝐷𝐷-2𝑓1𝑠-model compared to the 𝛿-2𝑓1𝑠-model. Firstly, by
construction the solid phase is stationary and does not change via
Cahn–Hilliard evolution, see Section 4.3 for a comparison. Secondly
it reduces the complexity of the model to a binary phase field model,
leading to a smaller number of unknowns that have to be solved
for. Finally, it allows for a contact angle condition with the angle of
the solid phase being 180°. This can only be approximated by the
𝛿-2𝑓1𝑠-model, see Section 3.1.1.3.

The idea to formulate the boundary conditions of a partial differential
equation on a diffuse boundary leads to the diffuse domain approach
of [Li et al. 2009]. Here the differential equation is reformulated on an
enlarged domain, and the original boundary conditions are integrated
through additional source terms. This method has been refined in
recent years [Lervåg and Lowengrub 2015; Yu et al. 2020]. While
we do not follow the diffuse domain approach here, our resulting
model has many similarities to Cahn–Hilliard–Navier–Stokes models
developed in the diffuse domain context.

In [Aland et al. 2010] model H (see (1.8)–(1.11) in the introduction)
is formulated in a diffuse domain, using the techniques of [Li et al.
2009]. Analogously, in [Guo et al. 2021] the mass-averaged model by
[Lowengrub and Truskinovsky 1998], allowing for different densities
of the fluid phases, is formulated using the diffuse domain approach.
Notably both models use a fixed contact angle at the boundary. It
is not clear whether these models allow for a decreasing free energy.
Both models have two phase field parameters 𝜀 and 𝜀𝜙 for the Cahn–
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Hilliard equation and the diffuse domain respectively. For constant
𝜀 and 𝜀𝜙 → 0 model H (1.8)–(1.11) and the model of [Lowengrub
and Truskinovsky 1998] are recovered in a sharp domain, but the
sharp interface limit 𝜀 = 𝜀𝜙 → 0 can not be shown. In contrast to
this, in our model the choice 𝜀 = 𝜀𝜙 is necessary, and we present the
sharp interface limit in Section 4.2.

The structure of this chapter is as follows. After we briefly explain
the underlying sharp interface ansatz in Section 4.1.1, we modify the
𝛿-2𝑓1𝑠-model in Section 4.1.2 to derive the 𝐷𝐷-2𝑓1𝑠-model. It still
allows for a decreasing free energy, as shown in Section 4.1.3. To
validate the 𝐷𝐷-2𝑓1𝑠-model model we investigate the sharp interface
limit in Section 4.2 using matched asymptotic expansions. Notably,
using an expansion around the triple points we recover Young’s
equation for the contact angle. We illustrate the capabilities of the
𝐷𝐷-2𝑓1𝑠-model by a numerical example in Section 4.3 and compare
it to the 𝛿-2𝑓1𝑠 model.

4.1 Multi-phase Flow in a Diffuse Domain

4.1.1 The Sharp Interface Formulation

In this section we present the free boundary problem underlying
the 𝐷𝐷-2𝑓1𝑠-model. We keep the notation introduced previously
in Section 3.1.1. In particular, recall that the three domains Ω1(𝑡),
Ω2(𝑡), Ω3 are separated by the fluid–fluid interface Γ12(𝑡) and the
fluid–solid interfaces Γ13(𝑡), Γ23(𝑡). As the solid phase is assumed to
be stationary, the domain Ω3 does not depend on time. We assume
the interface between Ω3 and the fluid phases (i.e., Γ13 ∪ Γ23) to
be smooth. Figure 4.1 shows a summary of the bulk equations and
interface conditions that are presented in the following.
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4.1.1.1 The Bulk Equations

In Ω1 and Ω2 we consider the incompressible flow of a viscous fluid
phase exactly as in Section 3.1.1. The dynamics of the velocity
field v(𝑡, x) ∈ ℝ𝑁 and pressure 𝑝 = 𝑝(𝑡, x) ∈ ℝ is governed by the
incompressible Navier–Stokes equations (3.1), (3.2),

∇ ⋅ v = 0, (4.1)
𝜕𝑡(𝜌𝑖v) + ∇ ⋅ (𝜌𝑖v ⊗ v) + ∇𝑝 = ∇ ⋅ (2𝛾𝑖∇𝑠v), (4.2)

in Ω𝑖(𝑡), 𝑖 ∈ {1, 2}, 𝑡 ∈ (0, 𝑇 ).

As in Section 3.1.1 we introduce in the immobile solid domain Ω3
the artificial velocity field v = v(𝑡, x). This enables us to establish a
Navier-slip condition at the fluid–solid interfaces Γ13 and Γ23. The
velocity field v in Ω3 follows the elliptic law (3.4),

∇ ⋅ (2𝛾3∇𝑠v) − 𝜌3𝑑0v = 0 (4.3)

in Ω3, 𝑡 ∈ (0, 𝑇 ).

In contrast to Chapter 3 we do not consider ions dissolved in the
fluid, as we do not model the evolution of the solid phase due to
precipitation and dissolution.

4.1.1.2 The Interface Conditions

The dynamics of the interfaces Γ12, Γ13 and Γ23 is described by the
following conditions. The velocity field v ∶ Ω → ℝ𝑁 is assumed to be
continuous across all domains, i.e., JvK = 0 on Γ12, Γ13 and Γ23.

The interface Γ12 between the two fluids is described by the same
balance laws for mass (3.6) and momentum (3.7) as in Chapter 3,

𝜈 = v ⋅ n on Γ12, (4.4)
J(𝑝𝐼 − 2𝛾∇𝑠v) ⋅ nK = 𝜎12𝜅n on Γ12. (4.5)
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The fluid–solid interfaces Γ13 and Γ23 do not move in normal direction
because we assumed Ω3 to be stationary, i.e.,

𝜈 = 0 on Γ13 and Γ23.

We impose the no-penetration condition for fluid flow (3.8) together
with the tangential stress balance law (3.9). This allows for a slip
condition for the tangential flow, as described in Section 3.1.1.4.
Because of 𝜈 = 0 equation (3.9) simplifies to

0 = J2𝛾𝝉(∇𝑠v)nK for all 𝝉 ∈ ℝ𝑁, 𝝉 ⟂ n on Γ13 and Γ23.
(4.6)

𝜈 = v ⋅ n
J(𝑝𝐼 − 𝛾∇𝑠v) ⋅ nK = 𝜎12𝜅n

𝜈 = v ⋅ n = 0
J𝛾𝝉(∇𝑠v)nK = 0

𝜈 = v ⋅ n = 0
J𝛾𝝉(∇𝑠v)nK = 0

Ω1
Navier–Stokes

Ω2
Navier–Stokes

Ω3
Elliptic law

for v

Figure 4.1: The bulk equations and interface conditions of the
sharp interface model. The condition JvK = 0, being valid
on all interfaces, is omitted. Starting from Figure 3.2, we
obtain these conditions by setting 𝜈 = 0 on Γ13 and Γ23.
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4.1.1.3 The Contact Angle Condition

We further impose a condition at the three-phase contact points. In
the two-dimensional case these are isolated points, while in the three-
dimensional case the three-phase contact points form one-dimensional
contact lines. In the following we consider the two-dimensional
case.

At the contact point we denote the contact angle of Ω𝑖 by 𝛽𝑖. Assum-
ing that the boundary of Ω3 is smooth close to the contact point, we
set 𝛽3 = 𝜋. Given the constant coefficients Σ1 and Σ2, the contact
angle 𝛽1 satisfies the Young’s equation

Σ2 = Σ1 + (Σ1 + Σ2) cos 𝛽1. (4.7)

Then, we find 𝛽2 through the relation 𝛽1 + 𝛽2 + 𝛽3 = 2𝜋. In the
three dimensional case we impose the same conditions on the plane
perpendicular to the contact curve, i.e., the plane with normal vector
tangent to the contact curve.

Note that (4.7) is different to the contact angle condition (3.14)
presented in Section (3.1.1.3). In particular, it is now possible to have
a solid domain with 𝛽3 = 𝜋, while this could only be approximated
in Chapter 3.

Remark 4.1: The coefficients Σ1 and Σ2 determine both the fluid–
fluid surface energy 𝜎12 and the contact angle 𝛽1 through 𝜎12 =
Σ1 + Σ2 and (4.7) respectively. It is easy to check that the mapping

ℝ+ × ℝ+ ∋ (Σ1, Σ2) ↦ (𝜎12, 𝛽1) ∈ ℝ+ × (0, 𝜋)

is a bijection. Therefore, for a given surface energy 𝜎12 and a given
contact angle 𝛽1 we can find values for Σ1 and Σ2.
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4.1.2 The 𝐷𝐷-2𝑓1𝑠-Phase Field Model

4.1.2.1 Preliminaries

Consider the three fields

𝜙1(𝑡, x), 𝜙2(𝑡, x), 𝜙3(x) ∶ [0, 𝑇 ] × Ω → ℝ

approximating the indicator function of the respective phase in the
sharp interface model. In contrast to the 2𝑓1𝑠-model in Chapter 3 we
view 𝜙3 as a given, constant field, and we gather only the unknown
fields 𝜙1 and 𝜙2 in the vector-valued function 𝜱 = (𝜙1, 𝜙2)⊤.

The phase field variables 𝜙𝑖 are smooth and form diffuse transition
zones with width determined by the parameter 𝜀 > 0. Understanding
each 𝜙𝑖 as the volume fraction of the respective phase, we impose
the condition

𝜙1(𝑡, x) + 𝜙2(𝑡, x) = 1 − 𝜙3(x) for all 𝑡 ∈ [0, 𝑇 ] and x ∈ Ω.
(4.8)

Analogous to Section 3.1.2.1 we restrict 𝜙1 and 𝜙2 to the range
(−𝛿, 1 + 𝛿) for a small fixed parameter 𝛿 by using the double-well
potential 𝑊dw(𝜙) given by (3.20),

𝑊dw(𝜙) = 450𝜙4(1 − 𝜙)4 + 𝛿ℓ (𝜙
𝛿

) + 𝛿ℓ (1 − 𝜙
𝛿

) , (4.9)

ℓ(𝑥) = {
𝑥2

1+𝑥 𝑥 ∈ (−1, 0),
0 𝑥 ≥ 0.

Remark 4.2: The eighth-order polynomial in (3.20) was motivated
by the need to prevent bulk precipitation in the sharp interface limit.
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As we do not model precipitation, we can also choose the simpler
fourth-order double-well potential

𝑊dw(𝜙) = 18𝜙2(1 − 𝜙)2 + 𝛿ℓ (𝜙
𝛿

) + 𝛿ℓ (1 − 𝜙
𝛿

)

The triple-well potential function 𝑊0(𝜱) ∶ ℝ2 → ℝ can now be
defined as

𝑊0(𝜱) = Σ1𝑊dw(𝜙1) + Σ2𝑊dw(𝜙2), (4.10)

with scaling coefficients Σ1, Σ2 > 0. This choice is motivated by
[Boyer, Lapuerta, et al. 2010; Boyer and Lapuerta 2006] but in
contrast to these works and the 2𝑓1𝑠-model of Chapter 3 there is no
contribution of the solid phase 𝜙3 to the potential (4.9).

The potential 𝑊0(𝜱) is reasonable for states 𝜱 on the affine space
𝜙1+𝜙2 = 1−𝜙3. We introduce a projection 𝑃 from ℝ2 onto this plane.
This projection is different to 𝑃 in the 2𝑓1𝑠-model in Section 3.1.2.1,
as 𝜱 is now only two-dimensional. We define

𝑃𝜱 = 𝜱 + Σ𝑇(1 − 𝜙1 − 𝜙2 − 𝜙3) (Σ−1
1

Σ−1
2

) , 1
Σ𝑇

= 1
Σ1

+ 1
Σ2

.

(4.11)

With the projection we finally define the potential 𝑊(𝜱) ∶= 𝑊0(𝑃𝜱).

Remark 4.3: We can find the construction of 𝑊(Φ) by modifying
the Lagrange multiplier technique used in [Boyer and Lapuerta 2006].
For this we start with the system

𝜕𝑡𝜙1 = ∇ ⋅ (𝑀1∇𝜇1),
𝜕𝑡𝜙2 = ∇ ⋅ (𝑀2∇𝜇2),
𝜕𝑡𝜙3 = 0,

𝜇1 = −𝜀Σ1Δ𝜙1 +
𝜕𝜙1

𝑊0(𝜱)
𝜀

+ 𝛽,
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𝜇2 = −𝜀Σ2Δ𝜙2 +
𝜕𝜙2

𝑊0(𝜱)
𝜀

+ 𝛽,

with constant mobilities 𝑀1, 𝑀2 yet to be determined. We use the
Lagrange multiplier 𝛽 to enforce the constraint (4.8). For initial
data 𝜱 satisfying 𝜙1(0, x) + 𝜙2(0, x) = 1 − 𝜙3(x) this can be done by
imposing 𝜕𝑡𝜙1 + 𝜕𝑡𝜙2 = 0. We calculate

0 = 𝜕𝑡𝜙1 + 𝜕𝑡𝜙2

= Δ (−𝜀𝑀1Σ1Δ𝜙1 − 𝜀𝑀2Σ2Δ𝜙2 +
𝑀1𝜕𝜙1

𝑊0(𝜱)
𝜀

+
𝑀2𝜕𝜙2

𝑊0(𝜱)
𝜀

+ (𝑀1 + 𝑀2)𝛽) .

By choosing 𝑀1Σ1 = 𝑀2Σ2 = 𝑀 for some constant 𝑀 and using
Δ𝜙1 + Δ𝜙2 = −Δ𝜙3 as a consequence of (4.8) we have

0 = 𝑀Δ (𝜀Δ𝜙3 +
𝜕𝜙1

𝑊0(𝜱)
Σ1𝜀

+
𝜕𝜙2

𝑊0(𝜱)
Σ2𝜀

+ 1
Σ𝑇

𝛽) .

We therefore find the Lagrange multiplier 𝛽 to be equal to

𝛽 = −Σ𝑇𝜀Δ𝜙3 − Σ𝑇
𝜕𝜙1

𝑊0(𝜱)
Σ1𝜀

− Σ𝑇
𝜕𝜙2

𝑊0(𝜱)
Σ2𝜀

,

and with this

𝜇1 = −𝜀Σ1Δ𝜙1 − Σ𝑇𝜀Δ𝜙3

+ 1
𝜀

((1 − Σ𝑇
Σ1

) 𝜕𝜙1
𝑊0(𝜱) − Σ𝑇

Σ2
𝜕𝜙2

𝑊0(𝜱))

= −𝜀Σ1Δ𝜙1 − Σ𝑇𝜀Δ𝜙3 +
𝜕𝜙1

𝑊(𝜱)
𝜀

,

and analogous for 𝜇2. This last step motivates the exact choice of 𝑃
in (4.11).
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4.1.2.2 The 𝐷𝐷-2𝑓1𝑠-Model

We now present the diffuse domain 2𝑓1𝑠-model. It can be seen
as a modification of the 𝛿-2𝑓1𝑠-model (3.45)–(3.50) presented in
Section 3.1.3. For a fixed 𝜙3(x) it reads

∇ ⋅ (𝜙𝑓v) = 0, (4.12)
𝜕𝑡( ̃𝜌𝑓v) + ∇ ⋅ ((𝜌𝑓v + J𝑓) ⊗ v) = −𝜙𝑓∇𝑝 + ∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)

− 𝜌3𝑑(𝜙𝑓, 𝜀)v + S,
(4.13)

𝜕𝑡𝜙𝑖 + ∇ ⋅ (𝜙𝑖v + J𝑖) = 0, 𝑖 ∈ {1, 2} , (4.14)

𝜇𝑖 =
𝜕𝜙𝑖

𝑊(𝜱)
𝜀

− 𝜀Σ𝑖Δ𝜙𝑖 − 𝜀Σ𝑇Δ𝜙3, 𝑖 ∈ {1, 2} , (4.15)

in (0, 𝑇 ) × Ω. As for the 𝛿-2𝑓1𝑠-model, the total fluid fraction, fluid
density, modified fluid density and modified fluid viscosity are given
by

𝜙𝑓(𝜱) ∶= 𝜙1 + 𝜙2,
𝜌𝑓(𝜱) ∶= 𝜌1𝜙1 + 𝜌2𝜙2,

̃𝜌𝑓(𝜱) ∶= 𝜌1𝜙1 + 𝜌2𝜙2 + (𝜌1 + 𝜌2)𝛿,

̃𝛾(𝜱) ∶= (𝜙1𝛾−1
1 + 𝜙2𝛾−1

2 + 𝜙3𝛾−1
3 + (𝛾−1

1 + 𝛾−1
2 + 𝛾−1

3 )𝛿)−1 ,

while the flux terms are given by

J𝑖 = − 𝜀
Σ𝑖

∇𝜇𝑖, and J𝑓 = 𝜌1J1 + 𝜌2J2, (4.16)

and the surface tension term reads

S = −𝜇2𝜙𝑓∇ (𝜙1
𝜙𝑓

) − 𝜇1𝜙𝑓∇ (𝜙2
𝜙𝑓

) .

The 𝐷𝐷-2𝑓1𝑠-model (4.12)–(4.15) is complemented by the boundary
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conditions

v = 0, (4.17)
∇𝜙𝑖 ⋅ nΩ = 0, 𝑖 ∈ {1, 2} , (4.18)
∇𝜇𝑖 ⋅ nΩ = 0, 𝑖 ∈ {1, 2} , (4.19)

on (0, 𝑇 ) × 𝜕Ω. Here nΩ ∈ ℝ𝑁 denotes the outer normal unit vector
on 𝜕Ω. Because of condition (4.8) the boundary condition (4.18)
also restricts the choice of 𝜙3 to functions satisfying ∇𝜙3 ⋅ nΩ = 0.

In contrast to the 𝛿-2𝑓1𝑠-model we do not use a modification of 𝜙𝑓.
Because (4.8) implies 𝜙𝑓 = 1 − 𝜙3 we can ensure 𝜙𝑓 > 0 by imposing
the constraint 𝜙3 < 1 for the given function 𝜙3(x). This choice
also leads to an unmodified surface tension term S. Equation (4.15)
for the chemical potential 𝜇𝑖 is non-standard in the Cahn–Hilliard
context, because of the additional term −𝜀Σ𝑇Δ𝜙3. This choice is
the result of the considerations made in Remark 4.3.

The 𝐷𝐷-2𝑓1𝑠-model conserves mass in the sense that 𝑑
𝑑𝑡 ∫

Ω
𝜙𝑖 𝑑x = 0

and therefore 𝑑
𝑑𝑡 ∫

Ω
𝜌(𝜱) 𝑑x = 0. By the construction in Remark 4.3

we also satisfy (4.8), provided 𝜙1 and 𝜙2 satisfy this condition ini-
tially.

4.1.3 Thermodynamical Consistency

Because we built the 𝐷𝐷-2𝑓1𝑠-model on the 𝛿-2𝑓1𝑠-model, we expect
to recover the thermodynamical consistency described in Section 3.1.5.
Indeed, the modifications here are chosen such that we find a similar
free energy functional decreasing in time. The functional is given
by

𝐹(𝜱, ∇𝜱, 𝑣) = ∫
Ω

1
2

̃𝜌𝑓|v|2 +
2

∑
𝑖=1

Σ𝑖 (𝑊dw(𝜙𝑖)
𝜀

+ 1
2

𝜀|∇𝜙𝑖|2) 𝑑x.

(4.20)
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The free energy functional consists of the kinetic energy of the fluid
phases and the Ginzburg–Landau energy of the Cahn–Hilliard sys-
tem. Note that following from our choice made in (4.10) there is
no free energy associated to the solid phase 𝜙3. We can now pro-
ceed to formulate the thermodynamical consistency in the following
theorem.

Theorem 4.1.1. Consider a function 𝜙3(x) with 0 < 𝜙3(x) < 1.
Then classical solutions to the 𝐷𝐷-2𝑓1𝑠-model (4.12)–(4.15) which
obey the boundary conditions (4.17)–(4.19) and with initial conditions
satisfying 𝐹(𝜱, ∇𝜱, 𝑣) < ∞ fulfill for all 𝑡 ∈ (0, 𝑇 ] the free energy
dissipation inequality

𝑑
𝑑𝑡

𝐹(𝜱, ∇𝜱, 𝑣)

= ∫
Ω

−2 ̃𝛾(𝜱)∇v ∶ ∇𝑠v − 𝜌3𝑑(𝜙𝑓, 𝜀) − 𝜀
2

∑
𝑖=1

1
Σ𝑖

|∇𝜇𝑖|2 𝑑x

≤ 0.

Proof. We first focus on the Ginzburg–Landau energy of (4.20). With
partial integration and use of the homogeneous boundary conditions
(4.18), (4.19) we find

𝑑
𝑑𝑡

∫
Ω

2
∑
𝑖=1

Σ𝑖 (𝑊dw(𝜙𝑖)
𝜀

+ 1
2

𝜀|∇𝜙𝑖|2) 𝑑x

= ∫
Ω

2
∑
𝑖=1

Σ𝑖 (𝑊 ′
dw(𝜙𝑖)

𝜀
− 𝜀Δ𝜙𝑖) 𝜕𝑡𝜙𝑖 𝑑x

= ∫
Ω

2
∑
𝑖=1

𝜇𝑖𝜕𝑡𝜙𝑖

+
2

∑
𝑖=1

(Σ𝑇Δ𝜙3 + Σ𝑇𝑊 ′
dw(𝜙1) + Σ𝑇𝑊 ′

dw(𝜙1)) 𝜕𝑡𝜙𝑖 𝑑x
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= ∫
Ω

2
∑
𝑖=1

𝜇𝑖𝜕𝑡𝜙𝑖 𝑑x

= ∫
Ω

−
2

∑
𝑖=1

𝜇𝑖∇ ⋅ (𝜙𝑖v + J𝑖) 𝑑x.
(4.21)

We have used the equation for 𝜇𝑖 (4.15) and the definition of 𝑊 in
(4.10) and (4.11) to get to the third line in (4.21). The extra terms
vanish because, by construction, we have 𝜕𝑡𝜙1 + 𝜕𝑡𝜙2 = 0.

Using the same calculation as in (3.61) we find for the kinetic energy
of the fluid phases

𝑑
𝑑𝑡

∫
Ω

1
2

̃𝜌𝑓|v|2 𝑑x

= ∫
Ω

v ⋅ (∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)) − 𝜌3𝑑(𝜙𝑓, 𝜀)v2 + S ⋅ v 𝑑x.
(4.22)

Since ∇ ⋅ (𝜙𝑓v) = 0 with 𝜙𝑓 = 𝜙1 + 𝜙2, the surface tension term S
calculates to

∫
Ω

𝜇1∇ ⋅ (𝜙1v) + 𝜇2∇ ⋅ (𝜙2v) 𝑑x

= ∫
Ω

(−𝜇2∇ ⋅ (𝜙1v) − 𝜇1∇ ⋅ (𝜙2v)) 𝑑x

= ∫
Ω

(−𝜇2∇ ⋅ (𝜙1
𝜙𝑓

𝜙𝑓v) − 𝜇1∇ ⋅ (𝜙2
𝜙𝑓

𝜙𝑓v)) 𝑑x

= ∫
Ω

(−𝜇2𝜙𝑓∇ (𝜙1
𝜙𝑓

) ⋅ v − 𝜇1𝜙𝑓∇ (𝜙2
𝜙𝑓

) ⋅ v) 𝑑x

= ∫
Ω

S ⋅ v 𝑑x.

(4.23)

Finally, we combine (4.21), (4.22) and (4.23) to get

𝑑
𝑑𝑡

𝐹(𝜱, ∇𝜱, 𝑣, 𝑐)
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= 𝑑
𝑑𝑡

∫
Ω

1
2

̃𝜌𝑓|v|2 +
2

∑
𝑖=1

Σ𝑖 (𝑊dw(𝜙𝑖)
𝜀

+ 1
2

𝜀|∇𝜙𝑖|2) 𝑑x

= ∫
Ω

v ⋅ (∇ ⋅ (2 ̃𝛾(𝜱)∇𝑠v)) − 𝜌3𝑑(𝜙𝑓, 𝜀)v2 + S ⋅ v

−
2

∑
𝑖=1

𝜇𝑖∇ ⋅ (𝜙𝑖v + J𝑖) 𝑑x

= ∫
Ω

−2 ̃𝛾(𝜱)∇v ∶ ∇𝑠v − 𝜌3𝑑(𝜙𝑓, 𝜀)v2 +
2

∑
𝑖=1

∇𝜇𝑖 ⋅ J𝑖 𝑑x.

Since ∇v∶∇𝑠v ≥ 0, using the definition of J𝑖 in (4.16), the conclusion
follows.

4.2 The Sharp Interface Limit

In the following we briefly present the formal asymptotic limit of the
𝐷𝐷-2𝑓1𝑠-model for 𝜀 → 0. We use matched asymptotic expansions
to show that the limit is the sharp interface formulation described
in Section 4.1.1. As the arguments are mostly analogous to the
sharp interface limit of the 𝛿-2𝑓1𝑠-model in Section 3.2, we focus on
the differences and additional assumptions needed for the 𝐷𝐷-2𝑓1𝑠-
model. In particular the argumentation at the triple point has to be
adjusted to account for the fact that two of the three interfaces are
stationary.

Let us summarize the assumptions that were already necessary for
the sharp interface limit of the 𝛿-2𝑓1𝑠-model. We choose the scaling
𝛿 = 𝜀/𝐿ref with 𝐿ref = 1 and assume the existence of a classical
solution with finite free energy (4.20). We investigate a regime where
the bulk phases are separated by interfaces that are characterized
by a large gradient in 𝜱. Furthermore, we assume that we can
write the solutions to the 𝐷𝐷-2𝑓1𝑠-model in terms of outer and
inner expansions of the unknowns 𝜱, v, 𝑝, 𝜇1, 𝜇2, and also assume
that 𝜇𝑖 is only of order 𝑂(1). Finally, we assume that there are no
third-phase contributions in the interfacial layers.
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We now need to impose additional constraints on the given solid
distribution 𝜙3(x). Assume that we have a one-parameter family
of solid distributions 𝜙3(x, 𝜀) such that 𝜙3(x, 𝜀) can be written as
outer and inner expansions in powers of 𝜀. The leading order term
of the outer expansion of 𝜙3 is given by the indicator function of
the sub-domain Ω3. We assume that the inner boundary 𝜕Ω3\𝜕Ω is
smooth. The leading order term of the inner expansion of 𝜙3 satisfies
as a compatibility condition the equipartition of energy

𝑊dw(𝜙in
3,0) = 1

2
(𝜕𝑧𝜙in

3,0)2 . (4.24)

With these assumptions, we start by investigating the bulk phases
of the system. Afterwards we investigate the interfaces to recover
the transmission conditions and the triple point to recover Young’s
equation (4.7).

4.2.1 Outer Expansions

Expansion of (4.15), 𝑂(𝜀−1): As we assumed that 𝜙out
3,0 is the indi-

cator function of Ω3 we distinguish the following two cases.

For the case 𝜙out
3,0 = 1, the only solution with finite energy is given by

𝜙out
1,0 = 𝜙out

2,0 = 0. The diverging part ℓ of the double well potential
𝑊dw in (3.20) additionally implies that 𝜙out

1,1 , 𝜙out
2,1 ≥ 0.

For the case 𝜙out
3,0 = 0 a short calculation shows that there are two

stable solutions 𝜱out
0 = (1, 0)⊤ and 𝜱out

0 = (0, 1)⊤. For the first
solution we get the additional restriction 𝜙out

1,1 ≤ 0 and 𝜙out
2,1 ≥ 0.

For the second solution the sign on these restrictions is flipped. We
identify the set where 𝜱out

0 = e𝑖, 𝑖 ∈ {1, 2} with the bulk domain Ω𝑖
in the sharp interface formulation (4.1.1).

Expansion of (4.12), 𝑂(1): Analogous to the 𝛿-2𝑓1𝑠-model we
recover the incompressibility equation (3.1) of the sharp interface
formulation.
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Expansion of (4.13), 𝑂(1): Analogous to the 𝛿-2𝑓1𝑠-model we re-
cover the momentum equation (3.2) of the sharp interface formulation
in Ω1 and Ω2 and the elliptic law for v (3.4) in Ω3.

4.2.2 Inner Expansions, Leading Order

We introduce the three interfaces Γ12, Γ13 and Γ23 through

Γ12(𝑡) = {x ∈ Ω ∶ 𝜙1(𝑡, x) = 𝜙2(𝑡, x), 𝜙1(𝑡, x) > 1/4} ,

Γ𝑖3(𝑡) = {x ∈ Ω ∶ 𝜙3(x) = 1/2, 𝜙𝑖(𝑡, x) > 𝜙(2−𝑖)(𝑡, x)} ,
(4.25)

for 𝑖 ∈ {1, 2}. By our assumption, Γ𝑖𝑗 is a smooth (𝑑−1)-dimensional
manifold embedded in Ω and depending on time. On the other
hand, as 𝜙3 does not depend on time, the total solid interface
Γ3 ∶= Γ13(𝑡) ∪ Γ23(𝑡) does not depend on time. As described in
Section 1.3 we construct inner expansions of the unknowns 𝜱, v, 𝑝,
𝜇1, 𝜇2 for each of the three interfaces Γ12, Γ13 and Γ23.

Expansion of (4.15), 𝑂(𝜀−1): As mentioned at the beginning of
Section 3.2 we assume that there are no third-phase contributions in
the interfacial layers. This means that we assume 𝜙in

𝑘,0 = 0 at the
interface Γ𝑖𝑗, where 𝑘 ∈ {1, 2, 3}, 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗 is the index of the
third phase.

For the fluid–fluid interface Γ12 we can argue exactly as for the
𝛿-2𝑓1𝑠-model in Section 3.2.2 and find that the 𝜙in

1,0 is given implicitly
by

𝑧 = 1
30

( 1
1 − 𝜙in

1,0
− 1

𝜙in
1,0

+ 2 log (
𝜙in

1,0

1 − 𝜙in
1,0

)) . (4.26)

For the fluid–solid interfaces Γ𝑖3 the distribution of Φin
𝑖,0 across the

interface is already fully determined by the given 𝜙in
3,0 and the assump-

tion that there is no third-phase contribution, i.e., 𝜙in
𝑖,0+𝜙in

3,0 = 1. We
nevertheless check that the leading order terms match, as otherwise
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our assumption of no third phase contribution would not be justified.
For 0 ≤ 𝜙in

𝑖,0 ≤ 1 the leading order expansion of (4.15) for 𝜇𝑖 reads

0 = (Σ𝑖 − Σ𝑇) 𝑊 ′
dw(𝜙in

𝑖,0) − Σ𝑖𝜕𝑧𝑧𝜙in
𝑖,0 − Σ𝑇𝜕𝑧𝑧𝜙in

3,0

= (Σ𝑖 − Σ𝑇) (𝑊 ′
dw(𝜙in

𝑖,0) − 𝜕𝑧𝑧𝜙in
𝑖,0) .

(4.27)

Note that with the same arguments as for the fluid–fluid interface
this leads to the same interface shape (4.26). By multiplying (4.27)
with 𝜕𝑧𝜙in

𝑖,0, integrating and using the matching conditions (1.28),
(1.29) we recover the equipartition of energy

𝑊dw(𝜙in
𝑖,0) = 1

2
(𝜕𝑧𝜙in

𝑖,0)2 .

As 𝜙in
𝑖,0 +𝜙in

3,0 = 1 it is also necessary that the equipartition of energy
for 𝜙in

3,0 holds. This is exactly requirement (4.24) we introduced at
the beginning of this section. Indeed, numerical experiments show
that for a general 𝜙in

3,0 not fulfilling (4.24) there are third phase
contributions in the fluid–solid interfaces.

Expansion of (4.12), 𝑂(𝜀−1): Analogous to the 𝛿-2𝑓1𝑠-model we
recover the continuity of vout

0 ⋅ n across the fluid–fluid interface Γ12
and the no-penetration condition vout

0 ⋅ n = 0 at the fluid–solid
interfaces Γ13 and Γ23.

Expansion of (4.13), 𝑂(𝜀−2): Analogous to the 𝛿-2𝑓1𝑠-model we
recover the continuity of vout

0 across all interfaces.

Expansion of (4.14), 𝑂(𝜀−1): We can use the same arguments as
for the 𝛿-2𝑓1𝑠-model, but in a much simpler setting, because there
is no reaction as a right-hand side term. We find as a compatibility
condition the normal velocity of the interface equal to

𝜈 = vout
0 ⋅ n,
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which simplifies to 𝜈 = 0 in case of the fluid–solid interfaces Γ13 and
Γ23. If the compatibility condition is fulfilled, all constant functions
𝜇in

1,0 and 𝜇in
2,0 are solutions to the leading order terms of (4.14).

4.2.3 Inner Expansions, First Order

Expansion of (4.15), 𝑂(1): We only consider the fluid–fluid inter-
face Γ12. For this interface we can argue analogous to the 𝛿-2𝑓1𝑠-
model when investigating the difference 𝜇2 − 𝜇1. We find

𝜇in
2,0 − 𝜇in

1,0 = (Σ2 + Σ1)𝜅 = 𝜎12𝜅. (4.28)

Expansion of (4.13), 𝑂(𝜀−1): We can again use arguments analo-
gous to the 𝛿-2𝑓1𝑠-model, in a simpler version. Note that there is
no reaction term and no modification of the surface tension term S.
For the fluid–fluid interface Γ12 we recover the stress balance (3.7)
of the sharp interface formulation. For the fluid–solid interfaces we
only match the tangential component of the momentum equation,
and we find

0 = J2𝛾𝝉(∇𝑠vout
0 )nK,

which is equal to (4.6) of the sharp interface formulation.

4.2.4 Triple Point Expansions

As a last step we investigate the three-phase contact points. In the
two-dimensional case the three bulk phases meet at triple points,
which we assume to be isolated points. In the three-dimensional
case they meet at curves, called contact lines. In this section we
analyze the two-dimensional case based on the ideas in [Bronsard
and Reitich 1993; Garcke, Nestler, et al. 1998] and recover Young’s
equation (4.7) for the contact angle. For the three-dimensional case
one can follow [Dunbar et al. 2019] and use the arguments of the
two-dimensional case on the plane perpendicular to the contact line.
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For the 𝐷𝐷-2𝑓1𝑠-model this results in Young’s equation (4.7) on
the plane perpendicular to the contact line.

We define the set of triple points as

Γ123(𝑡) = {x ∈ Ω ∶ 𝜱(𝑡, x) = (1/4, 1/4)⊤} .

This implies 𝜙3(x) = 1/2 at the triple points and therefore matches
our definition of the interfaces Γ𝑖𝑗 in (4.25).

For a triple point x̂(𝑡) ∈ Γ123(𝑡) we introduce local coordinates
around ̂x by

y(𝑡, x) = x − x̂(𝑡)
𝜀

.

For a generic scalar variable 𝑢 this transformation yields

∇x𝑢 = 1
𝜀

∇y𝑢 + 𝑂(1), (4.29)

Δx𝑢 = 1
𝜀2 Δy𝑢 + 𝑂(𝜀). (4.30)

We assume that close to the triple point ̂x(𝑡) we can write solutions to
the 𝐷𝐷-2𝑓1𝑠-model (4.12)–(4.15) in terms of triple point expansions
of the form

𝜱tp(𝑡, y) = 𝜱tp
0 (𝑡, y) + 𝜀𝜱tp

1 (𝑡, y) + … ,

and similarly for all other unknowns. The functions 𝜱tp
𝑘 , 𝑘 ∈ ℕ0 do

not depend on 𝜀. Note that the triple point expansion is already
written in the rescaled local coordinates y.

In the triple point ̂x, the three interfaces Γ12, Γ13, Γ23 meet. We
therefore have three additional coordinate systems (𝑧𝑖𝑗, s𝑖𝑗), 𝑖 < 𝑗,
from the inner expansions used in the interfaces. Note that we are
in the two-dimensional case and s𝑖𝑗 is therefore a scalar. We choose
the local parametrization of the interfaces such that 𝑧𝑖𝑗 = 0, s𝑖𝑗 = 0
coincides with ̂x and that s𝑖𝑗 > 0 on the interface Γ𝑖𝑗. Furthermore,
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for the interface Γ𝑖𝑗, 𝑖 < 𝑗, the direction of positive 𝑧𝑖𝑗 is oriented
towards Ω𝑗. Denote by

n𝑖𝑗(𝑡) = 𝜕𝑧x(𝑡, s𝑖𝑗 = 0, 𝑧)∣
𝑧=0

the normal unit vector of Γ𝑖𝑗 at the triple point, and by

𝝉𝑖𝑗(𝑡) = 𝜕sx(𝑡, s, 𝑧𝑖𝑗 = 0)∣
s=0

the tangential vector of Γ𝑖𝑗 pointing away from ̂x. Since we assumed
that the boundary of Ω3 around a triple point is smooth we have

n13 = n23 and 𝝉13 = −𝝉23, (4.31)

see Figure 4.2 for an illustration.

Let 𝑡 be fixed and denote the limit of 𝜱in(𝑡, s𝑖𝑗, 𝑧) for positive s𝑖𝑗 → 0
by 𝜱in(𝑡, 0+, 𝑧). We match the triple point expansions with the inner

Γ12

Γ23

Γ13

𝜕12𝑇

𝜕23𝑇

𝜕13𝑇

n12 𝝉12

n23

𝝉23

n13
𝝉13

𝜼12

𝜼23

𝜼13

Figure 4.2: Vectors at the triple junction.
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expansions at 𝜱in(𝑡, 0+, 𝑧) by the matching conditions

lim
𝜁→∞

𝜱tp
0 (𝑡, 𝜁𝝉𝑖𝑗 + 𝑧n𝑖𝑗) = 𝜱in,𝑖𝑗

0 (𝑡, 0+, 𝑧), (4.32)

lim
𝜁→∞

∇y𝜱tp
0 (𝑡, 𝜁𝝉𝑖𝑗 + 𝑧n𝑖𝑗) = 𝜕𝑧𝜱in,𝑖𝑗

0 (𝑡, 0+, 𝑧) ⊗ n𝑖𝑗, (4.33)

where 𝜱in,𝑖𝑗 is the inner solution on Γ𝑖𝑗. Note that for (4.33) it
is essential that both y and 𝑧 scale the same with 𝜀. A direct
consequence of (4.33) is that, for the directional derivative along a
vector e ∈ ℝ𝑁,

lim
𝜁→∞

𝜕e𝜱tp
0 (𝑡, 𝜁𝝉𝑖𝑗 + 𝑧n𝑖𝑗) = 𝜕𝑧𝜱in,𝑖𝑗

0 (𝑡, 𝑧, 0+)(n𝑖𝑗 ⋅ e). (4.34)

Finally, we introduce an equilateral triangle 𝑇 with center ̂x and
side length 𝑅 = 𝜀1/2. Measured in the coordinate system y, this
triangle has the side length 𝑅y = 𝜀−1/2. The orientation is chosen
such that each side is intersected by exactly one of the interfaces Γ𝑖𝑗.
We denote the side intersecting Γ𝑖𝑗 by 𝜕𝑖𝑗𝑇 and call its outer normal
unit vector 𝜼𝑖𝑗. For an illustration see Figure 4.2.

Expansion of (4.15), 𝑂(𝜀−1): The leading order expansion of (4.15)
for 𝜇𝑖, 𝑖 ∈ {1, 2} reads

0 = 𝜕𝜙𝑖
𝑊(𝜱tp

0 ) − Σ𝑖Δy𝜙tp
𝑖,0 − Σ𝑇Δy𝜙tp

3,0. (4.35)

We have again used the assumption that 𝜇𝑖 is not of order 𝑂(𝜀−1).
We are interested in the change of energy along the solid interface,
i.e., in direction 𝝉13, and therefore calculate

𝜕𝝉13
𝑊(𝜱tp

0 ) =
2

∑
𝑖=1

𝜕𝜙𝑖
𝑊(𝜱tp

0 )𝜕𝝉13
𝜙tp

𝑖,0

=
2

∑
𝑖=1

(Σ𝑖Δy𝜙tp
𝑖,0 + Σ𝑇Δy𝜙tp

3,0) 𝜕𝝉13
𝜙tp

𝑖,0

=
2

∑
𝑖=1

Σ𝑖Δy𝜙tp
𝑖,0𝜕𝝉13

𝜙tp
𝑖,0 − Σ𝑇Δy𝜙tp

3,0𝜕𝝉13
𝜙tp

3,0.

(4.36)
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Here we have used (4.35) to get to the second line, and 𝜕𝝉13
𝜙tp

1,0 +
𝜕𝝉13

𝜙tp
2,0 = −𝜕𝝉13

𝜙tp
3,0 as a consequence of (4.8) to get to the third

line. With the notation Σ̂1 ∶= Σ1, Σ̂2 ∶= Σ2, Σ̂3 ∶= −Σ𝑇, we can
write (4.36) as

𝜕𝝉13
𝑊(𝜱tp

0 ) =
3

∑
𝑘=1

Σ̂𝑘Δy𝜙tp
𝑘,0𝜕𝝉13

𝜙tp
𝑘,0.

We now integrate over 𝑇 and use Green’s first identity to calculate

∫
𝑇

𝜕𝝉13
𝑊(𝜱tp

0 ) 𝑑y =
3

∑
𝑘=1

Σ̂𝑘 ∫
𝑇

Δy𝜙tp
𝑘,0𝜕𝝉13

𝜙tp
𝑘,0 𝑑y

=
3

∑
𝑘=1

Σ̂𝑘 (∫
𝜕𝑇

(∇y𝜙tp
𝑘,0 ⋅ 𝜼) 𝜕𝝉13

𝜙tp
𝑘,0 𝑑𝑆y

− ∫
𝑇

∇y𝜙tp
𝑘,0 ⋅ ∇y (𝜕𝝉13

𝜙tp
𝑘,0) 𝑑y)

=
3

∑
𝑘=1

Σ̂𝑘 (∫
𝜕𝑇

(∇y𝜙tp
𝑘,0 ⋅ 𝜼) 𝜕𝝉13

𝜙tp
𝑘,0 𝑑𝑆y

− ∫
𝑇

1
2

𝜕𝝉13
∣∇y𝜙tp

𝑘,0∣
2

𝑑y) ,

where 𝜼 is the outer normal unit vector of 𝑇. As all integrals over
𝑇 only contain directional derivatives, we can also rewrite them to
integrals over 𝜕𝑇 and get

0 = ∫
𝜕𝑇

𝑊(𝜱tp
0 ) (𝝉13 ⋅ 𝜼) 𝑑𝑆y

+
3

∑
𝑘=1

Σ̂𝑘 (∫
𝜕𝑇

1
2

∣∇y𝜙tp
𝑘,0∣

2
(𝝉13 ⋅ 𝜼) 𝑑𝑆y

− ∫
𝜕𝑇

(∇y𝜙tp
𝑘,0 ⋅ 𝜼) 𝜕𝝉13

𝜙tp
𝑘,0 𝑑𝑆y) .

(4.37)

We can split each integral over the boundary 𝜕𝑇 into integrals over the
three sides 𝜕𝑖𝑗𝑇. As 𝜀 → 0, we have the side length 𝑅y = 𝜀−1/2 → ∞.
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Therefore, we use the matching conditions (4.32), (4.33) and (4.34).

Let us first focus on a single side 𝜕𝑖𝑗𝑇 of the triangle, and only on
the first term on the right-hand side of (4.37). It is easy to see that
the integral exists and is uniformly bounded for 𝑅y → ∞. Using the
matching condition (4.32),

lim
𝑅y→∞

∫
𝜕𝑖𝑗𝑇

𝑊(𝜱tp
0 ) (𝝉13 ⋅ 𝜼𝑖𝑗) 𝑑𝑆y

= 1
𝝉𝑖𝑗 ⋅ 𝜼𝑖𝑗

∫
∞

−∞
𝑊(𝜱in,𝑖𝑗

0 (𝑡, 𝑧, 0+)) (𝝉13 ⋅ 𝜼𝑖𝑗) 𝑑𝑧𝑖𝑗.
(4.38)

Here the factor 1/(𝝉𝑖𝑗 ⋅ 𝜼𝑖𝑗) is introduced through the coordinate
transformation from the arc length 𝑑𝑆y to the coordinate 𝑧𝑖𝑗. With
the matching conditions (4.33) and (4.34), we can use the same
arguments on the other terms of (4.37). For the sum over all sides
of 𝜕𝑇 we get

0 = ∑
𝑖𝑗∈{12,13,23}

1
𝝉𝑖𝑗 ⋅ 𝜼𝑖𝑗

[ ∫
∞

−∞
𝑊(𝜱in,𝑖𝑗

0 ) (𝝉13 ⋅ 𝜼𝑖𝑗) 𝑑𝑧𝑖𝑗

+
3

∑
𝑘=1

Σ̂𝑘 ∫
∞

−∞

1
2

∣𝜕𝑧𝜙in,𝑖𝑗
𝑘 ∣

2
(𝝉13 ⋅ 𝜼𝑖𝑗) 𝑑𝑧𝑖𝑗

−
3

∑
𝑘=1

Σ̂𝑘 ∫
∞

−∞
(𝜕𝑧𝜙in,𝑖𝑗

𝑘 )
2

(n𝑖𝑗 ⋅ 𝜼𝑖𝑗)(n𝑖𝑗 ⋅ 𝝉13) 𝑑𝑧𝑖𝑗].

(4.39)

Recall that we have calculated the exact shape of 𝜙in,𝑖𝑗
𝑘 (𝑧) in the

inner expansions (4.26), and by equipartition of energy (3.79), (4.24)
and construction of 𝑊dw (see (3.80)) we have

∫
∞

−∞
𝑊dw(𝜙in,𝑖𝑗

𝑘 ) 𝑑𝑧𝑖𝑗 = ∫
∞

−∞

1
2

(𝜕𝑧𝜙in,𝑖𝑗
𝑘 )

2
𝑑𝑧𝑖𝑗

= {
1
2 if 𝑘 = 𝑖 or 𝑘 = 𝑗,
0 else.
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Together with the construction of 𝑊 in (4.10) we write (4.39) as

0 = 1
𝝉12 ⋅ 𝜼12

(1
2

(Σ1 + Σ2)(𝝉13 ⋅ 𝜼12) + 1
2

(Σ1 + Σ2)(𝝉13 ⋅ 𝜼12)

− (Σ1 + Σ2)(n12 ⋅ 𝜼12)(n12 ⋅ 𝝉13))

+ 1
𝝉13 ⋅ 𝜼13

(1
2

Σ1(𝝉13 ⋅ 𝜼13) + 1
2

(Σ1 − Σ𝑇)(𝝉13 ⋅ 𝜼13)

− (Σ1 − Σ𝑇)(n13 ⋅ 𝜼13)(n13 ⋅ 𝝉13))

+ 1
𝝉23 ⋅ 𝜼23

(1
2

Σ2(𝝉13 ⋅ 𝜼23) + 1
2

(Σ2 − Σ𝑇)(𝝉13 ⋅ 𝜼23)

− (Σ2 − Σ𝑇)(n23 ⋅ 𝜼23)(n23 ⋅ 𝝉13)).

With n13 ⋅ 𝝉13 = 0, n23 ⋅ 𝝉13 = 0 and 𝝉13 = −𝝉12 this simplifies to

0 =Σ1 + Σ2
𝝉12 ⋅ 𝜼12

((𝝉13 ⋅ 𝜼12) − (n12 ⋅ 𝜼12)(n12 ⋅ 𝝉13))

+ (Σ1 − 1
2

Σ𝑇) − (Σ2 − 1
2

Σ𝑇).

As 𝝉12 and n12 are perpendicular, we have 𝜼12 = (𝝉12 ⋅ 𝜼12)𝝉12 +
(n12 ⋅ 𝜼12)n12, and we can conclude

0 =Σ1 + Σ2
𝝉12 ⋅ 𝜼12

((𝝉13 ⋅ 𝝉12)(𝝉12 ⋅ 𝜼12) + (𝝉13 ⋅ n12)(n12 ⋅ 𝜼12)

− (n12 ⋅ 𝜼12)(n12 ⋅ 𝝉13)) + (Σ1 − 1
2

Σ𝑇) − (Σ2 − 1
2

Σ𝑇)

=(𝝉13 ⋅ 𝝉12)(Σ1 + Σ2) + Σ1 − Σ2,

which is Young’s equation (4.7), as 𝝉13 ⋅ 𝝉12 = cos 𝛽1.
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4.3 Numerical Investigation

In the following, we illustrate the capabilities of 𝐷𝐷-2𝑓1𝑠-model by
a numerical example. We discretize the 𝐷𝐷-2𝑓1𝑠-model analogous
to the discretization of the 𝛿-2𝑓1𝑠-model described in Section 3.3.
We employ a Galerkin FEM scheme, with Taylor–Hood elements
for v and 𝑝, and Lagrange elements of order 1 for 𝜙1 and 𝜇1. We
discretize in time by implicit Euler. Again, the implementation
was done in PDELab [Bastian et al. 2010] using DUNE-ALUGrid
[Alkämper et al. 2016] for adaptive grid generation.

As a numerical example we consider a droplet in the corner of a
solid phase. As boundary conditions, we choose (4.17)–(4.19) for
the left and bottom boundary, and symmetry boundary conditions
for the right and top boundary. The droplet is initialized with 90
degree contact angle to the solid phase (𝜙3, red), see Figure 4.3.
The choice Σ1 = 1, Σ2 = 20 leads to a wetting first fluid phase (𝜙1,
dark blue) with contact angle 𝛽1 = 25.2°, using (4.7). The system
therefore evolves to a stationary state with this contact angle. In the
steady state, we can calculate the capillary pressure as the pressure
difference in the two fluid phases 𝜙1 and 𝜙2.

When we use the 𝛿-2𝑓1𝑠-model in the same setting, the solid phase is
also evolving. This leads to the corner of the solid phase smoothing
out over time. In Figure 4.4 the final state of simulations is compared
between the 𝐷𝐷-2𝑓1𝑠-model and the 𝛿-2𝑓1𝑠-model. For the 𝛿-2𝑓1𝑠-
model we choose Σ1 = 1, Σ2 = 20, Σ3 = 200, resulting in 𝛽1 = 27.3°,
𝛽2 = 155.2° and 𝛽3 = 177.5°, using (3.14). For the comparison, the
reaction terms of the 𝛿-2𝑓1𝑠-model are set to zero, i.e., 𝑅1 = 0.

As an application for the 𝐷𝐷-2𝑓1𝑠-model, we want to predict the
transmissibility of pore throats in a pore network model. A pore
network model resolves the pore-scale of a porous medium in a
simplified form. It consists of an undirected graph depicting the
connectivity of the porous medium. The vertices of the graph are
called pore bodies and contain information about the volume of each
pore. The edges of the graph are called pore throats and contain
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Figure 4.3: Droplet in the corner of a pore throat with square
cross-section. Top left: Initial data, top right: velocity field
for 𝑡 = 0.2, bottom left: 𝑡 = 1 (stationary state), bottom
right: 𝑝𝜙𝑓 in non-dimensional form at 𝑡 = 1.
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Figure 4.4: Droplet in the corner of a pore throat with square
cross-section at 𝑡 = 1. Left: 𝐷𝐷-2𝑓1𝑠-model, right: 𝛿-2𝑓1𝑠-
model.

information about the transmissibility, i.e., the flow resistance. All
degrees of freedom in a pore network model are placed in the pore
bodies. In the case of one-phase flow, only the pressure in each
pore body is unknown, and by predicting the transmissibility with a
Hagen–Poiseuille law one can solve for the pressure in each pore body
and the resulting flow rate through the pore throats. For two-phase
flow, the saturation in each pore body enters as a new unknown,
and a constitutive relation between capillary pressure and saturation
is assumed. We refer to [Weishaupt 2020] for an introduction into
two-phase pore network models.

For two-phase flow and for a general pore throat geometry it is not
straightforward to determine the transmissibility, as it depends on
the distribution of the fluid phases in the pore throat. We assume
that the pore throat geometry and the fluid distribution are constant
in longitudinal direction, and consider therefore only a transversal
cross-section of the pore throat. To determine the transmissibility for
a given saturation, a stationary fluid distribution for this saturation
has to be found. We therefore use the 𝐷𝐷-2𝑓1𝑠-model to find
these stationary fluid distributions. In this context the example in
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Figure 4.3 can be seen as the cross-section of a pore throat.

To obtain the transmissibility we consider the steady state, and solve
(4.13) under the assumption that there is no flow in transversal direc-
tion and the pressure gradient in longitudinal direction is constant.
We obtain the flow profile and can integrate over the transversal
cross-section to obtain a non-dimensional transmissibility.

For this application, the advantage of the 𝐷𝐷-2𝑓1𝑠-model over the
𝛿-2𝑓1𝑠-model is twofold. For one, we have to solve for fewer phase
field variables, as we can use (4.8) to only keep 𝜙1 and 𝜇1 as unknowns.
More importantly, the fact that the solid phase does not evolve in time
means that steady states for different saturations are comparable,
as they have exactly the same solid phase distribution. This allows
us to iterate the example in Figure 4.3 for different saturations to
obtain a relation between capillary pressure and saturation, as well
as a relation between transmissibility and saturation.

While Figure 4.3 shows the simple case of a pore throat with square
cross-section, this approach works for general cross-sections. In
combination with the 𝛿-2𝑓1𝑠-model the precipitation in pore throats
can be predicted, resulting in cross-sections that change over time.
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Upscaling the
Allen–Cahn Model

Using Periodic
Homogenization 5

In this chapter we consider the regularized Allen–Cahn phase field
model from Chapter 2, Equations (2.5) to be defined in a periodic
porous medium. The pore-scale, where grain, mineral and fluid-filled
void space are explicitly separated, is the microscale, and we derive
a macroscale model describing the effective behavior of the system
in Section 5.1. After this we use numerical examples to study the
behavior of the upscaled model parameters in terms of the diffuse
interface parameter in Section 5.2.

5.1 Upscaling

We consider a domain 𝒟 containing small, periodically distributed
grains, as sketched in Figure 5.1. In a porous medium, 𝒟 represents
the union of the void space, mineral space and the grain space, where
the grains are considered as perforations. We refer to the union of
the void space and mineral space as the pore space. The grains are
impermeable for fluid and no reactions take place there. Hence, the
phase field model (2.5) is not defined in the grain space but only
in the pore space of 𝒟. The grains do not change with time, while
the moving boundary between mineral and fluid, located in the pore
space of 𝒟, is still handled by the phase field equation as a diffuse
interface. We assume that the mineral precipitates on the boundary
of the perforations or at already existing minerals, and not inside the
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void space. Another important assumption is that the void space in
𝒟 is connected and that the mineral never grows in such a way that
the pore space is clogged.

Figure 5.1: Structure of porous medium. Fluid-filled void space
is marked with white, mineral is dark gray, and non-reactive
grain is light gray. The pore space is the union of the void
space and mineral space.

The porous medium 𝒟 contains many periodically repeating grains.
This means that the phase field model (2.5) is defined on a domain
of high complexity. In such cases, the averaged behavior of the
system is of primary interest. In consequence, we apply periodic
homogenization techniques to find effective equations valid at a larger
scale, where the microscale oscillations are no longer visible, but their
effect is still taken into account. This is done by identifying a scale
separation and applying asymptotic expansions on non-dimensional
versions of the model equations, see Section 1.4 for an overview.

When non-dimensionalizing the model (2.5), one must address the
size of the appearing non-dimensional numbers (e.g. Reynolds, Péclet,
Cahn and Damköhler). In particular, their order of magnitude
determines the regime we consider. In the following, we consider
a regime in the range of Darcy’s law [Hornung 1996] and where
time scales for macroscale solute diffusion, advection and reaction
are approximately the same size. As we show in the following, this
leads to diffusion dominating at the pore-scale. Finally, we want
the phase field to appear as a local, microscale variable, and we
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address the choices necessary to achieve so. Note that other choices
for the non-dimensional numbers are possible, but result in different
upscaled models, as discussed in Section 1.4.

5.1.1 The Scale Separation

In the dimensional setting we let ℓ be a typical length scale at the
microscale (i.e., the pore-scale), e.g., the width of the right-most
box in Figure 5.1) and 𝐿 a typical length scale at the macroscale,
e.g. the width of the domain 𝒟 or of the Darcy-scale, as commonly
made for homogenization [Davit et al. 2013; Hornung 1996]. With
this we define 𝛽 = ℓ/𝐿, reflecting the ratio between the micro- and
macroscale and hence giving us the scale separation. We assume that
ℓ is much smaller than 𝐿, hence 𝛽 is a small number. We mention
that in [van Duijn and Pop 2004, Remark 1.2] a different definition
of the scale separation is discussed, and how this leads to the same
non-dimensional model is then shown.

A third, even smaller length scale is given by the diffuse interface
width 𝜀. As the interfaces have to be resolved on the microscale, we
require 𝜀 to be much smaller than ℓ. We define the ratio ̅𝜀 = 𝜀/ℓ to
express the interface width in comparison to the microscale. Overall,
we obtain the three length scales 𝐿 ≫ ℓ ≫ 𝜀.

In what follows we rewrite the model in non-dimensional form. In
doing so we introduce a local unit cell 𝑌 = [0, 1]𝑁, as seen in
Figure 5.2, where 𝑁 ∈ {2, 3}, depending on spatial dimension, and
we let the local variable y ∈ (0, 1)𝑁 describe points within 𝑌. The
local cell consists of the fluid part 𝐹 and mineral part 𝑀, and the
grain part 𝐺 as sketched in Figure 5.2. Hence, locally the phase
field model is defined in the pore space 𝑃 = 𝐹 ∪ 𝑀, while 𝐺 defines
the perforation. The boundary Γ𝑃 defines the (stationary) internal
boundary between perforation and the domain for the phase field
model. The boundary 𝜕𝑌 denotes the outer boundary of the unit cell
𝑌. At this boundary we will later apply periodic boundary conditions
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allowing to decouple the unit cells from each other. However, when
referring to internal boundaries, the boundary Γ𝑃 is meant.

n𝑃

𝐹
𝑀

𝐺

Figure 5.2: Local pore 𝑌 = [0, 1]𝑁. The fluid part (white) is 𝐹,
mineral part (dark gray) is 𝑀 and grain part (light gray) is
𝐺, along with a normal vector n𝑃 at the internal boundary
Γ𝑃. The outer boundary of the local pore, 𝜕𝑌, is marked with
black.

To distinguish between the two scales in the model we use x as the
variable at the macroscale, which is then connected to the local,
microscale variable y through y = 𝛽−1x. This can be interpreted
as x only seeing the macroscale behavior, while the zoomed-in y
sees the microscale rapid changes in a single cell. Hence, for each
macroscale point x, we can identify a unit cell, with its own local
variable y.

With this we have that the perforated domain of the phase field
model is the union of all the local pores 𝑃, scaled by 𝛽. This means
that the domain depends on 𝛽 and can be written as

Ω𝛽 = ∪𝑤∈𝑊𝒟
{𝛽(𝑤 + 𝑃)},

where 𝑊𝒟 is a subset of ℤ𝑁 satisfying 𝒟 = ∪𝑤∈𝑊𝒟
{𝛽(𝑤+𝑌 )}, which

is the complete (non-perforated) medium domain seen to the left in
Figure 5.1. We use 𝛽 as a superscript to indicate dependence on 𝛽.
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The union of all internal boundaries Γ𝑃 is denoted by

Γ𝛽 = ∪𝑤∈𝑊𝒟
{𝛽(𝑤 + Γ𝑃)}.

5.1.2 Non-Dimensional Model Equations

For identifying which terms are dominating in the model and hence
are important for the upscaling, we first non-dimensionalize the model
equations (2.5). The assumptions made below on the typical flow
rate, viscosity and pressure difference, ensure that we are in the range
of Darcy’s law, which means that at the macroscale the conservation
of momentum equation (2.5c) becomes a Darcy-like law. Also, we
ensure that the diffuse interface (i.e., the transition between mineral
and fluid) stays within a local pore. Non-dimensional variables
and quantities are denoted with a hat and are defined as shown in
Table 5.1

Note the superscript 𝛽 for the variables having a highly oscillatory
behavior. The relations between the reference quantities are given
through several non-dimensional numbers. The size of these non-
dimensional numbers describes which regime we consider. As already
mentioned, we are here interested in the regime where Darcy’s law is
valid and where solute advection, diffusion and reaction time scales
are about the same order of magnitude. Darcy’s law is valid when
fluid flow is laminar and when the pressure drop dominates the flow
behavior. This corresponds to the Reynolds and Euler numbers
being

Re = 𝜌ref𝑣ref𝐿/𝛾ref = 𝑂(𝛽0), Eu = 𝑝ref/𝑣2
ref𝜌ref = 𝑂(𝛽−2),

respectively. Different choices can e.g. lead to the Forchheimer law
[Chen et al. 2001]. The observation time scale 𝑡ref is set to be equal
to the time scale of solute advection, 𝑡adv = 𝐿/𝑣ref. With this we
have 𝑣ref = 𝑥ref/𝑡ref as shown in Table 5.1. Diffusion and reaction
time scales are identified as 𝑡diff = 𝐿2/𝐷ref and 𝑡react = 𝑐refℓ/𝑘ref,
respectively. These time scales are assumed to be about the same
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Table 5.1: Variables, reference values and non-dimensional quan-
tities for the non-dimensionalization.

Variable Reference value Non-
dimensional
variable

time 𝑡ref ̂𝑡 = 𝑡/𝑡ref
space 𝑥ref = 𝐿, ̂𝑥 = 𝑥/𝑥ref

𝑦ref = ℓ, ̂𝑦 = 𝑦/𝑦ref
𝜀ref = 𝜀 ̂𝜀 = 1

velocity 𝑣ref = 𝑥ref/𝑡ref ̂v𝛽 = v/𝑣ref
density 𝜌ref ̂𝜌1 = 𝜌1/𝜌ref
viscosity 𝛾ref ̂𝛾𝑓 = 𝛾𝑓/𝛾ref
pressure 𝑝ref ̂𝑝𝛽 = 𝑝/𝑝ref
momentum dissipation rate 𝐾ref 𝐾̂ = 𝐾/𝐾ref
molar concentration 𝑐ref ̂𝑐𝛽 = 𝑐/𝑐ref

̂𝑐∗ = 𝑐∗/𝑐ref
diffusion coefficient 𝐷ref 𝐷̂ = 𝐷/𝐷ref
reaction rate 𝑘ref 𝑘̂ = 𝑘/𝑘ref
Allen–Cahn mobility 𝛼ref ̂𝛼 = 𝛼/𝛼ref

as the advection time scale, meaning that advection, diffusion and
reaction are equally important, which corresponds to the Péclet and
Damköhler number being

Pe = 𝑡diff/𝑡adv = 𝑂(𝛽0), Da = 𝑡adv/𝑡react = 𝑂(𝛽0),

respectively. Upscaled models have also been derived for other
regimes w.r.t. the Péclet and the Damköhler numbers by employing
either homogenization [Allaire and Hutridurga 2012; Bringedal, Berre,
et al. 2016b; Choquet and Mikelić 2009; Kumar, van Noorden, et al.
2011; Mikelić, Devigne, et al. 2006; van Duijn, Mikelić, et al. 2008]
or volume averaging techniques [Wood et al. 2011; Wood 2007].

For reference quantities and parameters affecting the phase-field
variable, we assume that the diffuse interface width is proportional
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to the pore size ℓ by the constant factor ̅𝜀 = 𝜀/ℓ. In particular, ̅𝜀
should be independent of 𝛽. This corresponds to the Cahn number
being

Ca = 𝜀ref/𝐿 = 𝛽 ̅𝜀.

This way, the interface width is small relative to the pore size, but
remains a microscale quantity without approaching its sharp-interface
limit as 𝛽 approaches zero. Similar choices are made in the upscaling
of the phase field models found in [Daly and Roose 2015; Metzger
and Knabner 2021; Redeker et al. 2016], while an interface width
that is large compared to the pore size is upscaled in [Schmuck et al.
2013; Schmuck et al. 2012]. In the latter two papers, the phase field
appears as a macroscale variable in the upscaled model.

The microscale diffusive time scale of the phase field, i.e., 𝑡diff,𝛼 =
ℓ2/𝛼ref, is chosen to be comparable with the reactive time scale, but
where ̂𝛼 is still allowed to be small but independent of 𝛽 (i.e., 𝑂(𝛽0)).
Hence, the diffusive Damköhler number of the phase field is

Da𝐴𝐶 = 𝑡diff,𝛼/𝑡react = 𝑂(𝛽0).

This choice supports the phase-field variable as a microscale variable,
without affecting the sharp-interface limit as 𝛽 approaches zero.
Finally, the reference value 𝐾ref is chosen in relation to the other
flow-related reference values to ensure low velocities in the diffuse
transition zone as 𝛽 approaches zero. Interpreting 𝐾ref as viscosity
divided by a slip length, this corresponds to the Navier number
being

Na = ℓ𝑠/𝐿 = 𝑂(𝛽),

where ℓ𝑠 = 𝛾ref/𝐾ref is the associated slip length.

For readability, in the following we let the non-dimensional numbers
that are equal to 𝑂(𝛽𝑘) be exactly equal to 𝛽𝑘, but other choices for
the proportionality constants are straightforward. Hence, we now
have that Re = 1, Eu = 𝛽−2, etc. This corresponds to letting 𝛾ref =
𝜌ref𝐿𝑣ref and 𝑝ref = 𝑣2

ref𝜌ref𝐿2/ℓ2. From the Péclet and Damköhler
numbers we get 𝑘ref = 𝑐refℓ/𝑡ref and 𝐷ref = 𝐿2/𝑡ref. With this
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choice of 𝑘ref, the non-dimensional reaction rate can be defined as
̂𝑟( ̂𝑐) = 𝑘̂( ̂𝑐2/ ̂𝑐2

eq −1). Da𝐴𝐶 = 1 corresponds to 𝛼ref = ℓ2/𝑡ref. Finally,
Na = 𝛽 means that 𝐾ref = 𝜌ref𝑣ref𝐿/ℓ.

Table 5.2 summarizes the choices made in the non-dimensionalization.

Table 5.2: Non-dimensional quantities and their relation to the
upscaling parameter 𝛽.

Dimensionless number Definition Size w.r.t. 𝛽
Scale separation 𝛽 = ℓ/𝐿 𝛽
Reynolds number Re = 𝜌ref𝑣ref𝐿/𝛾ref 𝛽0

Euler number Eu = 𝑝ref/𝑣2
ref𝜌ref 𝛽−2

Péclet number Pe = 𝐿𝑣ref/𝐷ref 𝛽0

Damköhler number Da = 𝑘ref𝐿/𝑐ref𝑣refℓ 𝛽0

Cahn number Ca = 𝜀ref/𝐿 𝛽
Phase field Damköhler
number

Da𝐴𝐶 = 𝑘refℓ/𝛼ref𝑐ref 𝛽0

Navier number Na = 𝛾ref/𝐾ref𝐿 𝛽

Remark 5.1: The (non-dimensional) diffuse-interface width ̅𝜀, phase-
field mobility ̂𝛼 and regularization parameter 𝛿 are all small, positive
numbers that are independent of 𝛽. That means, they remain fixed
as 𝛽 → 0 in the following section. These three numbers affect the
behavior of the phase field model. In particular, ̂𝜀 is the microscale
diffuse interface width, ̂𝛼 dictates the equilibration speed of the diffuse
interface, while 𝛿 assures the model not being degenerate. These
numbers are chosen small in the numerical examples, but do not rely
on any internal ordering nor depend on each other.

Since from now on we only use non-dimensional variables, we skip
the hat on all variables. With this, the dimensionless model reads in
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Ω𝛽

̅𝜀2𝜕𝑡𝜙𝛽 + 𝛼𝑊 ′(𝜙𝛽) = 𝛽2𝛼 ̅𝜀2∇2𝜙𝛽 − 4 ̅𝜀𝜙𝛽(1 − 𝜙𝛽) 1
𝑐∗ 𝑟(𝑐𝛽),

(5.1a)
∇ ⋅ ((𝜙𝛽 + 𝛿)v𝛽) = 0, (5.1b)

𝛽2𝜌1(𝜕𝑡((𝜙𝛽 + 𝛿)v𝛽) − 1
2

v𝛽𝜕𝑡𝜙𝛽 + ∇ ⋅ ((𝜙𝛽 + 𝛿)v𝛽 ⊗ v𝛽))

= −(𝜙𝛽 + 𝛿)∇𝑝𝛽 + 𝛽2𝛾𝑓(𝜙𝛽 + 𝛿)∇2((𝜙𝛽 + 𝛿)v𝛽) − 𝐾
̅𝜀
(1 − 𝜙𝛽)𝑛

𝜙𝛽 + 𝑛
v𝛽,

(5.1c)
𝜕𝑡((𝜙𝛽 + 𝛿)(𝑐𝛽 − 𝑐∗)) + ∇ ⋅ ((𝜙𝛽 + 𝛿)v𝛽𝑐𝛽) = 𝐷∇ ⋅ ((𝜙𝛽 + 𝛿)∇𝑐𝛽),

(5.1d)

with boundary conditions on Γ𝛽 given by

∇𝜙𝛽 ⋅ n𝛽 = 0, (5.1e)
(𝜙𝛽 + 𝛿)∇𝑐𝛽 ⋅ n𝛽 = 0, (5.1f)

v𝛽 = 0. (5.1g)

Remark 5.2: Note that the analysis below remains unchanged if
𝛿 = 0, when clogging is not considered. In other words, including
an 𝛽-independent regularization parameter 𝛿 does not affect the
upscaling. The presence of 𝛿 > 0 ensures that the resulting model is
not degenerate, which is important for the numerical examples.

5.1.3 The Formal Asymptotic Expansions

We apply the homogenization ansatz, namely we assume that the
unknowns can be written as a series expansion in terms of 𝛽 with
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explicit dependence on the micro- and macroscale variables. For the
phase field 𝜙𝛽 this reads

𝜙𝛽(𝑡, x) = 𝜙0(𝑡, x, y) + 𝛽𝜙1(𝑡, x, y) + 𝛽2𝜙2(𝑡, x, y) + … , (5.2)

where the functions 𝜙𝑖(𝑡, x, y) are 𝑌-periodic in y. Similar expansions
are assumed for all dependent variables. The introduction of the
microscale variable y is an important aspect: While the 𝜙𝛽 needs
to resolve both the microscale and macroscale behavior, we assume
that the functions in the series expansion can separate between slow
variability through x and fast variability through y. Further, the
series expansion allows to capture the dominating behavior in 𝜙0,
while lower order behavior is captured through the subsequent terms.
Also note that macroscale x is defined in the entire (non-perforated)
domain 𝒟, while y is defined locally in a pore 𝑃.

As y is a local variable behaving like y = 𝛽−1x, the spatial derivatives
need to be rewritten accordingly. Hence, for a generic variable 𝑣 one
has

∇𝑣(x, y) = ∇x𝑣(x, y) + 1
𝛽

∇y𝑣(x, y), (5.3)

where ∇x and ∇y are the gradients w.r.t. x and y, respectively. We
insert the asymptotic expansions (5.2) and the rescaled derivatives
(5.3) into the model equations (5.1), and equate terms of same
order with respect to 𝛽 to isolate the behavior of the system on
different scales. In the regularized equations, the term 𝜙0 +𝛿 appears
frequently, and we use the notation 𝜙𝛿

0 = 𝜙0 + 𝛿 in this case. Note
that 𝜙𝛿

0 > 0.

5.1.3.1 Phase Field Equation

Equating the dominating 𝑂(1) terms in the phase field equation
(5.1a), gives

̅𝜀2𝜕𝑡𝜙0 + 𝛼𝑊 ′(𝜙0) = 𝛼 ̅𝜀2∇2
y𝜙0 − 4 ̅𝜀𝜙0(1 − 𝜙0) 1

𝑐∗ 𝑟(𝑐0).
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The dominating term of the corresponding boundary condition (5.1e)
gives ∇y𝜙0 ⋅ n𝑃 = 0. Observe that the above equation is similar
to the original (5.1a), but involves only spatial derivatives w.r.t. y.
Although 𝜙0 still depends on x, x only appears as a parameter as
no derivatives w.r.t. x are involved. Recalling the 𝑌-periodicity in y,
𝜙0 solves the following cell problem for the phase field:

̅𝜀2𝜕𝑡𝜙0 + 𝛼𝑊 ′(𝜙0) = 𝛼 ̅𝜀2∇2
y𝜙0 − 4 ̅𝜀𝜙0(1 − 𝜙0) 1

𝑐∗ 𝑟(𝑐0) in 𝑃 ,

∇y𝜙0 ⋅ n𝑃 = 0 on Γ𝑃, (5.4)
Periodicity in y across 𝜕𝑌 .

These cell problems are defined for each macroscale x, meaning
thus for each pore as in Figure 5.2. However, the cell problems are
decoupled locally due to the periodicity requirement.

5.1.3.2 Mass Conservation Equation

The dominating 𝑂(𝛽−1) term in (5.1b) gives

∇y ⋅ (𝜙𝛿
0v0) = 0 in 𝑃 , (5.5)

which is needed in the derivation for the momentum and ion conser-
vation equations. Next, the 𝑂(1) terms provide

∇x ⋅ (𝜙𝛿
0v0) + ∇y ⋅ (𝜙𝛿

0v1 + 𝜙1v0) = 0.

Integrating w.r.t. y over 𝑃, applying the Gauss theorem and the
boundary conditions v0 = v1 = 0 on Γ𝑃 together with periodicity,
one gets

∇x ⋅ (𝜙𝛿
0v0) = 0 in 𝒟. (5.6)

The overline-notation indicates a quantity averaged over the mi-
croscale. Formally, one can extend the quantities defined in the
pore space 𝑃 by 0 inside the perforations 𝐺, allowing for an aver-
age over the entire cell 𝑌. For a scalar variable 𝑣(𝑡, x, y) we define
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𝑣(𝑡, x) = 1
|𝑌 | ∫

𝑌
𝑣(𝑡, x, y)𝑑y = ∫

𝑃
𝑣(𝑡, x, y)𝑑y. Note that |𝑌 |, the vol-

ume of 𝑌, is 1. In this way, the average of the highest order term of
the phase field, 𝜙0(𝑡, x), corresponds to the porosity at time 𝑡 at the
macroscale location x.

5.1.3.3 Momentum Conservation Equation

The dominating 𝑂(𝛽−1) term in (5.1c) yields

𝜙𝛿
0∇y𝑝0 = 0,

meaning that 𝑝0 = 𝑝0(𝑡, x) is independent of y. The 𝑂(1) terms
give

𝜙𝛿
0(∇x𝑝0 + ∇y𝑝1) = 𝛾𝑓𝜙𝛿

0∇2
y(𝜙𝛿

0v0) − 𝐾
̅𝜀
(1 − 𝜙0)𝑛

𝜙0 + 𝑛
v0. (5.7)

We use the linearity of the equation and determine 𝑝1 and v0 in
terms of (the gradient of) 𝑝0. With Π𝑗(𝑡, x, y) and w𝑗(𝑡, x, y) solving
the cell problems

𝜙𝛿
0(e𝑗 + ∇yΠ𝑗) + 𝛾𝑓𝜙𝛿

0∇2
y(𝜙𝛿

0w𝑗) = 𝐾
̅𝜀
(1 − 𝜙0)𝑛

𝜙0 + 𝑛
w𝑗 in 𝑃 ,

∇y ⋅ (𝜙𝛿
0w𝑗) = 0 in 𝑃 ,(5.8)

w𝑗 = 0 on Γ𝑃,
Periodicity in y across 𝜕𝑌 , 𝑗 ∈ {1, … , 𝑁},

we observe that

𝑝1(𝑡, x, y) =
𝑁

∑
𝑗=1

Π𝑗(𝑡, x, y)𝜕𝑥𝑗
𝑝0(𝑡, x),

v0(𝑡, x, y) = −
𝑁

∑
𝑗=1

w𝑗(𝑡, x, y)𝜕𝑥𝑗
𝑝0(𝑡, x),

now fulfill (5.5) and (5.7). The boundary condition for w𝑗 on Γ𝑃
follows from v0 = 0 on Γ𝑃. Note that the cell problem is solved in y
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for a fixed x. Hence, as with the phase field cell problem, one can
solve for single pores independently.

Multiplying with 𝜙𝛿
0 in the last equality and averaging over 𝑌 gives

𝜙𝛿
0v0 = −𝒦∇x𝑝0 in 𝒟, (5.9)

where the components of the permeability tensor 𝒦(𝑡, x) are given
by

𝑘𝑖𝑗(𝑡, x) = ∫
𝑃

𝜙𝛿
0𝑤𝑗

𝑖𝑑y, with 𝑖, 𝑗 ∈ {1, … , 𝑁}.

Here, 𝑤𝑗
𝑖 are the components of w𝑗, which are the solutions of the

cell problems (5.8) with the continuous extension w𝑗 = 0 inside the
grain.

5.1.3.4 Ion Conservation Equation

The dominating 𝑂(𝛽−2) term from the ion conservation equation
(5.1d) and dominating 𝑂(𝛽−1) term from the corresponding boundary
condition (5.1f) give

∇y ⋅ (𝜙𝛿
0∇y𝑐0) = 0 in 𝑃 ,

𝜙𝛿
0∇y𝑐0 ⋅ n𝑃 = 0 on Γ𝑃,

along with periodicity in y. This implies that 𝑐0 = 𝑐0(𝑡, x) is
independent of y.

Further, the 𝑂(𝛽−1) terms from (5.1d) and 𝑂(1) terms from (5.1f)
give

∇y ⋅ (𝜙𝛿
0(∇x𝑐0 + ∇y𝑐1)) = 0 in 𝑃 ,

𝜙𝛿
0(∇x𝑐0 + ∇y𝑐1) ⋅ n𝑃 = 0 on Γ𝑃,

where we used (5.5) for the convective term. We exploit again the
linearity of the problem and formulate 𝑐1(𝑡, x, y) in terms of (the
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derivatives of) 𝑐0(𝑡, x). We let the weight functions 𝜔𝑗(𝑡, x, y) solve
the cell problems

∇y ⋅ (𝜙𝛿
0(∇y𝜔𝑗 + e𝑗)) = 0 in 𝑃 ,

𝜙𝛿
0(∇y𝜔𝑗 + e𝑗) ⋅ n𝑃 = 0 on Γ𝑃, (5.10)

Periodicity in y across 𝜕𝑌 , 𝑗 ∈ {1, … , 𝑁},

As earlier, the cell problems are solved in y for a fixed x. Then, for
an arbitrary ̃𝑐1 = ̃𝑐1(𝑡, x) we obtain that

𝑐1(𝑡, x, y) = ̃𝑐1(𝑡, x) +
𝑁

∑
𝑗=1

𝜔𝑗(𝑡, x, y)𝜕𝑥𝑗
𝑐0(𝑡, x).

As follows from (5.11) below, only ∇y𝑐1 is needed for obtaining
the upscaled model, therefore the function ̃𝑐1 plays no role in the
upscaling, and it is not necessary to specify it.

The 𝑂(1) terms from (5.1d) and 𝑂(𝛽) terms from (5.1f) give

𝜕𝑡(𝜙𝛿
0(𝑐0 − 𝑐∗)) + ∇x ⋅ (𝜙𝛿

0v0𝑐0) + ∇y ⋅ A
= 𝐷(∇y ⋅ B + ∇x ⋅ (𝜙𝛿

0(∇x𝑐0 + ∇y𝑐1)) in 𝒟 × 𝑃, (5.11)
B ⋅ n𝑃 = 0 on Γ𝑃,

where A = 𝜙1v0𝑐0 + 𝜙𝛿
0v1𝑐0 + 𝜙𝛿

0v0𝑐1 and B = 𝜙𝛿
0∇x𝑐1 + 𝜙𝛿

0∇y𝑐2 +
𝜙1∇x𝑐0 + 𝜙1∇y𝑐1. The above equation contains derivates in both x
and y. To find the upscaled model we integrate in y over the domain
𝑃, apply Gauss’ theorem in y, use the boundary condition on Γ𝑃 and
the periodicity requirement to remove the ∇y ⋅ A and ∇y ⋅ B terms.
For the velocity terms in A, we also apply the boundary condition
(5.1g), which gives v0 = v1 = 0 on Γ𝑃. This leads to the upscaled
reaction-advection-diffusion equation

𝜕𝑡(𝜙𝛿
0(𝑐0 − 𝑐∗)) + ∇x ⋅ (𝜙𝛿

0v0𝑐0) = 𝐷∇x ⋅ (𝒜∇x𝑐0) in 𝒟. (5.12)
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The component of the matrix 𝒜(𝑡, x) are

𝑎𝑖𝑗(𝑡, x) = ∫
𝑃

𝜙𝛿
0(𝛿𝑖𝑗 + 𝜕𝑦𝑖

𝜔𝑗)𝑑y, with 𝑖, 𝑗 ∈ {1, … , 𝑁},

where 𝜔𝑗 is the solution of the cell problem (5.10). Hence, the
upscaled ion conservation equation (5.12) is to be solved for x ∈ 𝒟
only, but receiving information from the microscale y through the
effective diffusion matrix and the effective velocity.

5.1.4 The Upscaled Allen–Cahn–Navier–Stokes Model

To summarize, the upscaled system of equations consist of the three
equations (5.6), (5.9) and (5.12) on the macroscale, for the unknowns
𝜙v0(𝑡, x), 𝑝0(𝑡, x) and 𝑐0(𝑡, x). The upscaled system is completed
by three supplementary cell problems (5.4), (5.8) and (5.10) to be
solved locally in each single pore, providing effective properties for
the upscaled system.

The regularization 𝛿 was kept throughout the upscaling procedure
for consistency. We introduced this regularization for avoiding a
degeneracy in the system, which would create difficulties in the
numerical implementations. For the upscaled model, these difficulties
are encountered in the cell problems. Hence, we only consider 𝜙𝛿

0
in the effective properties and set 𝛿 = 0 in (5.6), (5.9) and (5.12).
Then, for macroscale x ∈ 𝒟, and for 𝑡 > 0,

∇x ⋅ (𝜙0v0) = 0 in 𝒟,
𝜙0v0 = −𝒦∇x𝑝0 in 𝒟,

𝜕𝑡(𝜙0(𝑐0 − 𝑐∗)) + ∇x ⋅ (𝜙0v0𝑐0) = 𝐷∇x ⋅ (𝒜∇x𝑐0) in 𝒟,

where the phase field 𝜙0(𝑡, x, y) is updated locally in each pore by
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solving

̅𝜀2𝜕𝑡𝜙0 + 𝛼𝑊 ′(𝜙0) = 𝛼 ̅𝜀2∇2
y𝜙0 − 4 ̅𝜀𝜙0(1 − 𝜙0) 1

𝑐∗ 𝑟(𝑐0) in 𝑃 ,

∇y𝜙0 ⋅ n𝑃 = 0 on Γ𝑃,

for all x ∈ 𝒟 and 𝑡 > 0. The effective matrices 𝒦(𝑡, x) and 𝒜(𝑡, x)
are found through

𝑘𝑖𝑗(𝑡, x) = ∫
𝑃

𝜙𝛿
0𝑤𝑗

𝑖𝑑y, where

𝜙𝛿
0(e𝑗 + ∇yΠ𝑗) + 𝛾𝑓𝜙𝛿

0∇2
y(𝜙𝛿

0w𝑗) = 𝐾
̅𝜀
(1 − 𝜙0)𝑛

𝜙0 + 𝑛
w𝑗 in 𝑃 ,

∇y ⋅ (𝜙𝛿
0w𝑗) = 0 in 𝑃 ,

w𝑗 = 0 on Γ𝑃,

and

𝑎𝑖𝑗(𝑡, x) = ∫
𝑃

𝜙𝛿
0(𝛿𝑖𝑗 + 𝜕𝑦𝑖

𝜔𝑗)𝑑y, where

∇y ⋅ (𝜙𝛿
0(∇y𝜔𝑗 + e𝑗) = 0 in 𝑃 ,

𝜙𝛿
0(∇y𝜔𝑗 + e𝑗) ⋅ n𝑃 = 0 on Γ𝑃,

for 𝑖, 𝑗 ∈ {1, … , 𝑁}. The unknowns w𝑗(𝑡, x, y), Π𝑗(𝑡, x, y) and
𝜔𝑗(𝑡, x, y) fulfill periodicity requirements in y across 𝜕𝑌.

5.2 Numerical Investigation for the Upscaled
Model

To illustrate the behavior of the phase field model and its dependence
on the diffuse interface width and on the upscaling parameter, we
solve the cell problems for various choices of ̅𝜀 and compare to the
corresponding sharp-interface solution, showing how the effective
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ion diffusivity and the flow permeability depend on the width of the
diffuse interface. Note that in all examples we solve the corresponding
non-dimensional model and that all specified parameters are also
non-dimensional.

5.2.1 Solutions to Cell Problems

For sharp-interface models, cell problems for flow and diffusion using
a level set formulation have been derived in [Bringedal, Berre, et
al. 2016a; van Noorden 2009a]. Note that in both formulations,
the local reaction rate is uniform inside each pore as the local ion
concentration is constant (cf. Section 5.1.3.4). Hence, if the minerals
are initially shaped as circles (or as cylinders), the mineral layer
evolves in a radially symmetric manner and the mineral remains
a circle (or cylinder), see [van Noorden 2009a]. Hence, the level
set formulation can be rewritten into an equation for the radius
𝑅(𝑡, x) of the solid (grain and mineral), where the cell problems
depend on 𝑅(𝑡, x) [Bringedal and Kumar 2017; van Noorden 2009a].
In the radially symmetric case, the effective ion diffusivity and the
permeability are scalar quantities.

We adopt a similar approach here, by solving the cell problems (5.8)
and (5.10) to determine the effective permeability and ion diffusivity
by assuming that the phase field has a smooth transition (of 𝑂( ̅𝜀))
at some distance 𝑅 from the center of the cell. We do not attempt
to determine permeability and diffusivity curves as functions of 𝑅 as
in [Bringedal and Kumar 2017; van Noorden 2009a] (see e.g. Figure
3 in [van Noorden 2009a]), but instead choose some values of 𝑅 and
investigate the behavior as we let the diffuse interface width ̅𝜀 vary.

The cell problems (5.8) and (5.10) are discretized using a control
volume method on a staggered Cartesian grid as in Section 2.3, where
the cell problem unknowns 𝜔𝑗 and Π𝑗 are defined in the centers of
the control volumes, and the vectors w𝑗 are at the edges. The grid is
uniform and quadratic with 800 grid cells in each direction, so that
we have at least 8 grid cells through the diffuse transition zone for
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the smallest ̅𝜀. Note that the size of the non-reactive part 𝐺 does
not affect the resulting values of the effective variables as long 𝐺 is
well within the mineral phase. For all the cell problems we use a
regularization of 𝛿 = 10−8.

Remark 5.3: Specifying a phase field corresponding to a circular
mineral with radius 𝑅 is not straightforward as no analytical expres-
sion exist. An approximate phase field can be found by assuming
radial symmetry and considering the reaction-free version of (5.4)
in polar coordinates. We seek 𝜙(𝑡, 𝑟) solving

̅𝜀2𝜕𝑡𝜙 + 𝛼𝑊 ′(𝜙) = 𝛼 ̅𝜀2 1
𝑟

𝜕𝑟(𝑟𝜕𝑟𝜙). (5.13)

Because of the non-conservative property of the Allen–Cahn equation,
a radially symmetric phase field drop always shrinks towards the
center due to curvature effects. Using this, we consider the initial
condition

𝜙(𝑡 = 0, 𝑟) = 1
1 + exp(−4(𝑟 − 𝑅0)/ ̅𝜀)

, (5.14)

where 𝑅0 is larger than the radius 𝑅, which is the mineral radius
we seek a phase field for. Following from the curvature-driven
movement, the mineral shrinks according to the radial Allen–Cahn
equation (5.13). The simulation is stopped when the radius of the
transition region reaches 𝑅, more precisely when 𝜙 = 0.5 at 𝑟 = 𝑅.
This resulting phase field is hence used when solving the cell problems.
As boundary conditions we apply 𝜙 = 0 at 𝑟 = 0 and 𝜙 = 1 at 𝑟 = 1.
It could be tempting to directly specify (5.14) with 𝑅0 = 𝑅 as the
phase field, but this would not fulfill the steady-state version of (5.13).
Although (5.14) has similar structure as (2.6), which is the solution of
the one-dimensional steady-state version of the Allen–Cahn equation,
this finding cannot be extended to the radially symmetric case due to
the structure of the Laplace operator in polar coordinates. This also
means that the initial condition (5.14) is only an approximate initial
condition.
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5.2.1.1 Permeability

For the cell problem (5.8) providing the permeability we consider
mineral radii of 𝑅 = 0.2, 0.3, 0.4. The corresponding permeability
values for these mineral radii are 𝒦 = 3.3 × 10−2, 1.1 × 10−2, 1.8 ×
10−3, respectively [Bringedal and Kumar 2017]. The applied values
of ̅𝜀 in (5.14) are ̅𝜀 = 0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005. In
Figure 5.3, the phase field permeability values are compared to the
permeability values resulting from the corresponding sharp interface
models. It becomes clear that the phase field permeability values are
approaching the ones for the sharp interface models as the values
of ̅𝜀 are decreasing. However, the relative errors are large, and
are for ̅𝜀 = 0.01 equal to 5%, 7% and 15% for 𝑅 = 0.2, 0.3, 0.4,
respectively. These deviations can be explained by the fact that flow
takes place in the diffuse transition zone, which enhances the flow
through the entire cell, and hence overestimates the permeability.
This effect is diminished when the parameter 𝐾 in the phase field cell
problem (5.8) is increased, but larger values of 𝐾 could also lead to
an underestimation of the permeability if ̅𝜀 is large. For the results
in Figure 5.3, 𝐾 = 25 was used. Hence, finding a good choice for the
interpolation function 𝑑(𝜙, ̅𝜀) in (2.5c) is essential in the numerical
implementation.

5.2.1.2 Effective Ion Diffusivity

For the effective diffusivity cell problem (5.10) we consider the same
values for 𝑅 and ̅𝜀. The effective diffusivities for the sharp-interface
model are, for these three values of 𝑅, 𝒜 = 0.78, 0.56, 0.32, respec-
tively. These values have been found by solving the corresponding
sharp-interface cell problems for the diffusion tensor, whose formu-
lation can be found e.g. in [van Noorden 2009a], using the PDE
toolbox in Matlab on recursively finer grids until four digits of ac-
curacy are obtained. The phase field effective diffusion values are
compared to the corresponding sharp interface effective diffusion
values in Figure 5.4. Although the phase field values seemingly
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Figure 5.3: Permeability values for 𝑅 = 0.2 (top), 𝑅 = 0.3
(middle) and 𝑅 = 0.4 (bottom), plotted over various values
of ̅𝜀. The sharp interface values are plotted at ̅𝜀 = 0.
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Figure 5.4: Effective diffusion values for 𝑅 = 0.2 (top), 𝑅 = 0.3
(middle) and 𝑅 = 0.4 (bottom), plotted over various values
of ̅𝜀. The sharp interface values are plotted at ̅𝜀 = 0.
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converge towards a slightly different value than the value provided
by the sharp interface model, it is worth noting that the relative
errors are rather small (< 0.3% in all cases), hence the effective
diffusion tensors are well approximated even for large values of ̅𝜀.
Note that when defining the transition zone to being where 𝜙 = 0.5,
leads to a slightly over-estimated size of the grain as the transition
zone spreads out radially, which can explain why the diffusion val-
ues approaches a slightly too low value. For example, for 𝑅 = 0.3
the relative difference between the true porosity and the one found
through Remark 5.3 using ̅𝜀 = 0.01 is 0.03%. Other potential sources
of errors would be difference in numerical solvers between the diffuse
and sharp-interface discretizations.





Upscaling the
Allen–Cahn Model

in a Thin Strip 6
A simple but instructive averaged model can be obtained by con-
sidering the non-dimensional Allen–Cahn model from Chapter 5,
Equations (5.1) in a two-dimensional thin strip, mimicking the flow
through a long pore. In this case, the scale separation is defined
through the ratio 𝛽 = ℓ/𝐿 between the width ℓ and the length 𝐿
of the strip. Sharp interface formulations for models in a thin strip
and considering reactive transport leading to changes in the pore
geometry have been formulated and upscaled in [Bringedal, Berre,
et al. 2015; Bringedal, Berre, et al. 2016b; Kumar, van Noorden,
et al. 2011; van Noorden 2009b]. The advantage of formulating such
sharp interface models in the geometry of a thin strip is that mineral
phase can easily be described by its width, depending on the location
along the strip.

This chapter is organized as follows. In Section 6.1 we derive the
resulting effective model for the thin strip through asymptotic ex-
pansions and transversal averaging of the non-dimensional model
equations. We then proceed with numerical experiments in Sec-
tion 6.2 to compare this model to a sharp interface model and the
original two-dimensional formulation.
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6.1 Upscaling

We set the domain of the thin strip as Ω = (0, 𝐿) × (0, ℓ), such that
𝛽 = ℓ/𝐿 defines the scale separation. For the non-dimensional case
we rescale the domain of the thin strip as (𝑥, 𝑦) ∈ (0, 1)2. Note that
𝑦 now plays the role of the transversal variable, and not a local one,
but is still scaled by the factor 𝛽 and represents the direction where
rapid changes are occurring. Derivatives in the 𝑦-direction (across
the strip) are scaled with 1/𝛽. Hence, for a dummy variable 𝑣(𝑥, 𝑦)
one gets

∇𝑣(𝑥, 𝑦) = 𝜕𝑥𝑣 e𝑥 + 1
𝛽

𝜕𝑦𝑣 e𝑦,

where e𝑥 and e𝑦 are unit vectors in the directions along and across
the thin strip.

As a starting point, we use the non-dimensional model equations
(5.1) in the domain of the thin strip. For this, we make exactly the
same assumptions on the scaling of non-dimensional numbers as in
Section 5.1.2.

6.1.1 Transversal Averaging

We assume symmetry along 𝑦 = 1/2 and only consider the lower half
of the strip. We assume the existence of asymptotic expansions in
the form

𝜙𝛽(𝑡, x) = 𝜙0(𝑡, 𝑥, 𝑦) + 𝛽𝜙1(𝑡, 𝑥, 𝑦) + … , (6.1)

for all variables.

As seen analogous to the sharp interface limit, Equation (2.6), a
leading order solution to the phase field equation (5.1a) approaching
value 1 in the fluid part and 0 in the mineral part is given by

𝜙0(𝑡, 𝑥, 𝑦) = 1
1 + 𝑒−4(𝑦−𝑑)/ ̅𝜀 , (6.2)
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where 𝑦 = 𝑑(𝑡, 𝑥) defines the interface between fluid and mineral
through 𝜙0 = 1/2. This formulation uses 𝑑(𝑡, 𝑥) as an unknown, anal-
ogous to sharp-interface models for the thin strip [Bringedal, Berre,
et al. 2015; Bringedal, Berre, et al. 2016b; Kumar, van Noorden, et al.
2011; van Noorden 2009b]. Equation (6.2) still incorporates a phase
field variable that affects the model formulation. However, as 𝜙0
in (6.2) does not fulfill the zero Neumann and symmetry boundary
conditions, we are making a small error by using this phase field
(for 𝑑 ≈ 0 and 𝑑 ≈ 1/2, this error in can also be large). Under the
assumption that no clogging appears, there are no problems with
degeneracy in the equations for the resulting thin strip model. We
therefore let 𝛿 = 0. It is possible to do the transversal averaging also
with 𝛿 > 0, and would only require the phase field 𝜙 being replaced
with 𝜙 + 𝛿 in the ion and mass conservation equations.

We take a different approach in Chapter 7, where we do not find an
explicit solution to the phase field equation, but instead keep the
phase field equation as a one-dimensional cell-problem, that has to be
solved for. This also means that we can not set 𝛿 = 0 in Chapter 7,
as this would lead to a possibly degenerate cell-problem.

6.1.1.1 Equation for 𝑑(𝑡, 𝑥)

The equation for 𝑑(𝑡, 𝑥) is obtained by inserting (6.2) into the phase
field equation (5.1a) and collecting the lowest order terms in 𝛽, 𝑂(𝛽0).
This results in

̅𝜀2𝜕𝑡𝜙0 + 𝛼𝑊 ′(𝜙0) = 𝛼 ̅𝜀2𝜕2
𝑦𝜙0 − 4 ̅𝜀𝜙0(1 − 𝜙0) 1

𝑐∗ 𝑟(𝑐0).

We show in Section 6.1.1.5 that 𝑐0 is independent of 𝑦. Inserting
(6.2) for 𝜙0 and using the equalities

𝜕𝑡𝜙0 = −4
̅𝜀
𝜙0(1 − 𝜙0)𝜕𝑡𝑑,

𝜕2
𝑦𝜙0 = 42

̅𝜀2 𝜙0(1 − 𝜙0)(1 − 2𝜙0),
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and cancelling equal terms and common factors, results in

𝜕𝑡𝑑 = 1
𝑐∗ 𝑟(𝑐0). (6.3)

Hence, the phase field 𝜙0(𝑡, 𝑥, 𝑦) is given by (6.2), where the mineral
width 𝑑(𝑡, 𝑥) follows from (6.3).

Note that the resulting equation for 𝑑(𝑡, 𝑥) is the same model equation
as used in the sharp interface thin strip formulations as [Bringedal,
Berre, et al. 2015; van Noorden 2009b]. However, the phase field
𝜙(𝑡, 𝑥, 𝑦) still appears in the upscaled solute transport and flow
equations. This allows to illustrate the behavior of the phase field
model with respect to ̅𝜀 and 𝛽 in a simple setting.

6.1.1.2 Equation for the Averaged Phase Field

The transversally averaged phase field is needed in the upscaled thin
strip model. In view of the symmetry, the transversal average of
(6.2) is

𝜙0 = 2 ∫
1/2

0

1
1 + 𝑒−4(𝑦−𝑑)/ ̅𝜀 𝑑𝑦

= 1 + ̅𝜀
2

log (1 + 𝑒− 4
𝜀̅ (0.5−𝑑)) − ̅𝜀

2
log (1 + 𝑒 4

𝜀̅ 𝑑).

6.1.1.3 Equation for Mass Conservation

The lowest order term arising from the mass conservation equation
(5.1b) yields

𝜕𝑦(𝜙0v𝑦
0) = 0,

which together with the boundary condition (5.1g) gives that the
lowest order transversal velocity component v𝑦

0 is independent of 𝑦.
The next order provides

𝜕𝑥(𝜙0v𝑥
0) + 𝜕𝑦(𝜙0v𝑦

1) = 0,
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where v𝑥
0 is the lowest order along-strip velocity component and

v𝑦
1 is the first order transversal velocity component. This equation

is integrated in 𝑦 from 0 to 1/2, which together with boundary
condition (5.1g) at 𝑦 = 0 and symmetry at 𝑦 = 1/2 gives

𝜕𝑥(𝜙0v𝑥
0) = 0.

6.1.1.4 Equation for Average Flow Rate

Inserting asymptotic expansions into (5.1c), from the lowest order
term one gets

𝜙0𝜕𝑦𝑝0 = 0.

As 𝜙0 > 0 this implies that 𝑝0 = 𝑝0(𝑡, 𝑥) is independent of 𝑦. The
longitudinal (along the strip) component of the 𝑂(1) terms provides

0 = −𝜙0𝜕𝑥𝑝0 + 𝛾𝑓𝜙0𝜕2
𝑦(𝜙0v𝑥

0) − 𝐾
̅𝜀
(1 − 𝜙0)𝑛

𝜙0 + 𝑛
v𝑥

0 .

We let 𝑞 = 𝜙0v𝑥
0 represent the unknown and insert the expression

for 𝜙0, (6.2) when necessary. Then,

𝛾𝑓𝜕2
𝑦𝑞 − 𝐾

̅𝜀
𝑛𝑒−4(𝑦−𝑑)/ ̅𝜀(1 + 𝑒−4(𝑦−𝑑)/ ̅𝜀)2

1 + 𝑛(1 + 𝑒−4(𝑦−𝑑)/ ̅𝜀)
𝑞 = 𝜕𝑥𝑝0, (6.4)

The variables 𝑡 and 𝑥 appearing in 𝑑 and 𝑝 are considered parameters.
Hence, we have an inhomogeneous, second-order, linear ODE with
non-constant coefficients. Finding simple analytical expressions for
the solution of 𝑞 is not straightforward. Instead, a boundary condition
𝜙0v𝑥

0 = 1 at 𝑥 = 0 and 𝑥 = 1 can be used to resolve the flow through
the strip together with mass conservation. This means that we do
not need to solve for the pressure 𝑝 and flow profile 𝑞 inside the
thin strip, but instead just use mass conservation for the upscaled
model.
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6.1.1.5 Equation for Ion Concentration

Inserting (6.2) for 𝜙0 and the asymptotic expansion of 𝑐𝛽 into (5.1d)
and equating the lowest order terms yields

𝜕𝑦(𝜙0𝜕𝑦𝑐0) = 0.

Together with the lowest order boundary condition 𝜙0𝜕𝑦𝑐0 = 0 at
𝑦 = 0 and 𝑦 = 1, and that 𝜙 > 0, it follows that 𝑐0 is independent of
the transversal variable 𝑦, i.e.,

𝑐0 = 𝑐0(𝑡, 𝑥).

Integrating (5.1d) in 𝑦 from 0 to 1/2, and applying boundary condi-
tions (5.1f) and (5.1g) on the lower boundary and symmetry condi-
tions on 𝑦 = 1/2, results in

∫
1/2

0
𝜕𝑡(𝜙(𝑐𝛽 − 𝑐∗))𝑑𝑦 + ∫

1/2

0
𝜕𝑥(𝜙v𝛽,𝑥(𝑐𝛽 − 𝑐∗))𝑑𝑦

= 𝐷 ∫
1/2

0
𝜕𝑥(𝜙𝜕𝑥(𝑐𝛽 − 𝑐∗))𝑑𝑦,

where v𝛽,𝑥 is the along-strip component of the v𝛽. Using the asymp-
totic expansions and using that 𝑐0 is independent of 𝑦 leads to

𝜕𝑡(𝜙0(𝑐0 − 𝑐∗)) + 𝜕𝑥(𝜙0v𝑥
0(𝑐0 − 𝑐∗)) = 𝐷𝜕𝑥(𝜙0𝜕𝑥(𝑐0 − 𝑐∗).

6.1.2 The Averaged Allen–Cahn–Navier–Stokes Model

We can now summarize the results of the transversal averaging. With
the unknowns 𝑑(𝑡, 𝑥), 𝜙0(𝑡, 𝑥), 𝑐0(𝑡, 𝑥), and 𝜙0v𝑥

0(𝑡, 𝑥), the upscaled
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equations obtained by transversal averaging are

𝜕𝑡𝑑 = 1
𝑐∗ 𝑟(𝑐0), (6.5a)

𝜙0 = 1 + ̅𝜀
2

log (1 + 𝑒−4(0.5−𝑑)/ ̅𝜀) − ̅𝜀
2

log (1 + 𝑒4𝑑/ ̅𝜀),
(6.5b)

𝜙0v𝑥
0 = 1, (6.5c)

𝜕𝑡(𝜙0(𝑐0 − 𝑐∗)) = −𝜕𝑥(𝜙0v𝑥
0(𝑐0 − 𝑐∗)) + 𝐷𝜕𝑥(𝜙0𝜕𝑥(𝑐0 − 𝑐∗)),

(6.5d)

for 𝑥 ∈ (0, 1) and 𝑡 > 0. Note the absence of a momentum conserva-
tion equation, and hence the pressure is not obtained here.

6.2 Numerical Investigation

The original equations (5.1) are formulated on the scaled strip (𝑥, 𝑦) ∈
[0, 1]2, but using symmetry at 𝑦 = 0.5. Therefore, only half of the
strip needs to be considered. For both the original system (5.1)
and the transversally averaged system (6.5), we design an example
including dissolution. We let 𝑐0(𝑡 = 0) = 𝑐𝛽(𝑡 = 0) = 0.5 in the entire
domain initially, and inject an ion concentration of 𝑐0 = 𝑐𝛽 = 0.25 at
𝑥 = 0. At the outlet 𝑥 = 1 we assume zero Neumann condition for the
ion concentration. The reaction rate is chosen to be 𝑟(𝑐) = 𝑐2/0.52−1,
corresponding to an equilibrium concentration of 𝑐eq = 0.5. Hence,
net dissolution occurs when injecting a lower ion concentration.
Initially the strip is assumed to be halfway filled with a mineral layer
at top and bottom, i.e., 𝑑(𝑡 = 0) = 0.25. The phase field in the
original equations is initialized with (6.2) using 𝑑 = 0.25. Also, we
apply a zero Neumann condition for the phase field at both inlet and
outlet. The original model (5.1) is initialized with constant pressure
and zero velocity. In the upscaled system (6.5), the inlet condition
𝜙v𝑥

0 = 1 also gives the flow through the strip. For the original
equations (5.1), the inlet condition for the along-strip component of
the flow rate v𝛽, v𝛽,𝑥, is formulated using a time-dependent parabolic
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profile such that v𝛽
𝑥 = 0 at 𝑦 = 𝑑(𝑡, 0), 𝜕𝑦v𝛽,𝑥 = 0 at the symmetry

line 𝑦 = 0.5, and 𝜙𝛽v𝛽,𝑥 = 1 is fulfilled. The outlet condition for
pressure is a zero Neumann condition.

The following (non-dimensional) constants have been used in the
simulations:

𝐷 = 1, 𝑐∗ = 1, 𝛼 = 0.0075, 𝐾 = 25, 𝜌1 = 1, 𝛾𝑓 = 1.

The value of 𝛼 is chosen small to ensure low surface curvature effects,
while the value of 𝐾 is chosen large to avoid too much flow in the
diffuse transition zone. Also note that the mineral concentration is
chosen artificially low so that large changes in the mineral width
occur [van Noorden 2009b]. We let 𝛿 = 10−6 in the original model
(5.1) for all simulations.

Similar as in Section 5.2.1 and Section 2.3, both the original equa-
tions (5.1) and the averaged system (6.5) are discretized using a
control volume method on a staggered Cartesian grid where ion con-
centration, pressure and phase field are defined in the centers of the
control volumes, and the velocities across the edges. For the original
equations rectangular grids are used, where the resolution in the
transversal direction is fine enough to resolve the diffuse transition
zone properly.

6.2.1 Comparison to the Sharp Interface Formulation

For the upscaled system of equations (6.5), we can compare the
obtained solution with similar upscaled models based on a sharp
interface formulation, such as the ones found in [Bringedal, Berre, et
al. 2015; van Noorden 2009b]. Discretizing the sharp interface model
with the same method, and choosing same initial and boundary
conditions, we can investigate the effect of the diffuse interface ̅𝜀 on
the model variables.

There are some minor differences in ion concentration 𝑐0, and accord-
ingly in the value of mineral width 𝑑 as the reaction rate depends
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on 𝑐0. Figure 6.1 shows the ion concentrations in the sharp interface
model and in the phase field model for various values of ̅𝜀 at 𝑡 = 0.5.
For smaller values of ̅𝜀, the ion concentration approaches the values
found through the sharp interface model. The differences in values
for the mineral width are small (the largest absolute difference for
̅𝜀 = 0.05 is 0.003).
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Figure 6.1: Ion concentration inside thin strip at 𝑡 = 0.5. Right
figure shows zoomed in view near the middle of the strip,
where the largest differences between the model runs are
found.

6.2.2 Comparison to the Original Two-Dimensional Formulation

We can also check the quality of the upscaling procedure; namely,
whether the transversal averages of the output from the original
equations (5.1) approaches the model output found by the upscaled
model (6.5) as 𝛽 approaches zero. For this comparison we fix a value
of ̅𝜀 and let 𝛽 vary. For simplicity, we consider ̅𝜀 = 0.05, 0.01, and
𝛽 = 0.1, 0.05, 0.025, 0.01, 0.005, where the latter corresponds to
a strip that is 200 times longer than its width. A typical snapshot
from a simulation, with ̅𝜀 = 0.05 and 𝛽 = 0.1 is seen in Figure 6.2.
Even for such a “large” value of 𝛽, the derivatives with respect to 𝑦
of e.g. ion concentration, is practically zero. The flow field is found
through solving Navier–Stokes, and the along-strip component shows
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a parabola-like profile as expected for this regime. Some flow inside
the diffuse interface can be seen.
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Figure 6.2: Phase field (left) and ion concentration (right) in
thin strip at 𝑡 = 0.5. Note that the 𝑦-axis is scaled to fit
between 0 and 0.5, but should be between 0 and 0.5𝛽. Velocity
field is given as vector overlay and is mainly along the strip.
The transversal component of the velocity field has been scaled
with 1/𝛽. For this simulation, 𝛽 = 0.1 and ̅𝜀 = 0.05. The
domain was discretized with 50 control volumes in the 𝑥-
direction and 150 control volumes in the 𝑦-direction.

By vertically averaging the results from the original equations (5.1)
and comparing to the results from the already upscaled model (6.5),
we find in general good correspondence. There is little variability in
the transversal direction for ion concentration already for relatively
large values of 𝛽, as illustrated in Figure 6.2 for 𝛽 = 0.1. Hence, the
averaged ion concentration does not deviate much when decreasing 𝛽.
However, some difference is found in the dissolution of the mineral
between the two-dimensional model (5.1) and the upscaled model
(6.5). These differences do not change with smaller 𝛽. The upscaled
system of equations uses directly 𝜕𝑡𝑑 = 𝑟(𝑐)/𝑐∗, which is equivalent
to the reaction rate found in a sharp interface model, while the
original phase field equation still has an effect from the interface
width ̅𝜀 in the reaction rate.

Also, the upscaled model uses an approximated phase field which does
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not fulfill the boundary conditions at the top and lower boundaries,
and in particular makes a big error in the boundary conditions for
𝑑 ≈ 0, i.e., the point where the fluid–solid interface meets the outer
boundary. However, as seen from Figure 6.3 and Figure 6.4, the
differences in 𝑑 and 𝑐 are small already for ̅𝜀 = 0.05.
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Figure 6.3: Width of mineral layer 𝑑(𝑡, 𝑥) inside (the lower half
of) the thin strip at 𝑡 = 0.5 for ̅𝜀 = 0.05 (left) and ̅𝜀 = 0.01
(right). Note that the colored lines, corresponding to averaged
results from the original equations (5.1), are (almost) on top
of each other. The mineral width is found through the phase
field by (0.5 − 0.5𝜙𝛽).
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Figure 6.4: Transversally averaged ion concentration inside thin
strip at 𝑡 = 0.5 for ̅𝜀 = 0.05 (left) and ̅𝜀 = 0.01 (right).
Note that the colored lines, corresponding to averaged results
from the original equations (5.1), are (almost) on top of each
other.



Upscaling the
Cahn–Hilliard Model

in a Thin Strip 7
As in the previous chapter, we are interested in the behavior of
our models in the simplified geometry of a thin strip. We now
consider the full Cahn–Hilliard Model from Chapter 3, including
two fluid phases. Compared to Chapter 6, this introduces additional
complexity and requires a more refined strategy.

This chapter is organized as follows. First we bring the 𝛿-2𝑓1𝑠-
model from Chapter 3 to a non-dimensional form in Section 7.1. In
Section 7.2 we derive its upscaled counterpart by considering a thin
strip geometry. The upscaled model still uses phase-field variables
to locate the diffuse interfaces. In Section 7.3 we identify the sharp-
interface limit of the upscaled model. Notably the upscaling and the
sharp-interface limit commute. The numerical examples discussed in
Section 7.5 conclude this chapter.

7.1 Non-dimensionalization

We proceed by bringing the 𝛿-2𝑓1𝑠-model (3.45)–(3.50) to a non-
dimensional form, and derive an upscaled counterpart of it by em-
ploying asymptotic expansion and averaging techniques. We consider
a simplified geometric setting, and start by introducing a thin strip
having length 𝐿 and width ℓ ≪ 𝐿, as shown in Figure 7.1.
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Figure 7.1: Setting of the thin strip: The strip with length 𝐿 and
width ℓ consists of solid walls (red, 𝜱 ≈ (0, 0, 1)⊤) and fluid
phases (light blue, dark blue). The diffuse interface width 𝜀
is smaller than ℓ.

With a chosen domain width ℓΩ > ℓ, the domain Ω = (0, 𝐿) ×
(−ℓΩ/2, ℓΩ/2) includes the thin strip mentioned above, which is
identified as [0, 𝐿] × [−ℓ/2, ℓ/2]. The region outside the strip is
occupied by the mineral, so 𝜱 ≈ (0, 0, 1)𝑡 there. As an important
difference to the construction in Chapter 6 we do not allow for ℓΩ = ℓ,
i.e., dissolution of the mineral up to the boundary of Ω. The diffuse
interfaces are located in regions of width 𝜀. We assume here that
the diffuse-interface regions remain clearly separated inside the thin
strip, hence 𝜀 ≪ ℓ.

Three length scales can be identified, 𝐿 ≫ ℓ ≫ 𝜀. These are related
through the aspect ratio 𝛽 = ℓ/𝐿 and the Cahn-Number 𝐶𝑛 = 𝜀/𝐿,
both assumed small. Observe that, in fact, 𝐶𝑛 ≪ 𝛽 ≪ 1.

The reference quantities used in the non-dimensionalization pro-
cedure are listed in Table 7.1. Non-dimensional values are then
identified by a hat. Note that we relate only few reference values
directly to each other. In particular, we do relate reference values
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when we want to emphasize an explicit dependence on 𝑦ref, as seen
for 𝑝ref, 𝑑ref and 𝜇ref. The choices are motivated as follows. To
obtain an upscaled macroscopic velocity of order 𝑣ref = 𝑥ref/𝑡ref,
the pressure drop in the thin strip has to scale with 1/(𝑦ref)2 (this
means that the Euler number scales with 𝛽−2). Also, the slip length
𝐿slip is supposed to be of order ℓ and not 𝐿, which is achieved by a
momentum dissipation scaling 1/(𝑦ref)2.

We rewrite the Cahn number introduced above in terms of reference
quantities, and define other dimensionless numbers that are used
below to relate the reference quantities: the Reynolds number, Cap-
illary number, Damköhler number and Péclet numbers of the phase
field and ion concentration,

𝑅𝑒 = 𝜌ref𝑣ref𝑥ref
𝛾ref

, 𝐶𝑎 = 𝛾ref𝑣ref
Σref

, 𝐶𝑛 = 𝜀ref
𝑥ref

,

𝐷𝑎 = 𝑟ref𝑥ref
𝑣ref

, 𝑃 𝑒𝐶𝐻 = 𝑣ref𝑥ref
𝑀ref

, 𝑃 𝑒𝑐 = 𝑣ref𝑥ref
𝐷ref

.
(7.1)

Clearly, the non-dimensionalization also affects the spatial and tem-
poral derivatives, namely

∇̂ = 𝑥ref∇, and 𝜕 ̂𝑡 = 𝑡ref𝜕𝑡. (7.2)

We now can insert the non-dimensional variables of Table 7.1, the
non-dimensional numbers (7.1) and the non-dimensional operators
in (7.2) into the 𝛿-2𝑓1𝑠-model (3.45)–(3.50).

For the reaction terms we use the equation

𝑅1 = −𝑞(𝜱) (𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3)

instead of (3.54), as we will impose the relation between the reaction
term 𝑅1 and ̅𝜀 through the Damköhler number 𝐷𝑎.
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Table 7.1: Variables, reference values and non-dimensional quan-
tities for the non-dimensionalization.

Variable Reference value Non-
dimensional
variable

time 𝑡ref = 𝑇 ̂𝑡 = 𝑡/𝑡ref
space 𝑥ref = 𝐿, ̂𝑥 = 𝑥/𝑥ref

𝑦ref = ℓ, ̂𝑦 = 𝑦/𝑦ref
𝜀ref = 𝜀 ̂𝜀 = 1

velocity 𝑣ref = 𝑥ref/𝑡ref ̂v = v/𝑣ref
density 𝜌ref = 𝜌1 ̂𝜌𝑖 = 𝜌𝑖/𝜌ref,

𝑖 ∈ {1, 2, 3}
̂𝜌𝑓 = 𝜌𝑓/𝜌ref
̂̃𝜌𝑓 = ̃𝜌𝑓/𝜌ref

viscosity 𝛾ref = 𝛾1 ̂𝛾𝑖 = 𝛾𝑖/𝛾ref,
𝑖 ∈ {1, 2, 3}
̂̃𝛾 = ̃𝛾/𝛾ref

pressure 𝑝ref = 𝛾ref𝑣ref𝑥ref𝑦−2
ref ̂𝑝 = 𝑝/𝑝ref

momentum dissipation
rate

𝑑ref = 𝛾ref/(𝜌ref𝑦2
ref) ̂𝑑 = 𝑑/𝑑ref

surface energy Σref = Σ1 Σ̂𝑖 = Σ𝑖/Σref,
𝑖 ∈ {1, 2, 3}

CH mobility 𝑀ref = 𝑀 𝑀̂ = 1
CH chemical potential 𝜇ref = Σref/𝑦ref ̂𝜇 = 𝜇/𝜇ref
CH triple-well potential 𝑊ref = Σref 𝑊̂ = 𝑊/Σref
molar concentration 𝑐ref = 𝑐∗ ̂𝑐 = 𝑐/𝑐ref
diffusion coefficient 𝐷ref = 𝐷 𝐷̂ = 1
reaction rate 𝑟ref ̂𝑟( ̂𝑐) = 𝑟(𝑐)/𝑟ref
AC mobility 𝛼ref = 𝑟ref/𝜇ref ̂𝛼 = 𝛼/𝛼ref
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With this, the non-dimensional equations become

∇̂ ⋅ ( ̃𝜙𝑓 ̂v) = 0, (7.3)

𝜕 ̂𝑡( ̂̃𝜌𝑓v̂) + ∇̂ ⋅ ( ̂𝜌𝑓 ̂v ⊗ v̂) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇̂ ⋅ (( ̂𝜌1
̂J1 + ̂𝜌2

̂J2) ⊗ v̂)

= − 1
𝛽2𝑅𝑒

̃𝜙𝑓∇̂ ̂𝑝 + 1
𝑅𝑒

∇̂ ⋅ (2 ̂̃𝛾(𝜱)∇̂𝑠 ̂v)

− 1
𝛽2𝑅𝑒

̂𝜌3
̂𝑑( ̃𝜙𝑓) ̂v + 1

𝛽𝑅𝑒
1

𝐶𝑎
̂̃S + 𝐷𝑎1

2
̂𝜌1 ̂v𝑅̂,

(7.4)

for the flow,

𝜕 ̂𝑡( ̃𝜙𝑐 ̂𝑐) + ∇̂ ⋅ (𝜙𝑐 ̂v ̂𝑐) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇̂ ⋅ ( ̂J1 ̂𝑐) = 1
𝑃𝑒𝑐

∇̂ ⋅ ( ̃𝜙𝑐∇̂ ̂𝑐) + 𝐷𝑎𝑅̂,

(7.5)

for the ion transport-diffusion-reaction, while for the Cahn–Hilliard
evolution one gets

𝜕 ̂𝑡𝜙1 + ∇̂ ⋅ (𝜙1v̂) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇̂ ⋅ ̂J1 = 𝐷𝑎𝑅̂, (7.6)

𝜕 ̂𝑡𝜙2 + ∇̂ ⋅ (𝜙2v̂) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇̂ ⋅ ̂J2 = 0, (7.7)

𝜕 ̂𝑡𝜙3 + ∇̂ ⋅ (2𝛿𝜙3v̂) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇̂ ⋅ ̂J3 = −𝐷𝑎𝑅̂, (7.8)

̂J𝑖 = − 1
Σ̂𝑖

∇̂ ̂𝜇𝑖, 𝑖 ∈ {1, 2, 3} ,

(7.9)

̂𝜇𝑖
𝛽

=
𝜕𝜙𝑖

𝑊̂ (𝜱)
𝐶𝑛

− 𝐶𝑛Σ̂𝑖∇̂2𝜙𝑖, 𝑖 ∈ {1, 2, 3} .

(7.10)

All equations are defined in the dimensionless time-space domain
(0, 1] × Ω̂, where Ω̂ = (0, 1) × (− ̂ℓΩ/2, ̂ℓΩ/2). The surface tension
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and reaction are given as

̂̃S = − ̂𝜇2
̃𝜙𝑓∇̂ (𝜙1

̃𝜙𝑓
) − ̂𝜇1

̃𝜙𝑓∇̂ (𝜙2
̃𝜙𝑓
) − 2𝛿𝜙3∇̂( ̂𝜇3 − ̂𝜇1 − ̂𝜇2),

𝑅̂ = −𝑞(𝜱)( ̂𝑟( ̂𝑐) + ̂̃𝛼 ̂𝜇1 − ̂̃𝛼 ̂𝜇3).

From here on, we only work with the non-dimensional model and
therefore the hats are left out in the notation.

7.2 Upscaling in a Thin Strip

We now proceed by deriving the upscaled model, obtained when
passing to the limit 𝛽 → 0. This means that the thin strip reduces
to a one-dimensional object, as its width is vanishing compared to
its length.

Analogous to Chapter 6 we introduce new coordinates (𝑥, 𝑦) such
that x = (𝑥, 𝛽𝑦). In the thin strip we expect all variables to vary
in longitudinal direction e𝑥 on the length scale 𝐿 = 𝑥ref and in
transversal direction e𝑦 on the length scale ℓ = 𝑦ref = 𝛽𝑥ref. In
particular this results in ∇ = e𝑥𝜕𝑥 + 𝛽−1e𝑦𝜕𝑦.

7.2.1 Scaling of Non-Dimensional Numbers

The upscaled model also depends on the scaling of the dimensionless
numbers (7.1) with respect to 𝛽. We consider the following behavior
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of these numbers with respect to 𝛽

𝑅𝑒 = ̅𝑅𝑒, (7.11)
𝐶𝑎 = ̅𝐶𝑎, (7.12)
𝐶𝑛 = 𝛽 ̅𝜀, (7.13)
𝐷𝑎 = ̅𝐷𝑎/ ̅𝜀, (7.14)

𝑃𝑒𝐶𝐻 = 1/(𝛽2𝑀̅), (7.15)
𝑃𝑒𝑐 = ̅𝑃𝑒𝑐, (7.16)

where ̅𝑅𝑒, ̅𝐶𝑎, ̅𝜀, ̅𝐷𝑎, 𝑀̅, ̅𝑃 𝑒𝑐 are constants independent of 𝛽. In
detail, these choices are motivated as follows.

• The moderate Reynolds number (7.11) leads to a parabolic flow
profile in the thin strip, we expect laminar flow.

• As the curvature of the fluid–fluid interface is of order 𝑂(𝛽),
choosing a moderate capillary number 𝐶𝑎 in (7.12) leads to
the same pressure in both fluids, thus the capillary pressure
becomes 0 (for sharp-interface models see also [Lunowa et al.
2021; Sharmin, Bringedal, et al. 2020]). Note that this is a
major difference to the three-dimensional case, see e.g. [Mikelić
2009], where we expect a curvature of 𝑂(𝛽−1) leading to a
non-zero capillary pressure.

• The scaling of the Cahn number 𝐶𝑛 in (7.13) can be reformu-
lated to ̅𝜀 = 𝜀/ℓ. Therefore, the interface width 𝜀 scales with
the width of the thin strip, ℓ. At the same time, the diffuse
interface regions are assumed to be localized inside the thin
strip, therefore we require 𝜀 ≪ ℓ. This translates into a fixed,
small ̅𝜀, i.e., ̅𝜀 ≪ 1. In the numerical experiments presented in
Section 7.5 we choose ̅𝜀 = 0.03.

• We consider a moderate Damköhler number (7.14). In the
sharp-interface model, this would ensure that the interfaces
move with moderate velocity inside the thin strip, proportional
to ℓ/𝑇. In the diffuse-interface model, the reaction is only active
in the diffuse-interface region, which has an area scaling with 𝜀.
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Therefore, 𝐷𝑎 is divided by ̅𝜀, and expect to have fluid–solid
or fluid–fluid interfaces evolving over the length scale ℓ. A
dominating Damköhler regime like 𝐷𝑎 = 𝑂(𝛽−1) would instead
lead to equilibrium-type reactions in the upscaled model, but
the evolution of the interfaces should remain moderate. This
can be achieved by assuming that the molar density of the
species in the precipitate is sufficiently high to compensate the
fast reaction kinetics.

• The high Péclet number (7.15) for the phase field assures that
the evolution of the phase field remains within the transversal
length scale ℓ in an 𝑂(1) time scale.

• The moderate Péclet number of the ion diffusion (7.16) results
in a macroscopic diffusion of ions, while the ion distribution
in transversal direction equilibrates faster than the 𝑂(1) time
scale.

Lastly, the small, non-dimensional number 𝛿 > 0 appears in the
𝛿-2𝑓1𝑠-model. It is used as a regularization parameter, to ensure the
positivity of volume fractions, density and viscosity. Here we assume
that 𝛿 is constant and independent of 𝛽.

7.2.2 Asymptotic Expansions

We assume that we can write solutions to the non-dimensional 𝛿-2𝑓1𝑠-
model (7.3)–(7.10) in terms of an asymptotic expansion in 𝛽 of 𝜱, v,
𝑝, 𝑐, 𝜇1, 𝜇2, 𝜇3. To be precise, we assume expansions of the form

𝜱(𝑡, x) = 𝜱0(𝑡, 𝑥, 𝑦) + 𝛽𝜱1(𝑡, 𝑥, 𝑦) + 𝛽2𝜱2(𝑡, 𝑥, 𝑦) + … ,

where 𝜱𝑘, 𝑘 ∈ ℕ0 do not depend on 𝛽. In particular, we also use this
notation for other variables. Inserting these asymptotic expansions
into the non-dimensional 𝛿-2𝑓1𝑠-model we group by powers of 𝛽.

Remark 7.1: Note that the asymptotic expansions are written de-
pending on the new coordinates 𝑥 and 𝑦. This means that in the e𝑥
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direction variables can not vary on the (non-dimensional) length scale
𝛽, because a non-trivial function 𝑓(𝑥/𝛽) can not be expanded in the
form 𝑓(𝑥/𝛽) = 𝑓0(𝑥) + 𝛽𝑓1(𝑥) + …. In particular this implies that
there are no phase-field interfaces possible perpendicular to the thin
strip, as they would change the value of 𝜱 over the length 𝐶𝑛 = 𝛽 ̅𝜀.

The assumption is also violated for triple points, where all three
phases meet, and for points where interfaces meet the boundary of Ω
at 𝑦 = ±ℓΩ/2. Therefore, ℓΩ has to be chosen big enough, such that
the width of the thin strip does not reach ℓΩ.

Our ansatz for 𝜙0 in Chapter 6, Equation (6.2) introduces a big
error in the boundary conditions for the case that 𝑑 ≈ 0, i.e., for
the point where the fluid–solid interface meets the outer boundary of
the domain. The numerical investigation in Section 6.2.2 shows that
in this case this does not translate into a big error in the upscaled
model. In contrast, the numerical example in Section 7.5.1 shows
that violating the assumption of slow variation in e𝑥 direction for
fluid–fluid interfaces leads to a big error in the upscaled model.

The non-dimensional domain is given by Ω = (0, 1) × (−ℓΩ/2, ℓΩ/2),
and we choose as boundary conditions at 𝑦 = ±ℓΩ/2 for the upscal-
ing

𝜕𝑦𝜱(𝑡, 𝑥, ±ℓΩ/2) = 0, (7.17)
𝜕𝑦𝜇(𝑡, 𝑥, ±ℓΩ/2) = 0, (7.18)
𝜕𝑦𝑐(𝑡, 𝑥, ±ℓΩ/2) = 0, (7.19)

v(𝑡, 𝑥, ±ℓΩ/2) = 0. (7.20)

Expansion of (7.3), 𝑂(𝛽−1): Recall that ∇ = e𝑥𝜕𝑥 + 𝛽−1e𝑦𝜕𝑦.
Therefore, the leading order terms of (7.3) are of order 𝑂(𝛽−1), we
have

𝜕𝑦( ̃𝜙𝑓,0v0) ⋅ e𝑦 = 0.
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We denote components of v as v(1) = v ⋅ e𝑥 and v(2) = v ⋅ e𝑦. Note
that ̃𝜙𝑓,0 > 0 by construction in (3.41), so after integrating and
using the leading order of boundary condition (7.20) we can divide
by ̃𝜙𝑓,0 and obtain

v(2)
0 = 0. (7.21)

As expected, there is no leading order flow perpendicular to the thin
strip.

Expansion of (7.3), 𝑂(1): With (7.21) we get in first order

𝜕𝑥( ̃𝜙𝑓,0v(1)
0 ) + 𝜕𝑦( ̃𝜙𝑓,0v(2)

1 ) = 0. (7.22)

The 𝑂(𝛽) term of boundary condition (7.20) reads v1(𝑦 = ±ℓΩ/2) =
0. After integrating (7.22) in 𝑦 we can use this to get

𝜕𝑥 ∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑓,0v(1)
0 𝑑𝑦 = 0. (7.23)

Here, ̃𝜙𝑓,0v(1)
0 is the flux in e𝑥 direction, so (7.23) implies that the

total flux in e𝑥 direction is conserved.

Expansion of (7.10), 𝑂(𝛽−1): We get with 𝐶𝑛 = 𝛽 ̅𝜀 three terms in
leading order

𝜇𝑖,0 =
𝜕𝜙𝑖

𝑊(𝜱0)
̅𝜀

− ̅𝜀Σ𝑖𝜕2
𝑦𝜙𝑖,0. (7.24)

Notably from the Laplacian only derivatives in e𝑦-direction remain.
In the upscaled model this leads to a Cahn–Hilliard evolution only
acting in e𝑦 direction.
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Expansion of (7.6), (7.7), (7.8), 𝑂(1): Note that with (7.13), (7.14)
and (7.15) we can write

𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

= 𝛽2 ̅𝜀𝑀̅ and 𝐷𝑎 =
̅𝐷𝑎
̅𝜀
. (7.25)

We insert (7.9) into (7.6), (7.7), (7.8), as we do not treat J𝑖 as a
primary variable. Together with (7.21) we have in leading order
𝑂(1)

𝜕𝑡𝜙1,0 + 𝜕𝑥(𝜙1,0v(1)
0 ) + 𝜕𝑦(𝜙1,0v(2)

1 ) − ̅𝜀𝑀̅
Σ1

𝜕2
𝑦𝜇1,0 =

̅𝐷𝑎
̅𝜀
𝑅0,

(7.26)

𝜕𝑡𝜙2,0 + 𝜕𝑥(𝜙2,0v(1)
0 ) + 𝜕𝑦(𝜙2,0v(2)

1 ) − ̅𝜀𝑀̅
Σ2

𝜕2
𝑦𝜇2,0 = 0, (7.27)

𝜕𝑡𝜙3,0 + 𝜕𝑥(2𝛿𝜙3,0v(1)
0 ) + 𝜕𝑦(2𝛿𝜙3,0v(2)

1 ) − ̅𝜀𝑀̅
Σ3

𝜕2
𝑦𝜇3,0 = −

̅𝐷𝑎
̅𝜀
𝑅0,

(7.28)

where the leading order term of the reaction is given by

𝑅0 = −𝑞(𝜱0)(𝑟(𝑐0) + ̃𝛼𝜇1,0 − ̃𝛼𝜇3,0). (7.29)

Note that as in (7.24) only the 𝑦-derivatives of the Laplacian remain
in the leading order.

Expansion of (7.5), 𝑂(𝛽−2): We obtain in leading order only one
𝑂(𝛽−2) term

1
̅𝑃 𝑒𝑐

𝜕𝑦( ̃𝜙𝑐,0𝜕𝑦𝑐0) = 0.

Integrating in 𝑦 and using the leading order term of boundary condi-
tion (7.19) results in

̃𝜙𝑐,0𝜕𝑦𝑐0 = 0.
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Because by construction ̃𝜙𝑐,0 > 0, we conclude

𝜕𝑦𝑐0 = 0. (7.30)

Therefore, 𝑐0 is constant in e𝑦 direction, and we write 𝑐0 = 𝑐0(𝑡, 𝑥)
to emphasize that 𝑐0 only depends on the 𝑥 coordinate.

Expansion of (7.5), 𝑂(𝛽−1): As we found 𝜕𝑦𝑐0 = 0 in (7.30), we
get in first order only the term

1
̅𝑃 𝑒𝑐

𝜕𝑦( ̃𝜙𝑐,0𝜕𝑦𝑐1) = 0.

With analogous argumentation to the 𝑂(𝛽−2) case we get 𝜕𝑦𝑐1 = 0
and can write 𝑐1 = 𝑐1(𝑡, 𝑥) to show that 𝑐1 is independent of 𝑦.

Expansion of (7.5), 𝑂(1): Similar to the 𝑂(1) expansion of (7.6),
(7.7), (7.8), we insert the Cahn–Hilliard flux J𝑖 (7.9) and the non-
dimensional numbers (7.25) into the equation, and use (7.21). We
obtain the second order terms

𝜕𝑡( ̃𝜙𝑐,0𝑐0) + 𝜕𝑥(𝜙𝑐,0v(1)
0 𝑐0) + 𝜕𝑦(𝜙𝑐,0v(2)

1 𝑐0) − ̅𝜀𝑀̅
Σ1

𝜕𝑦(𝑐0𝜕𝑦𝜇1,0)

= 1
̅𝑃 𝑒𝑐

𝜕𝑥( ̃𝜙𝑐,0𝜕𝑥𝑐0) + 1
𝑃𝑒𝑐

𝜕𝑦( ̃𝜙𝑐,0𝜕𝑦𝑐2) +
̅𝐷𝑎
̅𝜀
𝑅0,

where 𝑅0 is given by (7.29). After integrating in 𝑦 we can use the
boundary conditions (7.18), (7.19), (7.20) to eliminate the terms
containing a 𝑦 derivative. We obtain

𝑑
𝑑𝑡

(𝑐0 ∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑐,0 𝑑𝑦) + 𝜕𝑥 (𝑐0 ∫
ℓΩ/2

−ℓΩ/2
𝜙𝑐,0v(1)

0 𝑑𝑦)

= 1
̅𝑃𝑒𝑐

𝜕𝑥 ((∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑐,0 𝑑𝑦) 𝜕𝑥𝑐0) +
̅𝐷𝑎
̅𝜀

∫
ℓΩ/2

−ℓΩ/2
𝑅0 𝑑𝑦.

(7.31)
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Here we have written 𝑐0 outside the integrals to emphasize that
𝑐0 does not depend on 𝑦. Equation (7.31) is a transport-diffusion-
reaction equation for 𝑐0(𝑥, 𝑡), where the coefficients still depend on
the exact distribution of 𝜱0 in the e𝑦 direction.

Expansion of (7.4), 𝑂(𝛽−3): The only term of order 𝑂(𝛽−3) is

− 1
̅𝑅𝑒

̃𝜙𝑓,0e𝑦𝜕𝑦𝑝0 = 0.

As ̃𝜙𝑓,0 is positive by construction, we conclude that 𝑝0 does not
depend on 𝑦 and write 𝑝0 = 𝑝0(𝑡, 𝑥).

Expansion of (7.4)⋅e𝑥, 𝑂(𝛽−2): We investigate in the first order
only the equation for the 𝑥-component. With (7.21) and 𝑝0 = 𝑝0(𝑡, 𝑥)
the remaining terms are

− 1
̅𝑅𝑒

̃𝜙𝑓,0𝜕𝑥𝑝0 + 1
̅𝑅𝑒
𝜕𝑦( ̃𝛾(𝜱0)𝜕𝑦v(1)

0 ) − 1
̅𝑅𝑒
𝜌3𝑑( ̃𝜙𝑓,0)v(1)

0 = 0.

We can interpret this as a linear differential equation for v(1)
0 with

boundary conditions (7.20). In particular, we can use the linearity
to write

v(1)
0 (𝑡, 𝑥, 𝑦) = −𝑤(𝑡, 𝑥, 𝑦)𝜕𝑥𝑝0(𝑡, 𝑥), (7.32)

where 𝑤 is the solution to the cell problem

𝜌3𝑑( ̃𝜙𝑓,0)𝑤 − 𝜕𝑦( ̃𝛾(𝜱0)𝜕𝑦𝑤) = ̃𝜙𝑓,0, (7.33)
𝑤(𝑡, 𝑥, ±ℓΩ/2) = 0. (7.34)

For a given 𝜱 the function 𝑤 calculates the parabolic flow profile in
the cross-section of the thin strip. As we expect from a Darcy-type
flow, the fluid velocity is proportional to −𝜕𝑥𝑝0, shown in (7.32).
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Remark 7.2: We note that by construction ̃𝛾 > 0 and therefore the
cell problem (7.33), (7.34) has a unique solution.

7.2.3 The Upscaled 𝛿-2𝑓1𝑠-Model

Let us summarize the results of the upscaling. Except for v we
only need the leading order term of each unknown, and therefore
drop the subscript 0. We call the model (7.35)–(7.50) the upscaled
𝛿-2𝑓1𝑠-model.

From (7.23) and (7.32) we have the macroscopic continuity equation
for the total flux 𝑄𝑓 and the Darcy-equation for the pressure 𝑝, and
the macroscopic transport-diffusion-reaction equation for the ion
concentration 𝑐 (7.31)

𝜕𝑥𝑄𝑓 = 0, (7.35)
𝑄𝑓 = −𝐾𝑓𝜕𝑥𝑝, (7.36)

𝑑
𝑑𝑡

( ̃𝜙𝑐,total𝑐) + 𝜕𝑥 ((−𝐾𝑐𝜕𝑥𝑝)𝑐) = 1
̅𝑃 𝑒𝑐

𝜕𝑥 ( ̃𝜙𝑐,total𝜕𝑥𝑐) +
̅𝐷𝑎
̅𝜀
𝑅total.

(7.37)

These equations are macroscopic in the sense that the unknowns
𝑄𝑓, 𝑝 and 𝑐 depend only on 𝑥 and 𝑡, but not on 𝑦. The parameters
in these equations are upscaled quantities, depending on the exact
distribution of the phases in 𝑦 direction

̃𝜙𝑐,total = ∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑐 𝑑𝑦, (7.38)

𝐾𝑓(𝑡, 𝑥) = ∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑓𝑤 𝑑𝑦, (7.39)

𝐾𝑐(𝑡, 𝑥) = ∫
ℓΩ/2

−ℓΩ/2

̃𝜙𝑐𝑤 𝑑𝑦, (7.40)

𝑅total = ∫
ℓΩ/2

−ℓΩ/2
𝑅 𝑑𝑦. (7.41)
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For the phase-field parameters we still have to solve the fully coupled
two-dimensional problem (7.24), (7.26), (7.27), (7.28),

𝜕𝑡𝜙1 + 𝜕𝑥(𝜙1v(1)
0 ) + 𝜕𝑦(𝜙1v(2)

1 ) − ̅𝜀𝑀̅
Σ1

𝜕2
𝑦𝜇1 =

̅𝐷𝑎
̅𝜀
𝑅, (7.42)

𝜕𝑡𝜙2 + 𝜕𝑥(𝜙2v(1)
0 ) + 𝜕𝑦(𝜙2v(2)

1 ) − ̅𝜀𝑀̅
Σ2

𝜕2
𝑦𝜇2 = 0, (7.43)

𝜕𝑡𝜙3 + 𝜕𝑥(2𝛿𝜙3v(1)
0 ) + 𝜕𝑦(2𝛿𝜙3v(2)

1 ) − ̅𝜀𝑀̅
Σ3

𝜕2
𝑦𝜇3 = −

̅𝐷𝑎
̅𝜀
𝑅, (7.44)

𝜇𝑖 =
𝜕𝜙𝑖

𝑊(𝜱)
̅𝜀

− ̅𝜀Σ𝑖𝜕2
𝑦𝜙𝑖, 𝑖 ∈ {1, 2, 3} , (7.45)

with the reaction term

𝑅 = −𝑞(𝜱)(𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3). (7.46)

Note that in contrast to the non-dimensional model (7.3)–(7.10) the
Cahn–Hilliard evolution acts only in e𝑦 direction. The only term
acting in e𝑥 direction is the transport of the fluid phases. This
enables us in Section 7.4 to develop a numerical model that uses
explicit upwinding for the fluid transport and can therefore decouple
cell-problems for different values of 𝑥.

For the flow it suffices to solve the cell problem (7.33), (7.34)

𝜌3𝑑( ̃𝜙𝑓)𝑤 − 𝜕𝑦( ̃𝛾(𝜱)𝜕𝑦𝑤) = ̃𝜙𝑓, (7.47)
lim

𝑦→±ℓΩ/2
𝑤 = 0, (7.48)

and recover the flow v(1)
0 , v(2)

1 by (7.32) and (7.22)

v(1)
0 = −𝑤𝜕𝑥𝑝, (7.49)

𝜕𝑥( ̃𝜙𝑓v(1)
0 ) + 𝜕𝑦( ̃𝜙𝑓v(2)

1 ) = 0. (7.50)
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7.3 Sharp-Interface Limit of the Upscaled
𝜹-𝟐𝒇𝟏𝒔-Model

In the previous section we have investigated the scale separation
𝛽 = ℓ/𝐿 → 0. A different limit process is the sharp-interface limit
𝜀 → 0. In Section 3.2 this limit is analyzed for the 𝛿-2𝑓1𝑠-model
(3.45)–(3.50), resulting in the sharp-interface evolution described in
Section 3.1.1.

Because the upscaled 𝛿-2𝑓1𝑠-model (7.35)–(7.50) still contains a
Cahn–Hilliard evolution, depending on the small number ̅𝜀 = 𝜀/ℓ, we
can investigate the sharp-interface limit ̅𝜀 → 0 of the upscaled 𝛿-2𝑓1𝑠-
model in the non-dimensional domain Ω = (0, 1) × (−ℓΩ/2, ℓΩ/2).
This means that we are interested in the limit process of vanishing
diffuse interface width 𝜀 compared to the width ℓ of the thin strip.
In the following we use matched asymptotic expansions to analyze
this limit, the argumentation is mostly analogous to Section 3.2.

7.3.1 Assumptions and Scaling of Non-Dimensional Numbers

To derive the sharp-interface limit ̅𝜀 → 0, we assume that ̅𝑃 𝑒𝑐, ̅𝐷𝑎, 𝑀̅
are constant and independent of ̅𝜀. This choice of scaling allows for
a reasonable limit process, with physical properties independent of
the diffuse interface width.

Analogous to Section 3.1.1 the scaling 𝛿 = ̅𝜀 is important. The
regularization parameter 𝛿 is introduced in the 𝛿-2𝑓1𝑠 model to
ensure the positivity of e.g. the density ̃𝜌𝑓(𝜱) in (3.42). This 𝛿-
regularization is not necessary for the sharp-interface formulation,
and the choice 𝛿 = ̅𝜀 leads to 𝛿 vanishing in the sharp-interface
limit.

As a basic assumption we expect to have solutions that form bulk
phases, characterized by nearly constant 𝜱, and interfaces, character-
ized by a large gradient of 𝜱. We also assume that 𝜇𝑖, 𝑖 ∈ {1, 2, 3} is
of order 𝑂(1), not of order 𝑂( ̅𝜀−1), as equation (7.45) would suggest.
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For a discussion of why this assumption is reasonable on an 𝑂(1)
time scale, see [Pego and Penrose 1989].

We also assume that in an interface between phase 𝜱 = e𝑖 and
𝜱 = e𝑗 the third phase is not present. This assumption is reasonable
because with our construction of 𝑊 in Section 3.1.2.1 minimizers
of the Ginzburg–Landau energy 𝑊(𝜱) + ∑𝑖 Σ𝑖Δ𝜙𝑖 that connect
𝜱 = e𝑖 and 𝜱 = e𝑗 satisfy 𝜙𝑘 = 0, 𝑘 ∈ {1, 2, 3} \ {𝑖, 𝑗}.

7.3.2 Outer Expansions

For the bulk phases we assume that we can write solutions to the
upscaled 𝛿-2𝑓1𝑠-model (7.35)–(7.50) in terms of an outer asymptotic
expansion in ̅𝜀 for the variables 𝜱, 𝑤, v(1)

0 , v(2)
1 , 𝑝, 𝑐, 𝜇1, 𝜇2, 𝜇3, as

described in Section 1.3, i.e., we assume expansions of the form

𝜱(𝑡, 𝑥, 𝑦) = 𝜱𝑜𝑢𝑡
0 (𝑡, 𝑥, 𝑦) + ̅𝜀𝜱𝑜𝑢𝑡

1 (𝑡, 𝑥, 𝑦) + ̅𝜀2𝜱𝑜𝑢𝑡
2 (𝑡, 𝑥, 𝑦) + … .

The expansions for the macroscopic variables 𝑝(𝑥), 𝑐(𝑥) do not de-
pend on 𝑦. We insert these expansions into the upscaled 𝛿-2𝑓1𝑠-model
and group by orders of ̄𝜀.

Outer Expansion of (7.45), 𝑂(𝛽−1): As in Section 3.2.1 we find that
the only stable solutions to the leading order terms are 𝜱𝑜𝑢𝑡

0 = e𝑘,
𝑘 ∈ {1, 2, 3} with the restriction 𝜙𝑜𝑢𝑡

𝑘,1 ≤ 0 and 𝜙𝑜𝑢𝑡
𝑖,1 , 𝜙𝑜𝑢𝑡

𝑗,1 ≥ 0 for
{𝑖, 𝑗} = {1, 2, 3} \ {𝑘}. The additional restriction stems from the fact
that the triple well potential 𝑊 depends on 𝛿 = ̅𝜀.

We define the set Ω𝑘(𝑡) to be the set of (𝑥, 𝑦) where 𝜱𝑜𝑢𝑡
0 (𝑡, 𝑥, 𝑦) = e𝑘.

In the sharp interface formulation, Ω𝑘(𝑡) represents the domain of
phase 𝑘.
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Outer Expansion of (7.47), 𝑂(1): In Ω3, i.e., in case 𝜱𝑜𝑢𝑡
0 = e3, we

have ̃𝜙𝑜𝑢𝑡
𝑓,0 = 0 and the leading order reads

𝜌3𝑑0𝑤𝑜𝑢𝑡
0 − 𝜕𝑦(𝛾3𝜕𝑦𝑤𝑜𝑢𝑡

0 ) = 0, (7.51)

where 𝑑0 = 𝑑(0) > 0. In the fluid phases Ω𝑖, 𝑖 ∈ {1, 2}, we have
𝜱𝑜𝑢𝑡

0 = e𝑖 and therefore ̃𝜙𝑜𝑢𝑡
𝑓,0 = 1. Note that by construction 𝑑(1) = 0.

With this we obtain in leading order

−𝜕𝑦(𝛾𝑖𝜕𝑦𝑤𝑜𝑢𝑡
0 ) = 1. (7.52)

Outer Expansion of (7.50), 𝑂(1): In the fluid phases 𝜱𝑜𝑢𝑡
0 = e𝑖,

𝑖 ∈ {1, 2} we have ̃𝜙𝑜𝑢𝑡
𝑓,0 = 1 and obtain

𝜕𝑥(v(1),𝑜𝑢𝑡
0,0 ) + 𝜕𝑦(v(2),𝑜𝑢𝑡

1,0 ) = 0. (7.53)

Outer Expansion of (7.35), (7.36), 𝑂(1): We now consider the
macroscopic equations. The equations for the flow (7.35), (7.36)
upscale trivially, the leading order reads

𝜕𝑥𝑄𝑜𝑢𝑡
𝑓,0 = 0, (7.54)

𝑄𝑜𝑢𝑡
𝑓,0 = −𝐾𝑜𝑢𝑡

𝑓,0 𝜕𝑥𝑝𝑜𝑢𝑡
0 , (7.55)

where the parameter 𝐾𝑜𝑢𝑡
𝑓,0 is the leading order expansion of 𝐾𝑓, using

(7.39)

𝐾𝑜𝑢𝑡
𝑓,0 = ∫

ℓΩ/2

−ℓΩ/2
𝜙𝑜𝑢𝑡

𝑓,0 𝑤𝑜𝑢𝑡
𝑓,0 𝑑𝑦. (7.56)

Note that the leading order expansion of ̃𝜙𝑓 is 𝜙𝑜𝑢𝑡
𝑓,0 as the 𝛿-modifi-

cation is of order 𝑂( ̅𝜀) because of the scaling choice 𝛿 = ̅𝜀.

Outer Expansion of (7.37), 𝑂(1): For the transport-diffusion-reac-
tion equation for 𝑐 let us first investigate the reaction term. We have
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with (7.41) and (7.46)

̅𝐷𝑎
̅𝜀
𝑅total = −

̅𝐷𝑎
̅𝜀

∫
ℓΩ/2

−ℓΩ/2
𝑞(𝜱)(𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3) 𝑑𝑦.

As 𝑞(𝜱𝑜𝑢𝑡) = 𝑂(𝜀2) in the bulk phases 𝜙𝑜𝑢𝑡
0 = e𝑘, 𝑘 ∈ {1, 2, 3}, there

is no contribution of the reaction term in the bulk at leading order.
Note that there is a contribution of this term in the interface regions,
see Section 7.3.3. Overall we have for (7.37) in leading order

𝑑
𝑑𝑡

(𝜙𝑜𝑢𝑡
𝑐,total,0𝑐𝑜𝑢𝑡

0 ) + 𝜕𝑥 ((−𝐾𝑜𝑢𝑡
𝑐,0 𝜕𝑥𝑝𝑜𝑢𝑡

0 )𝑐𝑜𝑢𝑡
0 )

= 1
̅𝑃 𝑒𝑐

𝜕𝑥 (𝜙𝑜𝑢𝑡
𝑐,total,0𝜕𝑥𝑐𝑜𝑢𝑡

0 ) + ̅𝐷𝑎𝑅interface,0,
(7.57)

with coefficients

𝜙𝑜𝑢𝑡
𝑐,total,0 = ∫

ℓΩ/2

−ℓΩ/2
𝜙𝑜𝑢𝑡

𝑐,0 𝑑𝑦, (7.58)

𝐾𝑜𝑢𝑡
𝑐,0 = ∫

ℓΩ/2

−ℓΩ/2
𝜙𝑜𝑢𝑡

𝑐,0 𝑤𝑜𝑢𝑡
𝑓,0 𝑑𝑦, (7.59)

and 𝑅interface,0 as a placeholder for the interface contributions of the
reaction term.

7.3.3 Inner Expansions

We have shown in Section 7.3.2 that the domain is partitioned into
Ω1, Ω2 and Ω3. We locate the interfaces between the phases as

Γ𝑖𝑗(𝑡) = {(𝑥, 𝑦) ∈ Ω ∶ 𝜙𝑖(𝑡, 𝑥, 𝑦) = 𝜙𝑗(𝑡, 𝑥, 𝑦) ≥ 1/3} . (7.60)

We assume that Γ𝑖𝑗 is a smooth, one-dimensional manifold. As
explained in Remark 7.1 we do not consider triple-points, where all
three phases meet, and do not allow for the interfaces to touch the
boundary of Ω at 𝑦 = ±ℓΩ/2. Also, interfaces can not occur perpen-
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dicular to the thin strip and therefore there exists locally around an
interface Γ𝑖𝑗 a unique mapping 𝑠(𝑡, 𝑥) such that (𝑥, 𝑠(𝑡, 𝑥)) ∈ Γ𝑖𝑗.

We use this mapping to introduce a new coordinate 𝑧 close to the
interface

𝑧(𝑥, 𝑡) = 𝑦 − 𝑠(𝑡, 𝑥)
̅𝜀

.

Because we expect the interface width to be of size ̅𝜀, the coordinate
𝑧 is scaled by 𝜀−1. The velocity of Γ𝑖𝑗 at (𝑥, 𝑠) in 𝑦-direction is given
by

𝜈(𝑥) = 𝜕𝑡𝑠(𝑡, 𝑥).

We use the new coordinates (𝑡, 𝑥, 𝑧) as the coordinates to describe
the interfaces Γ𝑖𝑗. For a generic function 𝑓(𝑡, 𝑥, 𝑦) = 𝑓 𝑖𝑛(𝑡, 𝑥, 𝑧) we
obtain the transformation rules

𝜕𝑡𝑓 = −1
𝜀

𝜈𝜕𝑧𝑓 𝑖𝑛 + 𝜕𝑡𝑓 𝑖𝑛, (7.61)

𝜕𝑦𝑓 = 1
𝜀

𝜕𝑧𝑓 𝑖𝑛, (7.62)

𝜕𝑥𝑓 = −1
𝜀

(𝜕𝑥𝑠)𝜕𝑧𝑓 𝑖𝑛 + 𝜕𝑥𝑓 𝑖𝑛. (7.63)

We assume that close to an interface Γ𝑖𝑗 we can write solutions to the
upscaled 𝛿-2𝑓1𝑠-model (7.35)–(7.50) in terms of an inner asymptotic
expansion in ̅𝜀 for the variables 𝜱, 𝑤, v(1)

0 , v(2)
1 , 𝜇1, 𝜇2, 𝜇3. We

assume expansions of the form

𝜱(𝑡, 𝑥, 𝑦) = 𝜱𝑖𝑛
0 (𝑡, 𝑥, 𝑧) + ̅𝜀𝜱𝑖𝑛

1 (𝑡, 𝑥, 𝑧) + ̅𝜀2𝜱𝑖𝑛
2 (𝑡, 𝑥, 𝑧) + … ,

with coefficients 𝜱𝑖𝑛
𝑘 independent of ̅𝜀. In contrast to the outer

asymptotic expansions, the inner asymptotic expansions depend
on the (𝑡, 𝑥, 𝑧) coordinates. This leads to different terms being of
the highest order when inserting the expansions into the upscaled
𝛿-2𝑓1𝑠-model. We do not use inner expansions of the macroscopic
variables 𝑝 and 𝑐, as they are constant across all interfaces.
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To relate inner and outer expansions, we match the limit value of inner
expansions for 𝑧 → ±∞ with the limit value of the outer expansions
at 𝑠 (from the respective side). We use matching conditions analogous
to Section 1.3

lim
𝑧→±∞

𝜱𝑖𝑛
0 (𝑡, 𝑥, 𝑧) = lim

𝑦→0+
𝜱𝑜𝑢𝑡

0 (𝑡, 𝑥, 𝑠 ± 𝑦), (7.64)

lim
𝑧→±∞

𝜕𝑧𝜱𝑖𝑛
0 (𝑡, 𝑥, 𝑧) = 0, (7.65)

lim
𝑧→±∞

𝜕𝑧𝜱𝑖𝑛
1 (𝑡, 𝑥, 𝑧) = lim

𝑦→0+
𝜕𝑦𝜱𝑜𝑢𝑡

0 (𝑡, 𝑥, 𝑠 ± 𝑦). (7.66)

Inner Expansion of (7.45), 𝑂( ̅𝜀−1): Consider an interface between
bulk phases 𝜱𝑜𝑢𝑡

0 = e𝑖 and 𝜱𝑜𝑢𝑡
0 = e𝑗. With matching condition

(7.64) this means

lim
𝑧→−∞

𝜱𝑖𝑛
0 = e𝑖 and lim

𝑧→∞
𝜱𝑖𝑛

0 = e𝑗. (7.67)

With the same argument as in Section 3.2.2 we find that 𝜙𝑖𝑛
𝑗,0 is

implicitly given by

𝑧 = 1
30

( 1
1 − 𝜙𝑖𝑛

𝑗,0
− 1

𝜙𝑖𝑛
𝑗,0

+ 2 log (
𝜙𝑖𝑛

𝑗,0

1 − 𝜙𝑖𝑛
𝑗,0

)) . (7.68)

Also, 𝜙𝑖𝑛
𝑖,0 is given by 𝜙𝑖𝑛

𝑖,0 = 1 − 𝜙𝑖𝑛
𝑗,0.

Inner Expansion of (7.50), 𝑂( ̅𝜀−1): Using the coordinate transfor-
mations (7.62) and (7.63), we get in leading order

−(𝜕𝑥𝑠)𝜕𝑧(𝜙𝑖𝑛
𝑓,0v(1),𝑖𝑛

0,0 ) + 𝜕𝑧(𝜙𝑖𝑛
𝑓,0v(2),𝑖𝑛

1,0 ) = 0.

Note that 𝜕𝑥𝑠(𝑡, 𝑥) does not depend on 𝑧 and therefore

−(𝜕𝑥𝑠)𝜙𝑖𝑛
𝑓,0v(1),𝑖𝑛

0,0 + 𝜙𝑖𝑛
𝑓,0v(2),𝑖𝑛

1,0 = 𝑐𝑜𝑛𝑠𝑡. (7.69)
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with respect to 𝑧. Across the interface Γ12 we have 𝜙𝑖𝑛
𝑓,0 = 1 and

thus with matching condition (7.64) we get for all 𝑧 ∈ ℝ

− (𝜕𝑥𝑠)v(1),𝑖𝑛
0,0 (𝑡, 𝑥, 𝑧) + v(2),𝑖𝑛

1,0 (𝑡, 𝑥, 𝑧)

= lim
𝑧→±∞

−(𝜕𝑥𝑠)v(1),𝑖𝑛
0,0 (𝑡, 𝑥, 𝑧) + v(2),𝑖𝑛

1,0 (𝑡, 𝑥, 𝑧)

= lim
𝑦→0+

−(𝜕𝑥𝑠)v(1),𝑜𝑢𝑡
0,0 (𝑡, 𝑥, 𝑠 ± 𝑦) + v(2),𝑜𝑢𝑡

1,0 (𝑡, 𝑥, 𝑠 ± 𝑦).

(7.70)

In particular, this means that the term −(𝜕𝑥𝑠)v(1),𝑜𝑢𝑡
0,0 + v(2),𝑜𝑢𝑡

1,0 is
continuous across the Γ12 interface.

When matching (7.69) at the fluid–solid interfaces Γ13 and Γ23, 𝜙𝑖𝑛
𝑓,0

vanishes in the limit towards the solid phase, we can conclude

−(𝜕𝑥𝑠)𝜙𝑖𝑛
𝑓,0v(1),𝑖𝑛

0,0 + 𝜙𝑖𝑛
𝑓,0v(2),𝑖𝑛

1,0 = 0. (7.71)

Using matching condition (7.64) we find

−(𝜕𝑥𝑠)v(1),𝑜𝑢𝑡
0,0 + v(2),𝑜𝑢𝑡

1,0 = 0 (7.72)

for the fluid velocity. This condition therefore allows only for fluid
flow parallel to the fluid–solid interfaces.

Inner Expansion of (7.42), (7.43), (7.44), 𝑂( ̅𝜀−1): We argue analo-
gous to Section 3.2.2. The leading order expansions for (7.42), (7.43)
and (7.44) are given by

− 𝜈𝜕𝑧𝜙𝑖𝑛
1,0 − (𝜕𝑥𝑠)𝜕𝑧(𝜙𝑖𝑛

1,0v(1),𝑖𝑛
0,0 ) + 𝜕𝑧(𝜙𝑖𝑛

1,0v(2),𝑖𝑛
1,0 ) − 𝑀̅

Σ1
𝜕2

𝑧 𝜇𝑖𝑛
1,0

= − ̅𝐷𝑎 𝑞(𝜱𝑖𝑛
0 )(𝑟(𝑐𝑜𝑢𝑡

0 ) + 𝛼𝜇𝑖𝑛
1,0 − 𝛼𝜇𝑖𝑛

3,0),
(7.73)

− 𝜈𝜕𝑧𝜙𝑖𝑛
2,0 − (𝜕𝑥𝑠)𝜕𝑧(𝜙𝑖𝑛

2,0v(1),𝑖𝑛
0,0 ) + 𝜕𝑧(𝜙𝑖𝑛

2,0v(2),𝑖𝑛
1,0 ) − 𝑀̅

Σ2
𝜕2

𝑧 𝜇𝑖𝑛
2,0 = 0,

(7.74)
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− 𝜈𝜕𝑧𝜙𝑖𝑛
3,0 − 𝑀̅

Σ3
𝜕2

𝑧 𝜇𝑖𝑛
3,0 = + ̅𝐷𝑎 𝑞(𝜱𝑖𝑛

0 )(𝑟(𝑐𝑜𝑢𝑡
0 ) + 𝛼𝜇𝑖𝑛

1,0 − 𝛼𝜇𝑖𝑛
3,0).

(7.75)

Let us first consider the interface Γ13, with Ω1 being in the negative
𝑧 direction. Here 𝜙𝑖𝑛

1,0 = 𝜙𝑖𝑛
𝑓,0 and with (7.71) the advection terms

vanish from (7.73). We also have no third phase contributions and
therefore 𝜙𝑖𝑛

1,0 + 𝜙𝑖𝑛
3,0 = 1. With notation 𝜇3−1 ∶= 𝜇𝑖𝑛

3,0 − 𝜇𝑖𝑛
1,0 we

calculate Σ3 ⋅ (7.75) −Σ1 ⋅ (7.73) to be

− (Σ1 + Σ3)𝜈𝜕𝑧𝜙𝑖𝑛
3,0 − 𝑀̅𝜕2

𝑧 𝜇3−1

= (Σ1 + Σ3) ̅𝐷𝑎 𝑞(𝜱𝑖𝑛
0 )(𝑟(𝑐𝑜𝑢𝑡

0 ) − 𝛼𝜇3−1).
(7.76)

By construction of 𝑞 (see Remark 3.8) the identity 𝑞(𝜱𝑖𝑛
0 ) = 𝜕𝑧𝜙𝑖𝑛

3,0
holds. We can interpret (7.76) as an ordinary differential equation
for 𝜇3−1 with boundary conditions lim𝑧→±∞ 𝜕𝑧𝜇3−1 = 0 (by using
matching condition (7.65)).

In the case 𝛼 = 0 all constant functions 𝜇3−1 are solutions to the
differential equation, under the compatibility condition

𝜈 = − ̅𝐷𝑎 𝑟(𝑐𝑜𝑢𝑡
0 ). (7.77)

In case 𝛼 > 0 the unique solution to (7.76) is given by the constant
function

𝜇3−1 = 𝛼−1(𝜈 + ̅𝐷𝑎 𝑟(𝑐𝑜𝑢𝑡
0 )). (7.78)

We can combine (7.77) and (7.78), and also consider the case that
the fluid and solid side of the Γ13 interface is switched. Overall we
conclude

𝜈 =

⎧{{
⎨{{
⎩

𝛼(𝜇𝑖𝑛
1,0 − 𝜇𝑖𝑛

3,0) + ̅𝐷𝑎 𝑟(𝑐) if lim𝑧→−∞ 𝜱𝑖𝑛
0 = e3

and lim𝑧→∞ 𝜱𝑖𝑛
0 = e1

𝛼(𝜇𝑖𝑛
3,0 − 𝜇𝑖𝑛

1,0) − ̅𝐷𝑎 𝑟(𝑐) if lim𝑧→−∞ 𝜱𝑖𝑛
0 = e1

and lim𝑧→∞ 𝜱𝑖𝑛
0 = e3

(7.79)
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For Γ23 we can argue analogous to the Γ13 case. Because there is no
precipitation, i.e., 𝑞(𝜱𝑖𝑛

0 ) = 0, we obtain

𝜇𝑖𝑛
3,0 − 𝜇𝑖𝑛

2,0 = 𝑐𝑜𝑛𝑠𝑡. and 𝜈 = 0. (7.80)

Lastly, we consider the fluid–fluid interface Γ12, with Ω1 in the
direction of negative 𝑧. There is no precipitation process, so with
𝑞(𝜱𝑖𝑛

0 ) = 0 we integrate over (7.73) and use matching conditions
(7.64) for 𝜙𝑖𝑛

1,0 and (7.65) for 𝜕𝑧𝜇𝑖𝑛
1,0 and obtain

𝜈 = −(𝜕𝑥𝑠)v(1),𝑖𝑛
0,0 + v(2),𝑖𝑛

1,0 . (7.81)

Furthermore, 𝜇𝑖𝑛
1,0 has to be constant in 𝑧, and with analogous

argumentation using (7.74) also 𝜇𝑖𝑛
2,0 is constant.

Inner Expansion of (7.45), 𝑂(1): We consider the interface Γ𝑖𝑗
with Ω𝑖 in negative 𝑧 direction. We assume the absence of a third
phase, i.e., 𝜙𝑖𝑛

𝑘,0 = 0, 𝑘 ∈ {1, 2, 3} \ {𝑖, 𝑗}, and find by construction of
𝑊 in Section 3.1.2.1 that 𝜕𝜙𝑖

𝑊 ′(𝜱𝑖𝑛
0 ) = 𝑊 ′

dw(𝜙𝑖𝑛
𝑖,0). We examine the

difference 𝜇𝑖 − 𝜇𝑗 at first order and find

𝜇𝑖𝑛
𝑖,0 − 𝜇𝑖𝑛

𝑗,0 = Σ𝑖𝑊 ″
dw(𝜙𝑖𝑛

𝑖,0)𝜙𝑖𝑛
𝑖,1 − Σ𝑖𝜕2

𝑧 𝜙𝑖𝑛
𝑖,1

− Σ𝑗𝑊 ″
dw(𝜙𝑖𝑛

𝑗,0)𝜙𝑖𝑛
𝑗,1 + Σ𝑗𝜕2

𝑧 𝜙𝑖𝑛
𝑗,1.

(7.82)

In absence of a third phase 𝜙𝑖𝑛
𝑖,0 + 𝜙𝑖𝑛

𝑗,0 = 1, and by construction
𝑊dw(𝜙) is symmetric around 𝜙 = 1/2. Therefore, 𝑊 ″

dw(𝜙𝑖𝑛
𝑖,0) =

𝑊 ″
dw(𝜙𝑖𝑛

𝑗,0), and we rewrite (7.82) as

𝜇𝑖𝑛
𝑖,0 − 𝜇𝑖𝑛

𝑗,0 = (𝑊 ″
dw(𝜙𝑖𝑛

𝑗,0) − 𝜕2
𝑧 ) (Σ𝑖𝜙𝑖𝑛

𝑖,1 − Σ𝑗𝜙𝑖𝑛
𝑗,1) .

Recall that 𝜇𝑖𝑛
𝑖,0 − 𝜇𝑖𝑛

𝑗,0 is constant across the interface Γ𝑖𝑗. After
multiplying with 𝜕𝑧𝜙𝑖𝑛

𝑗,0 and integrating over 𝑧 we calculate

𝜇𝑖𝑛
𝑖,0 − 𝜇𝑖𝑛

𝑗,0 = ∫
∞

−∞
(𝜕𝑧𝜙𝑖𝑛

𝑗,0) (𝜇𝑖𝑛
𝑖,0 − 𝜇𝑖𝑛

𝑗,0) 𝑑𝑧
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= ∫
∞

−∞
(𝜕𝑧𝜙𝑖𝑛

𝑗,0) (𝑊 ″
dw(𝜙𝑖𝑛

𝑗,0) − 𝜕2
𝑧 ) (Σ𝑖𝜙𝑖𝑛

𝑖,1 − Σ𝑗𝜙𝑖𝑛
𝑗,1) 𝑑𝑧

= ∫
∞

−∞
(𝑊 ″

dw(𝜙𝑖𝑛
𝑗,0)𝜕𝑧𝜙𝑖𝑛

𝑗,0 − 𝜕3
𝑧 𝜙𝑖𝑛

𝑗,0) (Σ𝑖𝜙𝑖𝑛
𝑖,1 − Σ𝑗𝜙𝑖𝑛

𝑗,1) 𝑑𝑧

= ∫
∞

−∞
𝜕𝑧 (𝑊 ′

dw(𝜙𝑖𝑛
𝑗,0) − 𝜕2

𝑧 𝜙𝑖𝑛
𝑗,0) (Σ𝑖𝜙𝑖𝑛

𝑖,1 − Σ𝑗𝜙𝑖𝑛
𝑗,1) 𝑑𝑧

= 0.

We have used partial integration to get to the third line, the boundary
terms vanish with matching condition (7.66) and the structure of
𝜙𝑖𝑛

𝑗,0 (7.68). The fourth line evaluates to zero with the equipartition
of energy. Note that compared to Section 3.2.3 there is no curvature
term in this calculation, as the Cahn–Hilliard evolution acts only in
the 𝑦-direction.

We conclude

𝜇𝑖𝑛
𝑖,0 = 𝜇𝑖𝑛

𝑗,0, (7.83)

and (7.79) simplifies to

𝜈 = {
+ ̅𝐷𝑎 𝑟(𝑐) for lim𝑧→−∞ 𝜱𝑖𝑛

0 = e3 and lim𝑧→∞ 𝜱𝑖𝑛
0 = e1,

− ̅𝐷𝑎 𝑟(𝑐) for lim𝑧→−∞ 𝜱𝑖𝑛
0 = e1 and lim𝑧→∞ 𝜱𝑖𝑛

0 = e3.
(7.84)

Inner Expansion of (7.47), 𝑂( ̅𝜀−2): At leading order the equation
reads

𝜕𝑧(𝛾(𝜱𝑖𝑛
0 )𝜕𝑧𝑤𝑖𝑛

0 ) = 0.

After integrating in 𝑦 we use matching condition (7.65) divide by
𝛾(𝜱𝑖𝑛

0 ) > 0 and find

𝜕𝑧𝑤𝑖𝑛
0 = 0, (7.85)
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so 𝑤 is constant across the interface. With matching condition (7.65)
this implies

lim
𝑦→0+

𝑤𝑜𝑢𝑡
0 (𝑡, 𝑥, 𝑠 + 𝑦) = lim

𝑦→0+
𝑤𝑜𝑢𝑡

0 (𝑡, 𝑥, 𝑠 − 𝑦). (7.86)

Inner Expansion of (7.47), 𝑂( ̅𝜀−1): With (7.85) the first order term
of (7.47) reads

𝜕𝑧(𝛾(𝜱𝑖𝑛
0 )𝜕𝑧𝑤𝑖𝑛

1 ) = 0.

We integrate and with matching conditions (7.64), (7.66) we get

lim
𝑦→0+

(𝛾(𝜱𝑜𝑢𝑡
0 (𝑡, 𝑥, 𝑠 + 𝑦))𝜕𝑦𝑤𝑜𝑢𝑡

0 (𝑡, 𝑥, 𝑠 + 𝑦))

= lim
𝑦→0+

(𝛾(𝜱𝑜𝑢𝑡
0 (𝑡, 𝑥, 𝑠 − 𝑦))𝜕𝑦𝑤𝑜𝑢𝑡

0 (𝑡, 𝑥, 𝑠 − 𝑦)) .
(7.87)

Inner Expansion of (7.37), 𝑂(1): We only need to investigate the
reaction term

̅𝐷𝑎
̅𝜀
𝑅total = −

̅𝐷𝑎
̅𝜀

∫
ℓΩ/2

−ℓΩ/2
𝑞(𝜱)(𝑟(𝑐) + ̃𝛼𝜇1 − ̃𝛼𝜇3) 𝑑𝑦.

On Γ12 and Γ23 we have 𝑞(𝜱𝑖𝑛) = 𝑂( ̅𝜀2) and therefore no leading or-
der contribution. Let us consider Γ13 with Ω1 in negative 𝑧 direction.
Using (7.83) the leading order term of the integrand is 𝑞(𝜱𝑖𝑛

0 )𝑟(𝑐𝑜𝑢𝑡
0 ).

Transforming the integral to the 𝑧 coordinate results in the leading
order term of 𝑂(1)

− ̅𝐷𝑎 𝑟(𝑐𝑜𝑢𝑡
0 ) ∫

∞

−∞
𝑞(𝜱𝑖𝑛

0 ) 𝑑𝑧.

By construction of 𝑞 we have with the equipartition of energy that
𝑞(𝜱𝑖𝑛

0 ) = 𝑑𝑧𝜙𝑖𝑛
3,0. With matching condition (7.64) the integral evalu-

ates to one. When considering Γ13 with Ω1 in positive 𝑧 direction
we get the same result.
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There might be multiple Γ13 interfaces contributing to the macro-
scopic reaction term. Therefore, the total contribution to (7.37) at
order 𝑂(1) is

̅𝐷𝑎 𝑅interface = − ̅𝐷𝑎𝑁(Γ13)𝑟(𝑐𝑜𝑢𝑡
0 ), (7.88)

with 𝑁(Γ13) being the number of Γ13 interfaces for a fixed 𝑥.

7.3.4 The Upscaled Sharp-Interface Model

We summarize the results of the matched asymptotic expansions.
For this we drop the subscript 0 and the superscript 𝑜𝑢𝑡 for ease
of notation. We call (7.89)–(7.107) the upscaled sharp-interface
model.

The macroscopic equations for the unknowns 𝑄𝑓, 𝑝 and 𝑐 are given
by (7.54), (7.55) and (7.57),

𝜕𝑥𝑄𝑓 = 0, (7.89)
𝑄𝑓 = −𝐾𝑓𝜕𝑥𝑝, (7.90)

𝑑
𝑑𝑡

(𝜙𝑐,total𝑐) + 𝜕𝑥 ((−𝐾𝑐𝜕𝑥𝑝)𝑐)

= 1
̅𝑃 𝑒𝑐

𝜕𝑥 (𝜙𝑐,total𝜕𝑥𝑐) + ̅𝐷𝑎 𝑅interface.
(7.91)

The coefficients of the upscaled equations depend on the distribution
of the phases in the thin strip. In contrast to the upscaled phase
field model (7.35)–(7.50) the sharp-interface limit does not depend
on the phase-field variables 𝜱. Instead, the three disjoint domains
Ω1(𝑡), Ω2(𝑡) and Ω3(𝑡) are used to locate the phases. The interface
between Ω𝑖 and Ω𝑗 is denoted by Γ𝑖𝑗. We introduce the notation
Ω𝑖|𝑥 = {𝑦 ∈ [−ℓΩ/2, ℓΩ/2] ∶ (𝑥, 𝑦) ∈ Ω𝑖(𝑡)}, and write 𝑁(Γ13) for the
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number of Γ13 interfaces at a given 𝑥. With (7.58), (7.56), (7.59),
(7.88) we can calculate the coefficients of (7.89)–(7.91) as

𝜙𝑐,total(𝑥) = vol (Ω1|𝑥) , (7.92)

𝐾𝑓(𝑡, 𝑥) = ∫
Ω1|𝑥∪Ω2|𝑥

𝑤 𝑑𝑦, (7.93)

𝐾𝑐(𝑡, 𝑥) = ∫
Ω1|𝑥

𝑤 𝑑𝑦, (7.94)

𝑅interface = −𝑁(Γ13)𝑟(𝑐). (7.95)

We describe the evolution of the phases with the interface velocity
𝜈. This velocity in 𝑦 direction is given by (7.84), (7.80), (7.81),
summarized as

𝜈 = ± ̅𝐷𝑎 𝑟(𝑐) on Γ13, with Ω1 in ± 𝑦 direction, (7.96)
𝜈 = 0 on Γ23, (7.97)

𝜈 = −(𝜕𝑥𝑠)v(1)
0 + v(2)

1 on Γ12. (7.98)

For the flow profile we solve at each 𝑥 and 𝑡 a cell problem for
the unknown 𝑤. Summarizing (7.51), (7.52), (7.86), (7.87) and the
boundary condition (7.48), the unknown 𝑤 is given by the second
order differential equation

−𝜕𝑦(𝛾1𝜕𝑦𝑤) = 1 in Ω1|𝑥, (7.99)
−𝜕𝑦(𝛾2𝜕𝑦𝑤) = 1 in Ω2|𝑥, (7.100)

𝜌3𝑑0𝑤 − 𝜕𝑦(𝛾3𝜕𝑦𝑤) = 0 in Ω3|𝑥, (7.101)
J𝑤K = 0 at Γ12, Γ13, Γ23, (7.102)

J𝛾𝜕𝑦𝑤K = 0 at Γ12, Γ13, Γ23, (7.103)
𝑤 = 0 at 𝑦 = ±ℓΩ/2. (7.104)

For the transport of the fluid–fluid interface Γ12 in (7.98) we need
the flow velocities v(1)

0 and v(2)
1 . We then get the horizontal flow
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velocity v(1)
0 from (7.49),

v(1)
0 = −𝑤𝜕𝑥𝑝0. (7.105)

For the vertical flow velocity v(2)
1 one has to solve (7.53), (7.70) and

(7.72), summarized

𝜕𝑥(v(1)
0 ) + 𝜕𝑦(v(2)

1 ) = 0 in Ω1 ∪ Γ12 ∪ Ω2, (7.106)

−(𝜕𝑥𝑠)v(1)
0 + v(2)

1 = 0 on Γ13 and Γ23. (7.107)

7.3.5 The Upscaled Sharp-Interface Model in a Simplified
Geometry with Symmetry

The upscaled sharp-interface model (7.89)–(7.107) uses no assump-
tion on how the phases are distributed. When these are appearing
in a fixed order, the model simplifies. In this case, there is no need
to consider a general subdomain Ω𝑖 for the phase 𝑖, it is sufficient to
know the width of the phase 𝑖 layer in the 𝑦 direction. These widths
become unknowns of the model.

We assume here the following simplified geometry. The solid phase
(in Ω3) is covered by a film of fluid 1 (occupying Ω1). The second fluid
(in Ω2) is located in the middle of the thin strip. For simplicity, we
assume symmetry around the 𝑥-axis. An illustration of the geometry
is given in Figure 7.2.

With functions 𝑑1(𝑡, 𝑥) > 0, 𝑑2(𝑡, 𝑥) > 0, representing the width in
𝑦 direction of the fluid phase 1, respectively 2, we can describe this
situation by defining

Ω2(𝑡) = {(𝑥, 𝑦) ∶ −𝑑2(𝑡, 𝑥) < 𝑦 < 𝑑2(𝑡, 𝑥)} ,
Ω1(𝑡) = {(𝑥, 𝑦) ∶ −𝑑1(𝑡, 𝑥) − 𝑑2(𝑡, 𝑥) < 𝑦 < −𝑑2(𝑡, 𝑥)}

∪ {(𝑥, 𝑦) ∶ 𝑑2(𝑡, 𝑥) < 𝑦 < 𝑑1(𝑡, 𝑥) + 𝑑2(𝑡, 𝑥)} ,
Ω3(𝑡) = {(𝑥, 𝑦) ∶ −ℓΩ/2 < 𝑦 < −𝑑1(𝑡, 𝑥) − 𝑑2(𝑡, 𝑥)}

∪ {(𝑥, 𝑦) ∶ 𝑑1(𝑡, 𝑥) + 𝑑2(𝑡, 𝑥) < 𝑦 < ℓΩ/2} .
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𝑦

𝑥

Ω3

Ω1

Ω2

Ω1

Ω3

Γ13

Γ12

Γ12

Γ13

𝑑2(𝑥, 𝑡)

𝑑1(𝑥, 𝑡)

Figure 7.2: Symmetric geomery of two fluid phases in a thin
strip

In this geometry the solution 𝑤 to the cell problem (7.99)–(7.104)
depends only on the variables 𝑑1 and 𝑑2, and on the choice of ℓΩ.
With a lengthy calculation we find that the terms depending on
ℓΩ decay exponentially fast for big ℓΩ, and we drop them in the
following. The remaining terms lead to

𝐾𝑓 = 2
𝛾1

((𝑑1 + 𝑑2)3

3
+ (𝛾1

𝛾2
− 1) 𝑑3

2
3

+ 𝐿slip(𝑑1 + 𝑑2)2) ,

𝐾𝑐 = 2
𝛾1

(𝑑3
1
3

+ 𝑑2
1𝑑2
2

+ 𝐿slip𝑑1(𝑑1 + 𝑑2)) ,

with the slip length 𝐿slip given by

𝐿slip = 𝛾1

√𝜌3𝑑0𝛾3
.

We can relate 𝜕𝑡𝑑1 and 𝜕𝑡𝑑2 with the interface velocities (7.96)–(7.98).
Considering the fluid–solid interface Γ13 we get with (7.96)

𝜕𝑡 (𝑑1 + 𝑑2) = 𝜈 = − ̅𝐷𝑎 𝑟(𝑐), (7.108)
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while for the fluid–fluid interface Γ12 we calculate with (7.98), (7.106),
(7.107)

𝜕𝑡𝑑2 = −(𝜕𝑥𝑑2)v(1)
0 (𝑡, 𝑥, 𝑑2) + v(2)

1 (𝑡, 𝑥, 𝑑2)

+ (𝜕𝑥(𝑑1 + 𝑑2))v(1)
0 (𝑡, 𝑥, 𝑑1 + 𝑑2) − v(2)

1 (𝑡, 𝑥, 𝑑1 + 𝑑2)

= (𝜕𝑥(𝑑2 + 𝑑1))v(1)
0 (𝑡, 𝑥, 𝑑1 + 𝑑2) − (𝜕𝑥𝑑2)v(1)

0 (𝑡, 𝑥, 𝑑2)

− ∫
𝑑2+𝑑1

𝑑2

𝜕𝑦v(2)
1 (𝑡, 𝑥, 𝑦) 𝑑𝑦

= (𝜕𝑥(𝑑2 + 𝑑1))v(1)
0 (𝑡, 𝑥, 𝑑1 + 𝑑2) − (𝜕𝑥𝑑2)v(1)

0 (𝑡, 𝑥, 𝑑2)

+ ∫
𝑑2+𝑑1

𝑑2

𝜕𝑥v(1)
0 (𝑡, 𝑥, 𝑦) 𝑑𝑦

= 𝜕𝑥 (∫
𝑑2+𝑑1

𝑑2

v(1)
0 (𝑡, 𝑥, 𝑦) 𝑑𝑦) .

The integral equals the total fluid flux in 𝑥 direction in the upper
half of Ω1. We use (7.105), (7.94) and the symmetry of 𝑤 around
𝑦 = 0 to further calculate

𝜕𝑡𝑑2 = 𝜕𝑥 (∫
𝑑2+𝑑1

𝑑2

v(1)
0 𝑑𝑦) = −𝜕𝑥 ((𝜕𝑥𝑝) ∫

𝑑2+𝑑1

𝑑2

𝑤 𝑑𝑦)

= −1
2

𝜕𝑥 (𝐾𝑐𝜕𝑥𝑝) .

(7.109)

We can now summarize (7.89), (7.90), (7.91), (7.108) and (7.108) as
an upscaled model for the unknowns 𝑑1, 𝑑2, 𝑝, 𝑄𝑓 and 𝑐

𝜕𝑡𝑑1 + 𝜕𝑡𝑑2 = − ̅𝐷𝑎 𝑟(𝑐(𝑡, 𝑥)), (7.110)

𝜕𝑡𝑑2 = −1
2

𝜕𝑥 (𝐾𝑐(𝑑1, 𝑑2)𝜕𝑥𝑝) ,
(7.111)

𝑄𝑓 = −𝐾𝑓(𝑑1, 𝑑2)𝜕𝑥𝑝, (7.112)
𝜕𝑥𝑄𝑓 = 0, (7.113)
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Fully resolved
Diffuse Interface Model

Upscaled
Diffuse Interface Model

𝛽 → 0

Fully resolved
Sharp Interface Model

̅𝜀 → 0

Upscaled
Sharp Interface Model

̅𝜀 → 0

𝛽 → 0

Figure 7.3: Models obtained by upscaling (𝛽 → 0) and sharp
interface limit ( ̅𝜀 → 0).

𝑑
𝑑𝑡

(2𝑑1𝑐) + 𝜕𝑥 ((−𝐾𝑐(𝑑1, 𝑑2)𝜕𝑥𝑝)𝑐) = 1
𝑃𝑒𝑐

𝜕𝑥 (2𝑑1𝜕𝑥𝑐) − 2 ̅𝐷𝑎 𝑟(𝑐).

(7.114)

Remark 7.3: We can rewrite (7.111), (7.112) to highlight the hyper-
bolicity of the model. As discussed in Remark 7.1 one assumption for
the upscaling is that there is no occurrence of triple points. Therefore,
we assume 𝑑1 > 0 and 𝑑2 > 0 and deduce 𝐾𝑓 > 0, 𝐾𝑐 > 0. We can
now calculate

𝜕𝑡𝑑2 = 1
2

𝑄𝑓𝜕𝑥 (𝐾𝑐(𝑑1, 𝑑2)
𝐾𝑓(𝑑1, 𝑑2)

) . (7.115)

The unknown 𝑑2 gets transported with flux 𝑄𝑓𝐾𝑐/𝐾𝑓 and can show
hyperbolic behavior, such as the formation of discontinuities.

7.3.6 Asymptotic Consistency

In Section 7.2 we have investigated the limit process 𝛽 → 0, while in
Section 7.3 we examined ̅𝜀 → 0. A common question is under which
circumstances there is asymptotic consistency, i.e., these two limit
processes commute. In Figure 7.3 all limit processes are shown in a
commutative diagram.
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We investigate asymptotic consistency with non-dimensional numbers
chosen as in (7.11)–(7.16) with ̅𝑅𝑒, ̅𝐶𝑎, ̅𝐷𝑎, 𝑀̅, ̅𝑃 𝑒𝑐 constant and
independent of ̅𝜀 and 𝛽. The non-dimensional 𝛿 is chosen as 𝛿 = ̅𝜀.

When starting with the fully-resolved diffuse-interface model, given
by (7.3)–(7.10), the limit ̅𝜀 → 0 results in a sharp-interface model as
described in Section 3.1.1.

When we assume the geometry of Section 7.3.5 we can proceed to
upscale the fully-resolved sharp-interface model after introducing 𝑑1
and 𝑑2. While the process is tedious, the main ideas are analogous
to the calculations in [Sharmin, Bringedal, et al. 2020]. In particular
the asymptotic expansion of interface conditions, normal vectors and
curvature has to be handled with care, as the coordinates x = (𝑥, 𝛽𝑦)
depend on 𝛽. For sake of brevity we skip this calculation here.

With the geometry of Section 7.3.5 we find asymptotic consistency,
i.e., the limit processes 𝛽 → 0 and ̅𝜀 → 0 commute. The result of
the upscaling of the fully-resolved sharp-interface model is exactly
given by (7.110)–(7.114).

Remark 7.4: In more general geometries, asymptotic consistency
does not necessarily hold. This is due to the following observation.
When upscaling a fully-resolved diffuse-interface model, the parameter
𝛿 is constant and independent of 𝛽. This leads to ̃𝜙𝑓 > 0 and ̃𝜙𝑐 > 0
everywhere. Because of this, we obtain upscaled equations for 𝑝 and 𝑐
without further assumptions on the geometry. The upscaled variables
𝑝 and 𝑐 do not depend on 𝑦, even if the geometry consists of two
parallel channels separated by a solid region with 𝜱 ≈ e3. On the
other hand, when upscaling the fully-resolved diffuse-interface model,
the 𝛿-modifications have already vanished, as 𝛿 = ̅𝜀. In this case, it
is possible to have a different pressure 𝑝 in each channel, i.e., in each
connected part of Ω1|𝑥 ∪ Ω2|𝑥. Also, it is possible to have a different
ion concentration 𝑐 in each connected part of Ω1|𝑥.

We conclude that we have asymptotic consistency under the condition
that there is only one flow channel, i.e., Ω1|𝑥 ∪ Ω2|𝑥 is connected
for every 𝑥, and that the first fluid phase is connected, i.e., Ω1|𝑥 is
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connected for every x. It is also possible to consider the symmetric
case as in Section 7.3.5 and have two symmetric connected parts of
fluid one.

7.4 Numerical Scheme for the Upscaled
𝜹-𝟐𝒇𝟏𝒔-Model

The upscaled 𝛿-2𝑓1𝑠-model consists of multiple coupled problems.
The upscaled equations (7.35)–(7.37) for the unknowns 𝑄𝑓, 𝑝 and
𝑐 have parameters (7.38)–(7.41) that depend on the distribution
of phases in 𝑦-direction. This distribution is described by the fully
coupled two-dimensional problem (7.42)–(7.45) for the Cahn–Hilliard
variables 𝜙1, 𝜙2, 𝜙3, 𝜇1, 𝜇2, 𝜇3. Furthermore, the flow profile has to
be calculated by the cell problem (7.47), (7.48).

For simplicity, we present the numerical scheme for equidistant time
steps 𝑡𝑛 = 𝑛Δ𝑡 and equidistant discretization in 𝑥 by 𝑥𝑘 = 𝑘Δ𝑥. Let
also 𝑥𝑘+1/2 = (𝑥𝑘 + 𝑥𝑘+1)/2. For each 𝑡𝑛, 𝑥𝑘 we discretize the one-
dimensional unknown 𝜙𝑛

1,𝑘(𝑦) = 𝜙1(𝑡𝑛, 𝑥𝑘, 𝑦) with linear Lagrange
elements, and analogous for 𝜙𝑛

2,𝑘, 𝜙𝑛
3,𝑘, 𝜇𝑛

1,𝑘, 𝜇𝑛
2,𝑘, 𝜇𝑛

3,𝑘, v(1),𝑛
0,𝑘 , v(2),𝑛

1,𝑘 ,
𝑤𝑛

𝑘 . Again, we also use this notation for other variables such as
̃𝜙𝑛
𝑓,𝑘.

We discretize the macroscopic unknown 𝑐(𝑡, 𝑥) with a finite volume
scheme, so 𝑐𝑛(𝑥) = 𝑐(𝑡𝑛, 𝑥) is piecewise constant with 𝑐(𝑡𝑛, 𝑥) = 𝑐𝑛

𝑘
for 𝑥 ∈ (𝑥𝑘−1/2, 𝑥𝑘+1/2). The pressure 𝑝𝑛(𝑥) = 𝑝(𝑡𝑛, 𝑥) is discretized
using linear Lagrange elements with nodes 𝑥𝑘+1/2. Therefore, 𝜕𝑥𝑝 is
constant on each finite volume cell (𝑥𝑘−1/2, 𝑥𝑘+1/2).

Algorithm 7.5 (Two-Scale Scheme for Upscaled 𝛿-2𝑓1𝑠-Model): Given
𝜱𝑛

𝑘 , 𝑐𝑛
𝑘 for all 𝑥𝑘 at time 𝑡𝑛, we calculate 𝜱𝑛+1

𝑘 , 𝑐𝑛+1
𝑘 with the

following steps.

1. For each 𝑥𝑘 use (7.47), (7.48) to solve for 𝑤𝑛
𝑘 (𝑦). Here we

use 𝜱 = 𝜱𝑛
𝑘 and the finite element method to discretize the
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equation. The equations for different 𝑥𝑘 are independent and
can be solved in parallel.

2. For each 𝑥𝑘 calculate 𝐾𝑛
𝑓,𝑘 and 𝐾𝑛

𝑐,𝑘 by

𝐾𝑛
𝑓,𝑘 = ∫

ℓΩ/2

−ℓΩ/2

̃𝜙𝑛
𝑓,𝑘𝑤𝑛

𝑘 𝑑𝑦, 𝐾𝑛
𝑐,𝑘 = ∫

ℓΩ/2

−ℓΩ/2

̃𝜙𝑛
𝑐,𝑘𝑤𝑛

𝑘 𝑑𝑦.

3. Solve for 𝑝𝑛(𝑥) using the finite element method with

𝜕𝑥(−𝐾𝑛
𝑓 𝜕𝑥𝑝𝑛) = 0.

Here 𝐾𝑛
𝑓 (𝑥) = 𝐾𝑛

𝑓,𝑘 for 𝑥 ∈ (𝑥𝑘−1/2, 𝑥𝑘+1/2). As 𝐾𝑛
𝑓 > 0,

the pressure 𝑝 is either a monotone increasing or monotone
decreasing function, depending on the boundary conditions. We
assume from here on 𝜕𝑥𝑝𝑛 ≤ 0 and therefore fluid flow in
positive 𝑥 direction. In case 𝜕𝑥𝑝𝑛 ≥ 0 the upwind schemes in
Steps 5 and 7 have to be modified.

4. For each 𝑥𝑘 calculate v(1),𝑛
0,𝑘 (𝑦) = −𝑤𝑛

𝑘 (𝑦)𝜕𝑥𝑝𝑛(𝑥𝑘).

5. Next, for each 𝑥𝑘 we solve for v(2),𝑛
1,𝑘 and the Cahn–Hilliard

variables 𝜙𝑛+1
2,𝑘 , 𝜙𝑛+1

3,𝑘 , 𝜇𝑛+1
1,𝑘 , 𝜇𝑛+1

2,𝑘 , 𝜇𝑛+1
3,𝑘 . For v(2),𝑛

1,𝑘 we use
(7.50) the with an explicit upwind scheme for the 𝑥-derivative,
i.e.,

𝜕𝑦( ̃𝜙𝑛+1
𝑓,𝑘 v(2),𝑛

1,𝑘 ) = −
̃𝜙𝑛
𝑓,𝑘v(1),𝑛

0,𝑘 − ̃𝜙𝑛
𝑓,𝑘−1v(1),𝑛

0,𝑘−1

Δ𝑥
. (7.116)

This equation is coupled with the Cahn–Hilliard cell problems
(7.42)–(7.45). We again use an explicit upwinding scheme for
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the 𝑥-derivative,

𝜙𝑛+1
1,𝑘 − 𝜙𝑛

1,𝑘

Δ𝑡
+

𝜙𝑛
1,𝑘v(1),𝑛

0,𝑘 − 𝜙𝑛
1,𝑘−1v(1),𝑛

0,𝑘−1

Δ𝑥

+ 𝜕𝑦(𝜙𝑛+1
1,𝑘 v(2),𝑛

1,𝑘 ) − ̅𝜀𝑀̅
Σ1

𝜕2
𝑦𝜇𝑛+1

1,𝑘

= −
̅𝐷𝑎
̅𝜀
𝑞(𝜱𝑛+1

𝑘 ) (𝑟(𝑐𝑛(𝑥𝑘)) + ̃𝛼𝜇𝑛+1
1,𝑘 − ̃𝛼𝜇𝑛+1

3,𝑘 ) ,

(7.117)

𝜙𝑛+1
2,𝑘 − 𝜙𝑛

2,𝑘

Δ𝑡
+

𝜙𝑛
2,𝑘v(1),𝑛

0,𝑘 − 𝜙𝑛
2,𝑘−1v(1),𝑛

0,𝑘−1

Δ𝑥

+ 𝜕𝑦(𝜙𝑛+1
2,𝑘 v(2),𝑛

1,𝑘 ) − ̅𝜀𝑀̅
Σ1

𝜕2
𝑦𝜇𝑛+1

2,𝑘 = 0,
(7.118)

𝜙𝑛+1
3,𝑘 = 1 − 𝜙𝑛+1

1,𝑘 − 𝜙𝑛+1
2,𝑘 , (7.119)

𝜇𝑛+1
1,𝑘 =

𝜕𝜙1
𝑊(𝜱𝑛+1

𝑘 )
̅𝜀

− ̅𝜀Σ𝑖𝜕2
𝑦𝜙𝑛+1

1,𝑘 , (7.120)

𝜇𝑛+1
2,𝑘 =

𝜕𝜙2
𝑊(𝜱𝑛+1

𝑘 )
̅𝜀

− ̅𝜀Σ𝑖𝜕2
𝑦𝜙𝑛+1

2,𝑘 , (7.121)

𝜇𝑛+1
3,𝑘 = −𝜇𝑛+1

1,𝑘 − 𝜇𝑛+1
2,𝑘 . (7.122)

Note that we do not use (7.44) and (7.45) for 𝜙𝑛+1
3,𝑘 and 𝜇𝑛+1

3,𝑘 .
Instead, we use that by construction 𝜙1 + 𝜙2 + 𝜙3 = 1 and
𝜇1 + 𝜇2 + 𝜇3 = 0.

We use the finite element method to discretize (7.116)–(7.122)
and Newtons method to solve the resulting nonlinear system.
This step has by far the highest computational cost. With the
explicit upwinding scheme for the 𝑥 derivatives, the cell problems
for each 𝑘 fully decouple and can be solved in parallel. This leads
to a significant speed-up in comparison to discretizing the Cahn–
Hilliard evolution (7.42)–(7.45) naively as a two-dimensional
problem.
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6. Calculate ̃𝜙𝑛+1
𝑐,total,𝑘 and 𝑅𝑛+1

total,𝑘 as

̃𝜙𝑛+1
𝑐,total,𝑘 = ∫

ℓΩ/2

−ℓΩ/2
𝜙𝑛+1

𝑐,𝑘 𝑑𝑦, (7.123)

𝑅𝑛+1
total,𝑘 = − ∫

ℓΩ/2

−ℓΩ/2
𝑞(𝜱𝑛+1

𝑘 ) (𝑟(𝑐𝑛(𝑥𝑘)) + ̃𝛼𝜇𝑛+1
1,𝑘 − ̃𝛼𝜇𝑛+1

3,𝑘 ) 𝑑𝑦.

(7.124)

We also set ̃𝜙𝑛+1
𝑐,total,𝑘+1/2 = ( ̃𝜙𝑛+1

𝑐,total,𝑘 + ̃𝜙𝑛+1
𝑐,total,𝑘+1)/2.

7. Finally, we solve for 𝑐 using (7.37) discretized by the finite
volume method. We use an implicit upwinding scheme for the
transport in 𝑥-direction

̃𝜙𝑛+1
𝑐,total,𝑘𝑐𝑛+1

𝑘 − ̃𝜙𝑛
𝑐,total,𝑘𝑐𝑛

𝑘

Δ𝑡

−
𝐾𝑛

𝑐,𝑘𝜕𝑥𝑝𝑛(𝑥𝑘)𝑐𝑛+1
𝑘 − 𝐾𝑛

𝑐,𝑘−1𝜕𝑥𝑝𝑛(𝑥𝑘−1)𝑐𝑛+1
𝑘−1

Δ𝑥

= 1
̅𝑃𝑒𝑐

1
Δ𝑥

( ̃𝜙𝑛+1
𝑐,total,𝑘+1/2

𝑐𝑛+1
𝑘+1 − 𝑐𝑛+1

𝑘
Δ𝑥

−𝜙𝑛+1
𝑐,total,𝑘−1/2

𝑐𝑛+1
𝑘 − 𝑐𝑛+1

𝑘−1
Δ𝑥

) +
̅𝐷𝑎
̅𝜀
𝑅𝑛+1

total,𝑘.

(7.125)

7.5 Numerical Investigation

We now compare the upscaled 𝛿-2𝑓1𝑠-model (7.35)–(7.50) to the
fully-resolved 𝛿-2𝑓1𝑠-model (7.3)–(7.10). Remark 7.3 suggests that
shock fronts can form in the upscaled model. Note that in this case
the assumptions for the upscaling in Section 7.2 are no longer valid,
and we expect different behaviors from the two models.

For the fully-resolved 𝛿-2𝑓1𝑠-model we use the framework described
in Section 3.3.
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7.5.1 Comparison: Formation of an 𝑁-Wave

As our first numerical example we choose a geometry as described in
Section 7.3.5, with the computational domain (𝑥, 𝑦) ∈ [0, 1] × [−1, 0].
For 𝑥 = 0 and 𝑥 = 1 we choose periodic boundary conditions for
all variables except the pressure 𝑝. For 𝑦 = −1 we use the trivially
upscaled versions of the boundary conditions (7.17)–(7.20) and for
𝑦 = 0 we choose boundary conditions according to the symmetry
assumption.

We compare the non-dimensional 𝛿-2𝑓1𝑠-model with the upscaled
𝛿-2𝑓1𝑠-model (7.35)–(7.50). For simplicity, we choose 𝛾1 = 𝛾2 and
𝑑0 sufficiently big such that 𝐿slip ≈ 0. We choose the phase-field
parameter ̅𝜀 = 0.03 and 𝛿 = ̅𝜀 as in Section 7.3.

We want to focus on the hyperbolic behavior of 𝑑2 as described in
Remark 7.3. Therefore, we choose 𝑐 in the initial conditions such
that 𝑟(𝑐) = 0. This leads to no precipitation or dissolution in the
model, and the fluid–solid interface does not change over time. We
choose

𝑑1 + 𝑑2 ≡ 0.7 and 𝑑1(𝑥) = 0.4 + 0.15 sin(2𝜋𝑥).

This corresponds to a plane fluid–solid interface and a sine-shaped
fluid–fluid interface. An image of these initial conditions is given in
Figure 7.4.

By applying a pressure difference as Dirichlet boundary condition at
𝑥 = 0 and 𝑥 = 1, the two fluid phases move in positive 𝑥-direction.
The fluid velocity v(1)

0 is higher in the center of the channel. As
shown in Figure 7.4 this leads to a steeper fluid–fluid interface over
time. At a time 𝑡∗ > 0 the upscaled 𝛿-2𝑓𝑠 model has a fluid–fluid
interface that is perpendicular to the thin strip. As discussed in
Remark 7.1, the assumptions for the upscaling in Section 7.2 are
no longer valid. For times 𝑡 > 𝑡∗ the fluid–fluid interface rolls over,
leading to multiple layers of fluid phase 1 at the same 𝑥 coordinate.
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Figure 7.4: Evolution of the upscaled 𝛿-2𝑓1𝑠-model on the domain
[0, 1] × [−1, 0]. Shown in red is fluid phase one, with fluid
phase two above and the solid phase below.
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We can compare this behavior with the non-dimensional 𝛿-2𝑓1𝑠-
model in a thin strip for different values of 𝛽. As shown in Fig-
ure 7.5, for times 𝑡 < 𝑡∗ there is a good agreement between the
non-dimensional 𝛿-2𝑓1𝑠-model with small values of 𝛽 and the up-
scaled 𝛿-2𝑓1𝑠-model.

In contrast to the upscaled 𝛿-2𝑓1𝑠-model, the non-dimensional 𝛿-2𝑓1𝑠-
model does not evolve to a fluid–fluid interface perpendicular to the
thin strip, as shown in Figure 7.5. Instead, when reaching a steep
fluid–fluid interface there are regions of high curvature at the begin-
ning and end of the steep passage. In these regions of high curvature
the surface tension leads to a pressure difference between the fluid
phases, counteracting the interface getting steeper. For smaller 𝛽 the
fluid–fluid interface allows for a steeper passage in (𝑥, 𝑦) coordinates,
as this effect depends on the curvature in the x coordinates, which
are not scaled with 𝛽.

7.5.2 Comparison: Precipitation

In the second numerical example we study precipitation in the thin
strip. We use the same domain and boundary conditions as in the
previous example. Again, we choose 𝛾1 = 𝛾2, and a 𝑑0 large enough
so that 𝐿slip ≈ 0. We further choose ̅𝜀 = 0.03 and 𝛿 = ̅𝜀. We use
a simple, linear reaction rate 𝑟(𝑐) = 𝑐 − 0.5 and choose the ion
concentration to be in equilibrium initially, i.e., 𝑐 = 0.5 everywhere.
With 𝑑1(𝑥) = 0.4 and 𝑑2(𝑥) = 0.3 in the initial conditions correspond
to the phases being layered in the thin strip, without depending on
𝑥. To induce precipitation we add a source term 𝑠(𝑥) to the ion
conservation equation (7.5), it now reads

𝜕𝑡( ̃𝜙𝑐𝑐) + ∇ ⋅ (𝜙𝑐v𝑐) + 𝐶𝑛
𝛽𝑃𝑒𝐶𝐻

∇ ⋅ (J1𝑐)

= 1
𝑃𝑒𝑐

∇ ⋅ ( ̃𝜙𝑐∇𝑐) + 𝐷𝑎𝑅 + ̃𝜙𝑐𝑠(𝑥).
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Figure 7.5: Fluid–fluid interface locations for the non-
dimensional 𝛿-2𝑓1𝑠-model with varying 𝛽, and for the up-
scaled 𝛿-2𝑓1𝑠-model. The interface is located through the
condition 𝜙1 = 𝜙2. Top: 𝑡 = 0.3, Bottom: 𝑡 = 0.44.
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Figure 7.6: Interface locations at time 𝑡 = 2.4 for the non-
dimensional 𝛿-2𝑓1𝑠-model with varying 𝛽, and for the up-
scaled 𝛿-2𝑓1𝑠-model. The fluid–fluid interface can be seen in
the upper half and is located by the condition 𝜙1 = 𝜙2. The
fluid–solid interface in the lower half is located by 𝜙1 = 𝜙3.

The source terms upscales trivially at order 𝑂(𝛽0), and the upscaled
ion conservation equation (7.37) is now given by

𝑑
𝑑𝑡

( ̃𝜙𝑐,total𝑐) + 𝜕𝑥 ((−𝐾𝑐𝜕𝑥𝑝)𝑐)

= 1
̅𝑃 𝑒𝑐

𝜕𝑥 ( ̃𝜙𝑐,total𝜕𝑥𝑐) +
̅𝐷𝑎
̅𝜀
𝑅total + ̃𝜙𝑐,total𝑠(𝑥).

We choose the ion source to be located between 𝑥 = 0.1 and 𝑥 = 0.3,
in detail

𝑠(𝑥) = max(0, 62.5(𝑥 − 0.1)(0.3 − 𝑥)).

Figure 7.6 shows a comparison between the non-dimensional 𝛿-2𝑓1𝑠-
model with different values of 𝛽, and the upscaled 𝛿-2𝑓1𝑠-model.
There is a good agreement between the full model with small values
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of 𝛽 and the upscaled model. For large values of 𝛽 there is less
precipitation in the thin strip. This is due to the ion concentration 𝑐
not being constant in 𝑦-direction. The source term ̃𝜙𝑐𝑠(𝑥) generates
ions everywhere in the first fluid phase, but precipitation removes
ions from the first fluid phase only at the fluid–solid interface. This
leads to an oversaturation 𝑐 > 0.5 further away from the fluid–solid
interface. For smaller values of 𝛽 the diffusion in 𝑦-direction results
in more ions precipitating and therefore a smaller oversaturation of
ions in the fluid phase.

Figure 7.6 also shows the influence of a non-constant width of the
thin strip on the flow inside the thin strip. The fluid–fluid interfaces
are pushed towards the center of the thin strip, where flow velocities
are higher.
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Investigation of
Crystal Growth
in Enzymatically
Induced Calcite

Precipitation 8
In this chapter we develop a phase field model for EICP based on the
𝛿-1𝑓1𝑠-model of Chapter 3. We then proceed to use this model in a
comparative study with an experiment of EICP in a micro-fluidic
cell [Weinhardt et al. 2020a]. For this we first give an overview over
the performed experiments in Section 8.1 and over the phase field
model in Section 8.2. We then compare the model to the experiment
in Section 8.3.

As described briefly in Section 1.1.1, EICP in a porous medium can
be used to alter strength, stiffness, porosity and permeability of
the porous medium. It can be used similarly to other methods of
inducing mineral precipitation, such as e.g. microbially induced cal-
cium carbonate precipitation (MICP), to seal high-permeable leakage
pathways. This has been demonstrated for MICP in various studies,
[Cunningham et al. 2019; Cuthbert et al. 2013; Phillips, Gerlach,
et al. 2013; Phillips, Lauchnor, et al. 2013; Phillips, Cunningham, et
al. 2016]. Applications for soil stabilization are described in [Mujah
et al. 2017; van Paassen et al. 2010; Whitaker et al. 2018], for co-
precipitation of heavy metals in [Lauchnor et al. 2013; Mitchell and
Ferris 2005], or for building or monument restoration in [Minto, Tan,
et al. 2018]. EICP itself has already been applied for dust control
[Hamdan and Kavazanjian 2016; Woolley et al. n.d.], soil strength-
ening [Neupane et al. 2013], or to modify permeability [Nemati and
Voordouw 2003].
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Successful sealing results from a complex interplay between the
transport of chemicals and urease, determined by fluid dynamics,
the ureolysis as well as the precipitation reaction leading to clogging
and thus a change in the transport-determining porous medium
properties. Numerical modeling can employ conceptual ideas for
these individual processes and mechanisms, and account for complex
interactions between different processes. As such it improves process-
understanding, optimizes experimental and field setups, and predicts
e.g. the outcome of the application of EICP.

Field-scale applications require a Darcy-scale approach to be able
to account for the large domain sizes. The Darcy-scale models of
EICP or MICP, e.g. [Cunningham et al. 2019; Hommel, Akyel,
et al. 2020; Hommel, Coltman, et al. 2018; Minto, Lunn, et al. 2019;
Nassar et al. 2018; van Wijngaarden et al. 2016] currently rely on
simple parametrizations of the effects of precipitation on porous-
medium properties, such as permeability. Especially for the sealing
applications of EICP or MICP, the correct prediction of permeability
is of outstanding importance. To improve on the simplistic relations
currently used to describe the change in porous-medium Darcy-
scale properties due to EICP or MICP, the pore-scale needs to
be considered, as here Darcy-scale properties can be observed and
described as changes in geometry. This is experimentally possible
due to advances in imaging technologies, e.g. [Blunt et al. 2013;
Wildenschild and Sheppard 2013].

In this chapter we develop a pore-scale model for EICP that re-
produces the patterns observed in the experiments such as pref-
erential growth towards the higher concentration gradient on the
upstream side or in advection-dominated flow in pore throats. Per-
spectively, within a multi-scale approach, pore-scale models might
inform Darcy-scale models what relation to use for predicting the
change in Darcy-scale hydraulic properties and how to parameterize
those relations.

For the reactions of the pore-scale model, we adopt simplifying
assumptions of a constant ureolysis rate, calculated for the experi-
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mental conditions of [Weinhardt et al. 2020b] based on the ureolysis
kinetics of [Hommel, Akyel, et al. 2020]. The precipitation process
is assumed to be an equilibrium reaction, therefore crystal growth
is limited by the diffusion of ions to the crystal interface from the
aqueous bulk liquid, which is oversaturated due to ureolysis. Note,
that the developed model does not have any additional calibration
parameters; the model estimates the calcite oversaturation due to
enzymatic ureolysis in the inlet region using the jack bean-meal
(JBM) extract ureolysis kinetics of [Hommel, Akyel, et al. 2020].

Experimental and modeling investigations complement each other.
The very small dimensions of the experimental setup do not allow
for reliable measurements of local concentrations. Only minuscule
volumes would be available for analysis and the volume of the inlet
and outlet structures as well as the tubing are much larger than the
volume of the region of interest.

Using complementary modeling, detailed concentration distributions,
crystal growth rates and growth directions within the region of inter-
est can be predicted reliably. The distribution of crystal aggregates
and their growth over time is a measure available in both the experi-
ment and the numerical simulation, allowing for a validation of the
developed model by comparison of the model predictions with the
experimental data.

In this study, we show that the developed model reproduces the
following observations of pore-scale experiments:

• Crystal aggregates grow faster on their upstream side than on
their downstream side, leading to a shift of the center of mass
in the upstream direction.

• Crystal aggregates grow faster in places of high flow velocity.
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8.1 Micro-Fluidic Experiments

8.1.1 Experimental Setup and Procedure

In this section, the micro-fluidic experiment is briefly described.
More detailed information about the procedure and the setup can
be found in [Weinhardt et al. 2020b]. The micro-fluidic cells were
produced by following the standard workflow of soft lithography
[Karadimitriou, Musterd, et al. 2013; Xia and Whitesides 1998]. The
design of the micro-fluidic cell is shown in Figure 8.1 and consists of
an inlet channel, an outlet channel, and the actual domain of interest,
which is a series of four identical circular pore bodies connected by
rectangular pore throats. The details of the channels connected
to the pressure sensors are not pictured here since the pressure
measurements have been analyzed in detail in [Weinhardt et al.
2020b] and are not in the focus of the present study here. There are
two syringe pumps which induce the flow: Syringe 1 (S1) is filled with
an urea/calcium-chloride solution with equimolar concentrations of
1/3 mol/L. Syringe 2 (S2) is filled with a solution extracted from
a 5 g/L JBM suspension by filtering through a 0.45 𝜇m cellulose
membrane. The reactive solutions mix in the T-junction, before
entering the micro-fluidic cell via an inlet tube of the length 10 cm
and an inner diameter of 0.5 mm.

The whole system was initially saturated with deionized water. The
inlet tube, the inlet channel, the porous domain and the outlet
channel were subsequently saturated with the reactant solutions.
The pressure sensors end up in a dead end. Therefore, there is no
flow in the channels connected to the pressure sensors. Once the
micro-fluidic cell was saturated with the reactive solutions, a constant
flow rate of 0.01 𝜇L/s was applied at both syringes for 5 hours. The
flow direction is indicated with blue arrows in Figure 8.1. The
transparent nature of Polydimethylsiloxane (PDMS) allowed the
direct visualization of the processes taking place in the pore space by
using transmitted light microscopy. A description of the microscope
used can be found in [Karadimitriou, Joekar-Niasar, et al. 2012]. In
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Table 8.1, the concentrations of the reactive solutions, as well as
the flow rates are summarized. The ambient temperature was 23∘C
throughout the experiment.
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Figure 8.1: Schematic sketch of the micro-fluidic cell and its
dimensions: It includes the inlet and outlet tubes (orange)
connected to the inlet and outlet channels. The domain
of interest consists of four pore bodies connected with pore
throats. A part of it is shown enlarged in the bottom of the
figure. The blue arrows indicate the flow direction of the
reactive solutions, induced by the syringe pumps S1 and S2,
filled with urea calcium chloride solution and filtered JBM
suspension respectively. Sketch based on [Weinhardt et al.
2020b]

8.1.2 Kinetics of Urea Hydrolysis

The hydrolysis of urea can be assumed to follow a first-order kinetic
reaction with respect to the concentration of urea 𝑐urea (8.1) [Feder
et al. 2020; Hommel, Akyel, et al. 2020]. In this case the reaction
rate 𝑟u is a function of the molar concentration of urea 𝑐urea as well
as the mass concentration of JBM extract, 𝐶JBM,

𝑟u = −𝑑𝑐urea
𝑑𝑡

= 𝑘u𝑐urea𝐶JBM. (8.1)
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Table 8.1: Concentrations and flow rate of the reactive solutions
(based on [Weinhardt et al. 2020b])

Solution 𝑐urea 𝑐CaCl2 𝐶JBM Q
[mol/L] [mol/L] [g/L] [𝜇L/s]

S1 1/3 1/3 0 0.01
S2 0 0 5 0.01
Mixed 1/6 1/6 2.5 0.02

According to [Feder et al. 2020] and [Hommel, Akyel, et al. 2020], the
temperature-dependent rate coefficient for enzymatic ureolysis, 𝑘u,
can be calculated using Arrhenius-type exponential relations. The
expression (8.2) below is based on the experimental investigations of
[Feder et al. 2020], with 𝑎u,0 being the pre-exponential factor and 𝑎u,T
being a lumped exponent describing the temperature dependence of
the rate coefficient,

𝑘u = 𝑎u,0𝑒(
𝑎u,T

𝑇 ). (8.2)

By integrating Equation (8.1) over time, the concentration of urea
can explicitly be calculated at a certain time 𝑡, based on an initial
concentration of urea, 𝑐urea,0,

𝑐urea(𝑡) = 𝑐urea,0 𝑒−(𝑘u 𝐶JBM 𝑡). (8.3)

Consequentially, also the reaction rate can be determined explicitly
at a certain time or, likewise, since the flow rate is constant, at a
point along the flow path. The reaction takes place once the two
solutions, as described in the previous section, mix. The mixing
happens in the inlet tube, right after the T-junction (see Figure 8.1).
The residence time in the inlet tube, which is determined by the
flow rate and the geometry of the inlet tube, is approximately 16
minutes. Since the residence time in the micro-fluidic cell is only a
few seconds, we assume that the changes of the urea concentration are
negligible. Therefore, the ureolysis reaction rate can be assumed to
be constant throughout the micro-fluidic cell, while it is determined
by the residence time in the inlet tube. Table 8.2 gives the relevant
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parameters to determine the ureolysis rate in the cell, assuming that
there is no accumulation or inactivation of urease in the inlet tubing
and the porous domain and the urease concentration is constant at
the injected concentration of 𝐶JBM = 2.5g/L.

Table 8.2: Kinetic and other parameters to estimate the ureolysis
rate based on Equation (8.1)

Symbol Parameter Value Unit
𝑎u,0 Arrhenius-type kinetics co-

efficient
462.74 [L/(g s)]

𝑎u,T Arrhenius-type kinetics co-
efficient

-4263.108 [K]

T Temperature 296.15 [K]
𝐶JBM Mass concentration of sus-

pended urease
2.5 [g/L]

𝑘u Rate coefficient at 296.15 K 2.592E-4 [L/(g s)]
𝑡tube Residence time in the tube 16.36 [min]
𝑐urea,0 Initial molar concentration

at the T-junction
0.167 [mol/L]

curea,cell Molar concentration of urea
in the cell

0.088 [mol/L]

𝑟u,cell Ureolysis rate in the cell 5.716E-5 [mol/(L s)]

8.2 Phase Field Model for EICP

8.2.1 Modifications to the 𝛿-1𝑓1𝑠 Model

To model the growth of crystal aggregates in the micro-fluidic cell,
we modify the 𝛿-1𝑓1𝑠-model of Section 3.1.6.1. To present the
modified model, we introduce as unknowns the phase-field parameter
𝜙, the fluid velocity v, the pressure 𝑝, and the inorganic carbon
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concentration 𝑐 in the fluid. The model couples the equation for the
transport, diffusion, and reaction of inorganic carbon

𝜕𝑡( ̃𝜙𝑐) + ∇ ⋅ ((𝜙v + 𝐽)𝑐) = ∇ ⋅ (𝐷 ̃𝜙∇𝑐) + ̃𝜙𝑟u,cell − 𝑟precip(𝜙, 𝑐),
(8.4)

with the Navier–Stokes equations in the fluid phase, given by

∇ ⋅ ( ̃𝜙v) = 0, (8.5)

𝜕𝑡(𝜌 ̃𝜙v) + ∇ ⋅ (𝜌(𝜙v + 𝐽) ⊗ v) = − ̃𝜙∇𝑝 + ∇ ⋅ (2𝛾∇𝑠v)

− 12𝛾
ℎ2 v − 𝑑( ̃𝜙)v.

(8.6)

The phase field parameter 𝜙 is determined by the Cahn–Hilliard
evolution

𝜕𝑡𝜙 + ∇ ⋅ 𝐽 = −
𝑟precip(𝜙, 𝑐)

𝑐∗ , (8.7)

𝐽 = −𝑀∇𝜇, (8.8)

𝜇 = 𝑊 ′
dw(𝜙)
𝜀

− 𝜀∇2𝜙. (8.9)

Here, 𝜌 is the fluid density, 𝛾 is the fluid viscosity, 𝐷 is the diffusion
coefficient of carbonate ions, and 𝑐∗ is the molar density of the
precipitated calcium carbonate. Values are taken from literature
and listed in Table 8.1. From the Cahn–Hilliard evolution, we have
the phase-field mobility 𝑀 and a double-well potential 𝑊dw from
(3.20) with minima at 0 and 1. For the modification ̃𝜙 = 𝜙 + 𝛿 we
choose 𝛿 = 5E-03 to keep the numerical system stable while barely
perturbing the solution.

The Equations (8.5), (8.6) are the Navier–Stokes equations, modified
as follows from the 𝛿-1𝑓1𝑠-model. The model is employed only in
the two-dimensional geometry of the micro-fluidic cell. From the
assumption of a parabolic flow profile across the height ℎ of the cell,
an additional drag term enters the Navier–Stokes equation, analogous
to the derivation of a Hele–Shaw flow [Lamb 1932]. As a second
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modification we do not let 𝛾 depend on 𝜙. In the 𝛿-1𝑓1𝑠 model this
would coincide with 𝛾1 = 𝛾3. To ensure a no-slip condition between
the solid and fluid phase we choose the drag term

𝑑(𝜙) = 𝑑0(1 − 𝜙)2,

with a constant 𝑑0 sufficiently large, see also Remark 3.3.

Equation (8.4) has two reaction terms on the right-hand side. The
term 𝑟u,cell describes the hydrolysis of urea. As discussed in Sec-
tion 8.1.2, this depends on temperature, activity of urea, and mass
concentration of enzyme. These values are assumed to be approxi-
mately constant in the micro-fluidic cell, as the time for fluid to pass
through the cell is in the order of seconds. The value for 𝑟u,cell was
determined in Section 8.1.2 and is given in Table 8.2. In the 𝛿-1𝑓1𝑠-
model no such bulk-reaction term is considered, but the extension of
the analysis to the case with constant 𝑟u,cell is straightforward. The
second reaction term, 𝑟precip, models the precipitation of calcium
carbonate and is given by

𝑟precip(𝜙, 𝑐) = (𝑘precip(𝑐 − 𝑐eq) + 𝛿𝜇) max (𝜙(1 − 𝜙) − 0.1 , 0).
(8.10)

This is analogous to the Term 𝑅𝑓 for the 𝛿-1𝑓1𝑠-model, with 𝛼 = 0,
a reaction rate 𝑟(𝑐) proportional to the oversaturation 𝑐 − 𝑐eq of
inorganic carbon and a function 𝑞(𝜙) = max (𝜙(1−𝜙)−0.1 , 0). Note
that this 𝑞 does not satisfy the requirements stated in Remark 3.8,
and the sharp interface limit does therefore not recover the Navier-
slip condition. This choice in 𝑞 is necessary because of the following
consideration. As the precipitation process is fast in comparison to
the hydrolysis of urea, it is assumed to be an equilibrium reaction.
The choice for 𝑘precip is therefore not from literature, but instead big
enough that equilibrium conditions can be observed at the interface
at all times. This also means that in this regime 𝑘precip can not be
viewed as an 𝑂(𝜀0) term, and a 𝑞 chosen as in Remark 3.8 would
result in precipitation in the bulk regimes (compare Section 3.2.1).
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Table 8.3: Parameters for the phase field model
Symbol Parameter Value Unit
𝑐∗ Molar density of CaCO3 27.1 [mol/L]
𝑐eq Fully saturated carbonate

concentration
1.4E-04 [mol/L]

𝐷 Diffusion coefficient 8.04E-10 [m2/s]
𝜌 Density of water 0.997E03 [kg/m3]
𝛾 Viscosity of water 1.01E-03 [kg/(m s)]
𝑑0 Momentum dissipation in

solid phase
1E06 [kg/(m3 s)]

𝑟u,cell Reaction rate of urea hy-
drolysis

5.716E-05 [mol/(L s)]

ℎ Height of micro-fluidic cell 8.5E-05 [m]
𝑘precip Precipitation rate 200 [1/s]
𝜀 Interface width 2E-06 [m]
𝑀 Phase field mobility 1E-05 -
𝛿 Phase field modification 5E-03 -

8.2.2 Numerical Implementation

The equations are discretized by a Finite-Element Method, with
Taylor–Hood elements for velocity v and pressure 𝑝, and second-order
Lagrange elements for concentration 𝑐 and phase-field parameter 𝜙.
All equations are discretized fully implicit in time, i.e., by implicit
Euler method. We do not solve the system monolithically, but instead
iterate between solving the Navier–Stokes equations (8.5), (8.6) and
equations (8.4)–(8.9) until convergence.

The implementation was done in Dune-PDELab [Bastian et al. 2010]
using ALUGrid [Alkämper et al. 2016]. This comes with the benefit
of adaptive grid generation. The phase field model requires small grid
cells to resolve the diffuse interface, while grid cells at larger distance
to the interfaces can be considerably larger. Figure 8.2 shows a
section of the grid containing one crystal aggregate. The grid is
adapted after each timestep to account for the evolving interfaces.
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Figure 8.2: Part of the grid used for the simulation in Section 8.3.
The grid is refined at the interface between the fluid phase
and the precipitated calcium carbonate.

One major challenge for the simulation is the relatively fast flow in
the order of mm/s compared to the total runtime of the experiment
of multiple hours. The flow regime introduces a severe restriction
on the timestep 𝑑𝑡. For the simulation of the full system, including
the flow, small timesteps of size 𝑑𝑡 = 0.01𝑠 are used, making the
simulation computationally demanding. To tackle this problem, a
special timestepping is introduced; small timesteps are needed to
resolve the interplay between transport, diffusion, and reaction. After
a few seconds in the simulation, transport, diffusion and reaction
balance each other and all unknowns change on the time-scale of
minutes. This is facilitated by the laminar flow regime. At this stage,
the only process leading to a change in unknowns is the growth of
precipitated calcium carbonate. This growth happens rather slowly,
i.e., on a larger time scale, and it is now possible to only update the
phase field 𝜙 using

𝜕𝑡𝜙 = −
𝑟precip(𝜙, 𝑐)

𝑐∗ , (8.11)

with a larger timestep 𝑑𝑡 = 10𝑠, while keeping all other unknowns
constant. After this big timestep, smaller timesteps with the full
system are again performed until a quasi-static state is reached. A
sketch of such a timestepping procedure can be seen in Figure 8.3
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//
𝑡[𝑠]3 3.02 13.02 13.05

update only 𝜙 update full
model

Figure 8.3: Sketch of the timestepping algorithm, with small and
big timesteps.

8.2.3 Calculation of the Inflow Conditions

The simulation of the experiment is performed on the domain con-
sisting of pore throats and pore bodies, without the inlet and outlet
region of the micro-fluidic cell, see Figure 8.1. At the inflow bound-
ary of the simulation domain, both fluid velocity vin and inorganic
carbon concentration 𝑐in have to be prescribed. The velocity is
chosen as a parabolic flow profile with total flow rate of 0.02 𝜇L/s.
In contrast, it is more difficult to determine the inorganic-carbon
concentration 𝑐in at the inflow boundary.

The hydrolysis of urea begins as soon as the reactant solutions mix
in the T-junction before the inlet tube. Due to the residence time in
the tube of 16 min, see Table 8.2, the inorganic carbon produced in
this time can not be neglected. While integrating the reaction rate
(8.1) over the residence time gives an upper bound for 𝑐in, the actual
value is much lower because of precipitation in the inflow tube and
the inlet area of the micro-fluidic cell.

Therefore, to determine the concentration 𝑐in, we have to take into
consideration the distribution of precipitated carbonate in the inlet
area of the micro-fluidic cell. We use the knowledge about the model
reaching a quasi-static state as described in Section 8.2.2. In case
the inlet area is long enough, this state is reached before the inflow
boundary of the main simulation. Figure 8.4 shows a picture of the
inlet area taken at the end of the experiment. For the simulation,
a section 𝑆 of the inlet area is used as representative for the whole
inlet area. This justifies using periodic boundaries at inflow and
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Figure 8.4: Left: Calcite precipitation in the inlet area after the
experimental run. A representative section 𝑆 is highlighted
by a white-colored boundary. Right: Simplified precipitate
distribution in the section 𝑆 used for simulation.

outflow boundary of 𝑆. Now, the flow profile around the precipitated
carbonate can be calculated by solving for steady-state solutions of
(8.5), (8.6) in 𝑆. Next, the inorganic-carbon concentration 𝑐 in the
inlet section is determined by

∇ ⋅ (𝜙v𝑐) = ∇ ⋅ (𝐷𝜙∇𝑐) + 𝜙𝑟u,cell − 𝑟precip(𝜙, 𝑐). (8.12)

This equation is a steady state version of (8.4). The concentration
𝑐in is then calculated as the flux average

𝑐in =
∫
𝑆

𝑐𝜙v ⋅ e1𝑑𝑥
∫
𝑆

𝜙v ⋅ e1𝑑𝑥
,

where e1 is the unit vector pointing from inflow to outflow boundary
of 𝑆. We obtain the slightly oversaturated inflow condition 𝑐in =
3.150𝐸 − 04mol/l.

8.3 Results and Discussion

We compare results [Weinhardt et al. 2020a] of the experiment
described in Section 8.1.1 with the mathematical model of Section 8.2.
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Figure 8.5: Top: Fluid volume fraction 𝜙 in initial and final
state of the simulation. Bottom: Corresponding states of the
experimental run.

The exact locations of the points of nucleation are different for each
repetition of the experiment; they are obviously subject to effects
which we have to denote for now as random since we attribute them
to conditions that are not easy to analyze in the details, such as
impurities of the PDMS surface as hypothesized in [Weinhardt et al.
2020b]. In any case, we cannot determine or predict the points of
nucleation a-priori, thus we use here data from an experimental run
52 min after start to determine the initial nuclei for the simulation
model.

The model leaves its range of validity in approaching conditions of
clogging; it is therefore stopped shortly before clogging. We compare
the results of the final state of the simulation with a corresponding
state of the experimental run that shows similar clogging behavior.
In the comparison, we characterize crystal aggregates by centroid
and volume.

Figure 8.5 shows the initial and the final distribution of precipitated
calcite in both experiment and simulation. All crystal aggregates
show some growth, and we observe near-clogging at the end of the
third pore body. For further investigation and more convenient refer-
encing, we number the crystal aggregates from left to right, as shown
in Figure 8.6. The three crystal aggregates at the end of the third
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pore body are excluded from the comparison and thus numbering,
since they merged during the experiment. Also, new nucleation
points forming after the initial 52 min are not considered, as they
would have to be placed into the running simulation. The black dot
in the pore throat between the third and the fourth pore body is an
impurity of the micro-fluidic cell and not a calcite crystal.

While the final state of the simulation and the corresponding state
of the experimental run match fairly well, the elapsed time in exper-
iment and model is different. The pictures of the experiment shown
in Figure 8.5 are at 52 min and 112 min after the start of the experi-
ment. Compared to the elapsed 60 min, the simulation reaches its
final state after 287 min. There are several reasons for this. Firstly,
the model is two-dimensional and therefore cannot capture all effects
of flow around the precipitates. In particular, it assumes that crystal
aggregates span the whole height of the micro-fluidic cell, i.e., they
form cylindrical shapes. The work [Weinhardt et al. 2020b] shows
that this is not true and this is discussed further in Section 8.3.2.
Secondly, the model neglects electrodiffusion, which has been shown
to enhance the precipitation process in similar models, see [Zhang
and Klapper 2011]. Lastly, both the ureolysis rate 𝑟u,cell and the
determination of the inorganic carbon concentration 𝑐in at the inflow
boundary are subject to uncertainty. We find from multiple simula-
tion runs that the crystal-growth rate is approximately reciprocal to
𝑟u,cell.

8.3.1 Movement of Centroids

We determine the centroid of each crystal aggregate in the simulation
by integrating over an area containing the crystal aggregate. For
the experimental data, the same is done after image segmentation.
In Figure 8.6, the evolution of the centroids relative to the initial
position is shown.

In both experiment and simulation, it can be observed that the
values of the x-coordinate of the centroids decrease over time, i.e., the
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Figure 8.6: Growth of precipitates; top: Change of the position
of the centroids as vector (20 times enlarged) for simulation
(blue) and the experiment (red); bottom left: change of
the position of centroids relative to the initial location for
the crystal aggregates 2 and 4; bottom right: streamlines
and inorganic carbon concentration c around the crystal
aggregates 2 and 4, obtained from the simulation.
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crystal aggregates grow in upstream direction. To comprehend this,
we exemplarily consider crystal aggregates with numbers 2 and 4.
In Figure 8.6 the inorganic carbon concentration around crystal
aggregate 5 is shown. The oversaturated calcium carbonate gets
transported to the upstream side of the aggregate and precipitates
there due to the fast time scale of precipitation. When the fluid
reaches the downstream side of the aggregate, little oversaturation
of calcium carbonate is left and therefore nearly no precipitation is
observed at this side.

We conclude from the simulation that the growth process is governed
by the interplay of transport and diffusion close to the crystal aggre-
gate. A lower flow rate and more diffusion lead to a less pronounced
growth in the upstream direction. Indeed, this can be observed
when comparing pore throats, which have a high flow rate, with pore
bodies. Figure 8.6 shows that crystal aggregates located in pore
throats grow more in the upstream direction than crystal aggregates
located in pore bodies.

A second observation is that in both experiment and simulation the
centroids mainly grow towards the center of the channel, as seen
exemplary for crystal aggregate 4 in Figure 8.6. The primary cause
for this effect is that once the precipitate reaches a wall, it cannot
grow further in this direction. Another cause is that the flow velocity
close to the wall is small. Therefore, more calcium carbonate gets
transported to the side of the crystal aggregate facing towards the
center of the channel than to the most upstream point. Consequently,
the centroid moves towards the center of the channel.

In contrast to the simulation, the centroid of crystal aggregate 1
moves towards the wall in the experiment, see Figure 8.6. This is
one of the major differences observed between model and experiment.
One possible reason for this is a new nucleation point in front of
crystal aggregate 1 that formed only during the experiment. This
new nucleation point cannot be taken into account in the simulation,
as it was not present in the model’s initial configuration. Another
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possible reason are challenges in image segmentation, due to the
reflective surface of the crystal aggregate.

In conclusion, the model matches the observed data well, and thus
can capture dominating mechanisms for determining crystal-growth
directions in this micro-fluidic EICP setup. Growth of the crystal
aggregates leads to a shift of centroids in the upstream direction,
and this effect is more pronounced in pore throats, where the flow
rate is higher.

8.3.2 Growth of Crystal Aggregates

While the previous section focused on the direction of growth of
the precipitates, we compare now the volume change of the crystal
aggregates. The mathematical model is two-dimensional and assumes
that 𝜙 is constant across the height of the micro-fluidic cell. Therefore,
the volume of the precipitates can be computed by integrating over
the calcite fraction 1 − 𝜙 and subsequently multiplying by the height
of the cell. The three-dimensional shape of the crystal aggregates
is therefore obtained by extruding the two-dimensional data, which
cannot analogously be applied for the experimental data. It has
been shown in [Weinhardt et al. 2020b], that the most suitable shape
approximation for estimating the (3D) volume of the precipitates in
micro-fluidic cells from (2D) optical microscopy data is the spheroidal
shape. A representative radius is calculated from the projected area
of the aggregates. Based on this radius, the volume can be derived
for the assumption of a spheroidal shape. This approach is described
in [Weinhardt et al. 2020b] and is based on the idea given in [Kim
et al. 2020]. During the here investigated time frame of 60 minutes
the radii of the crystal aggregates range from approximately 5 𝜇m
to 35 𝜇m. Compared to the height of the channel of 85 𝜇m, the radii
of the crystal aggregates are smaller than half of the channel height.
Therefore, the crystal aggregates are not expected to reach all the
way from the bottom to the top of the micro-fluidic cell.
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Figure 8.7: Growth of precipitates; a) Total growth of volume
over the velocity magnitude at the initial position of the
crystal aggregates, obtained from stationary Stokes simulation
without precipitates. b) Total growth of the volume over the
velocity integrated over the area around the crystal aggregates,
as obtained from the numerical model (8.4)–(8.9).
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In Figure 8.7 a), the growth of the precipitates is plotted over
the velocity magnitude at the initial position of the precipitates.
These velocity values are obtained from a stationary flow simulation
without any precipitates present. More precisely, this means solving
a stationary version of the equations (8.5) and (8.6) with 𝜙 = 1 and
𝐽 = 0 everywhere. We call velocities obtained from this simulation
initial velocities.

As the growth of the precipitates is mainly driven by the transport
of carbonate ions to the crystal aggregates, the initial velocity at
the nucleation points gives a good estimate for the carbonate supply
at specific locations in the domain. Exemplary, we compare crystal
aggregates 4, 5 and 6, as labeled in Figure 8.6 a). Crystal aggregate 6
is located at the outer part of a pore body. This leads to a relatively
small initial velocity and a slow growth of volume. In contrast,
crystal aggregate 5 lies in the center of the pore body and right after
a pore throat. This implies a high initial velocity and, therefore, a
large amount of carbonate ions passing by. Crystal aggregate 4 is
in a pore-throat, where generally the velocities are high due to the
reduced cross-sectional area. However, it sits right at the wall of the
throat, where the velocity is reduced due to the shear forces caused
by the wall friction.

From this analysis, we conclude that there is a tendency of the crystal
aggregates to grow faster and bigger where the initial velocities are
higher. This is directly linked to the supply of carbonate ions. The
linear regressions, illustrated as dashed lines in Figure 8.6 a) show a
good agreement between simulation and the experiments. As already
mentioned in Section 8.3.1, crystal aggregate 1 is again an obvious
outlier and is therefore excluded for determining the linear regression
of the experimental data. The coefficient of determination (R2) for
the simulation data clearly indicates a linear trend, while the one
for the experimental Dataset indicates a weaker, but still significant
trend.

However, the initial velocity does not take into account that the
fluid flow is influenced by the precipitates. Especially in pore-throats
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precipitates reduce the cross-sectional area and lead therefore to
higher velocities. As our introduced mathematical model includes
the influence of precipitates on the fluid flow, we expect a better
correlation when evaluating the velocity for the full model. The result
can be seen in Figure 8.7 b), where we use the velocity field obtained
from the full numerical model for the initial calcite distribution. We
cannot evaluate the velocity at the center of the crystal aggregates,
as there is no fluid flow in the precipitates. Instead, we now integrate
the magnitude of the velocity over a disk shaped area around the
crystal aggregates. The center of the disk coincides with the center
of the crystal aggregate, and the radius is 1.8 times the diameter of
the crystal aggregate.

Compared to Figure 8.7 a), the results in Figure 8.7 b) show a more
evident linear correlation between the velocity magnitude close to
the precipitates and the volume growth of the precipitates. The
coefficient of determination for the simulation increased from 0.72
to 0.75. We conclude that the velocity field plays a significant role
for the growth of the precipitates and the influence of precipitates
on the flow field should not be neglected.

8.4 Conclusions

We have developed a phase-field approach for modeling crystal growth
in enzymatically induced calcite precipitation and compared it to
micro-fluidic experiments. Without any additional calibration there
is a good qualitative agreement between model and experiment.
Quantitatively, there is a very good agreement for the movement of
centroids, and a good agreement for the growth of crystal aggregates.
Only the predicted time until near-clogging differs significantly.

This joint experimental and numerical study allows for new insights
into the dominant processes and mechanisms involved in the growth
of crystal aggregates. We have seen that growth is strongly dependent
on the flow conditions, i.e., the flow field and corresponding concen-
trations of the inorganic carbon. The concentrations are subject to
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local changes due to reaction but also due to the complexity of the
flow field which is influenced by the geometry of the flow cell and the
pattern of precipitates. In particular for a single crystal aggregate,
the growth is determined by the interplay between transport around
the aggregate and diffusion towards the surface.

It has been observed consistently in experiment and simulation that
nuclei show a clear tendency towards growing upstream and towards
the center of the channel. Additionally, the growth rate is correlated
with the magnitude of flow velocity, leading to a faster growth in the
center of the channel.

A better understanding of the pore-scale mechanisms involved in
EICP-related growth of crystals will contribute to developing op-
timization strategies for an effective use of the EICP technology.
Perspectively, the phase-field approach presented here can be further
developed to describe also microbially induced precipitation (MICP),
where the mechanisms of growth are even more complex due to the
involvement of biofilm in the pore space.
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Conclusion
and Outlook

We have derived an Allen–Cahn–Navier–Stokes model for reactive
transport including mineral precipitation and dissolution in Chap-
ter 2. In Chapter 3 we extended the Cahn–Hilliard–Navier–Stokes
model from [Abels, Garcke, et al. 2012] to include a solid phase with
reactive fluid–solid interfaces. Using matched asymptotic expansions,
we have shown that the phase field models reduce to the expected
sharp interface models, when the width of the diffuse interface ap-
proaches zero. For multi-phase flow we impose a fixed contact angle
at the contact point. In particular, the Navier-slip condition real-
ized in the Cahn–Hilliard–Navier–Stokes model is novel for diffuse
fluid–solid interfaces, even in the case without precipitation.

Further research could extend the phase field models to include
more physical phenomena. For example, experiments show that the
influence of electrostatic fields should not be neglected, and that
small mineral particles are transported by the fluid flow. Moreover,
precipitation and dissolution process is sensitive to the temperature,
and it is a major challenge to formulate thermodynamically consistent
non-isothermal extensions of the models presented in this dissertation.
In this case, the evaporation of one fluid phase is also of interest.

While the numerical discretization of the Cahn–Hilliard model is
well-suited for rapid development of new phase field models, more
intricate numerical schemes might provide better performance. In
particular, energy decreasing schemes can ensure thermodynamical
consistency on a discrete level. By developing preconditioners for the
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Cahn–Hilliard model, larger experimental setups can be simulated,
and three-dimensional simulations could be feasible.

In this work we have assumed the existence of classical solutions to
the phase field models. Further research is needed to prove existence
of solutions in a suitable weak form. This would also allow for a-priori
bounds, which are necessary for more rigorous upscaling techniques,
such as two-scale convergence.

We have derived a diffuse domain model for two fluid phases in
Chapter 4. The direct application of this model is to predict the
transmissibility of multi-phase pore network models (see Section 4.3).
We plan to use the diffuse domain model to find stationary fluid
distributions and switch to the Cahn–Hilliard model of Chapter 3
to model precipitation on a slower timescale. Also, data-driven
approaches might be needed to speed up the prediction of the trans-
missibility, as pore network models contain numerous pore throats,
which have to be simulated.

When considering a porous medium, the proposed phase field models
can be seen as pore-scale models. By assuming the medium to
be periodically perforated, we derive an upscaled counterpart of
the Allen–Cahn–Navier–Stokes model in Chapter 5. In Chapters 6,
and 7 we consider the simplified geometry of a thin strip and derive
upscaled models for the Allen–Cahn–Navier–Stokes model and the
Cahn–Hilliard–Navier–Stokes model, respectively. The resulting
effective equations for flux and ion concentration are valid at the
Darcy-scale. We obtain the cell problems providing the effective ion
diffusion, permeability and porosity. In particular, the cell problems
still contain a phase field model encoding information about the
pore-scale geometry. While the cell problems in Chapters 5 and 6
are decoupled, this is not the case for the two-phase flow model in
Chapter 7. Only by discretizing the upscaled equations with a finite
volume scheme in space and an explicit Euler scheme in time, we
obtain microscopic cell problems that are fully decoupled in each
time step and can therefore be solved in parallel.
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In [Bastidas Olivares et al. 2021], a two-scale iterative scheme is
developed for the model proposed in Chapter 5. A cell problem
is assigned to each macroscopic grid cell, and cell problems are
updated adaptively, based on ideas in [Redeker et al. 2016]. Also,
the convergence of the scheme is shown in a simplified setting.

We have investigated the sharp interface limit of the upscaled Cahn–
Hilliard model in Chapter 7, and found under additional assumptions
on the geometry a fully upscaled model. This model only consists
of macroscopic equations for total flux, pressure, ion concentration,
and the width of each fluid phase. Additional analysis shows that
the upscaling and the sharp interface limit commute.

Further research is needed to generalize the upscaling of two-phase
flow in a thin strip in a multitude of directions. The most obvious
next step is to consider three-dimensional geometries, such as a
thin tube. In such a case, the curvature of the fluid–fluid interface
will be bigger by a factor of 𝛽−2 compared to the two-dimensional
case. Therefore, surface tension effects will enter the leading order
equations of the momentum equation. As a result, one has to
introduce a faster time-scale to resolve relaxation in the cross-section
towards an equilibrium state. Another possible direction for future
research is the consideration of a finite number of points where the
assumption of slow variation along the thin strip is not fulfilled. This
includes three phase contact points, as well as the N-waves shown
in Section 7.5. Such cases can not be upscaled with the current
assumptions, and the numerical investigation shows no agreement
between the fully resolved and the upscaled model. In future models,
it might be possible to describe regions with fast variation along the
thin strip as fully resolved, and couple these regions on each side
with the upscaled phase field model.

In Chapter 8 we have compared the Cahn–Hilliard model from
Chapter 3 to micro-fluidic EICP experiments. Without additional
calibration, we find an excellent agreement for growth and growth di-
rection of crystal aggregates. This comparison allows for new insights
into mechanism involved in the growth of crystal aggregates.
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Recent micro-fluidic EICP experiments in more complex geometries
show the development of a preferential flow path. Further research
is needed to predict under which flow conditions this path forms,
and the models developed here might give some insight.

In summary, we have developed several phase field models for pore-
scale flow with reactive fluid–solid interfaces. We show that these
models can accurately predict micro-fluidic EICP experiments. Using
homogenization, we have upscaled these phase field models in a
periodic porous medium and in a thin strip. The resulting two-scale
models are able to encode a large variety of pore-scale geometries
via the corresponding cell problems.
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Abstract
The overarching topic of this dissertation is multi-phase flow
in porous media. In the presence of salts and their ions,
precipitation and dissolution can alter the pore-space and have
a great impact on flow through porous media. Therefore, we
need reliable models that can describe these effects accurately
both on the pore-scale and on larger scales.
In this dissertation, we first propose several pore-scale models
for multi-phase flow including reactive fluid–solid interfaces.
In these models, both fluid–fluid and fluid–solid interfaces are
resolved as diffuse interfaces using the phase field method. We
investigate the thermodynamical consistency of the models
and find their sharp interface limit using asymptotic analysis.
We proceed to upscale the pore-scale models either using
homogenization in a periodic porous medium or transversal
averaging in the simplified geometry of a thin strip. The results
are multi-scale models consisting of averaged equations for
flux and ion concentration, with parameters that have to be
determined through cell problems. These cell problems encode
information about the geometry of the microscale at each
macroscopic point.
Lastly, we apply the developed models to investigate enzymat-
ically induced calcite precipitation. We compare simulation re-
sults to micro-fluidic experiments and find excellent agreement,
in particular for the growth direction of crystal aggregates.

The Phase Field Approach for
Reactive Fluid–Solid Interfaces:
Modeling and Homogenization

Lars von Wolff


	Abstract
	Related Publications
	Introduction
	Reactive Multi-Phase Flow in Porous Media
	Example for Microstructural Evolution: EICP in Porous Media

	Phase Field Models for Multi-Phase Flow
	Matched Asymptotic Expansions and the Sharp Interface Limit
	Sharp Interface Limit for the Allen–Cahn Equation

	Upscaling in Porous Media

	Phase Field Models for Reactive Fluid–Solid Interfaces
	The Allen–Cahn–Navier–Stokes Model
	The Reactive Transport Problem For Single-Phase Flow
	The Sharp Interface Formulation
	The Phase Field Formulation
	The Regularized Phase Field Formulation

	The Sharp Interface Limit
	Outer Expansions
	Inner Expansions

	Numerical Investigation of the Phase Field Model
	Dissolution of a Calcite Crystal
	Effect of Flow Field Strength on Dissolution


	The Cahn–Hilliard–Navier–Stokes Model
	The Reactive Transport Problem for Multi-Phase Flow
	The Sharp Interface Formulation
	The 2f1s-Phase Field Model
	The delta-2f1s-Phase Field Model
	Conservation of Total Mass, Ions and Volume Fraction
	Thermodynamical Consistency
	Algebraic Consistency

	The Sharp Interface Limit
	Outer Expansions
	Inner Expansions, Leading Order
	Inner Expansions, First Order
	Triple Point Expansions

	Discretization and Implementation
	Numerical Investigation of the Phase Field Model
	Nucleus in Channel Flow
	Variable Slip Length


	The Cahn–Hilliard–Navier–Stokes Model as a Diffuse-Domain Model
	Multi-phase Flow in a Diffuse Domain
	The Sharp Interface Formulation
	The DD-2f1s-Phase Field Model
	Thermodynamical Consistency

	The Sharp Interface Limit
	Outer Expansions
	Inner Expansions, Leading Order
	Inner Expansions, First Order
	Triple Point Expansions

	Numerical Investigation


	Upscaling of Reactive Flow
	Upscaling the Allen–Cahn Model Using Periodic Homogenization
	Upscaling
	The Scale Separation
	Non-Dimensional Model Equations
	The Formal Asymptotic Expansions
	The Upscaled Allen–Cahn–Navier–Stokes Model

	Numerical Investigation for the Upscaled Model
	Solutions to Cell Problems


	Upscaling the Allen–Cahn Model in a Thin Strip
	Upscaling
	Transversal Averaging
	The Averaged Allen–Cahn–Navier–Stokes Model

	Numerical Investigation
	Comparison to the Sharp Interface Formulation
	Comparison to the Original Two-Dimensional Formulation


	Upscaling the Cahn–Hilliard Model in a Thin Strip
	Non-dimensionalization
	Upscaling in a Thin Strip
	Scaling of Non-Dimensional Numbers
	Asymptotic Expansions
	The Upscaled delta-2f1s-Model

	Sharp-Interface Limit of the Upscaled delta-2f1s-Model
	Assumptions and Scaling of Non-Dimensional Numbers
	Outer Expansions
	Inner Expansions
	The Upscaled Sharp-Interface Model
	The Upscaled Sharp-Interface Model in a Simplified Geometry with Symmetry
	Asymptotic Consistency

	Numerical Scheme for the Upscaled delta-2f1s-Model
	Numerical Investigation
	Comparison: Formation of an N-Wave
	Comparison: Precipitation



	Applications
	Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation
	Micro-Fluidic Experiments
	Experimental Setup and Procedure
	Kinetics of Urea Hydrolysis

	Phase Field Model for EICP
	Modifications to the delta-1f1s Model
	Numerical Implementation
	Calculation of the Inflow Conditions

	Results and Discussion
	Movement of Centroids
	Growth of Crystal Aggregates

	Conclusions

	Conclusion
	Bibliography


