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Abstract

We consider a model for precipitation and dissolution in a porous medium, where ions transported by a

�uid through the pores can precipitate at the pore walls and form mineral. Also, the mineral can dissolve and

become part of the �uid as ions. These processes lead to changes in the �ow domain, which are not known

a-priori but depend on the concentration of the ions dissolved in the �uid. Such a system can be formulated

through conservation equations for mass, momentum and solute in a domain that evolves in time. In this

case the �uid and mineral phases are separated by a sharp interface, which also evolves. We consider an

alternative approach by introducing a phase �eld variable, which has a smooth, di�use transition of non-zero

width between the �uid and mineral phases. The evolution of the phase �eld variable is determined through

the Allen-Cahn equation. We show that as the width of the di�use transition zone approaches zero, the

sharp-interface formulation is recovered. Considering a periodically perforated domain mimicking a porous

medium, the phase �eld formulation is upscaled to Darcy scale by homogenization. Then, the average of the

phase �eld variable represents the porosity. Through cell problems, the e�ective di�usion and permeability

matrices are depending on the phase �eld variable. We consider some numerical examples to show the

behavior of the phase �eld formulation with respect to the width of the di�use interface, both in the cell

problems for a perforated porous medium and for a thin strip.

1 Introduction

Understanding mineral dissolution and precipitation processes in porous media are important as they appear in
many applications of highest societal relevance. Examples in this sense are in soil salinization, geological CO2
sequestration, copper leaching or geothermal energy. In many of the situations mentioned above, experiments
are unfeasible or even impossible, hence simulations based on reliable and accurate mathematical modeling is
a key strategy. The most challenging aspect for the mathematical modeling appears when the �ow domain
is altered due to dissolution and precipitation. More precisely, the dissolved ions can form a mineral, hence
they can leave the �uid domain and rather become part of the stationary mineral domain. Due to this, the
space available for �ow (the �uid domain) is reduced whereas the mineral domain is increasing. Oppositely, the
mineral domain shrinks as minerals dissolve into ions becoming part of the �uid. To mathematically model such
processes one needs conservation laws for mass, momentum and solute in time-dependent domains, where the
evolution of the interface separating the two domains is not known a-priori. Hence, we have a free boundary
problem, where the development of the boundary - and hence also the domains - must be accounted for.

When encountered in a porous medium, mineral precipitation and dissolution can signi�cantly alter the
pore structure, and hence a�ect the porosity and the large-scale �ow through the medium as the permeability
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evolves. For porous media �ow, we separate between two spatial scales. The detailed behavior is found at the
pore scale (the micro-scale) and the average behavior of the system is considered at the Darcy scale (the macro-
scale). Mineral precipitation and dissolution at the Darcy-scale have been considered from a theoretical point of
view by [16], where consistent reaction rates are formulated for the dissolution and precipitation processes, and
traveling waves solutions are found. The existence and uniqueness of such solutions are further analyzed in [26].
At the pore scale, the existence of weak solutions is proved in [25], while uniqueness is obtained in [31]. [25]
also analyzes the occurrence of dissolution fronts in a thin strip, introducing a free boundary separating regions
where mineral is present from those which are mineral-free. In [17], homogenization techniques are employed
to prove rigorously that the Darcy-scale model in [16, 26] is the upscaled counterpart of the pore-scale model
in [25].

In all cases mentioned above, the mineral layer is assumed to have a negligible thickness when compared even
to the micro-scale (the pores) and therefore the presence of a mineral is accounted in form of a concentration.
A di�erent approach is adopted in [30], where the mineral layer is assumed to have a non-negligible thickness
and therefore precipitation and dissolution can alter the �ow domain at the micro-scale. The existence and
uniqueness of a weak solution for this free-boundary model is proved, however, in the simpli�ed case of a one-
dimensional domain. This situation has extended to the higher dimensional case. In [28] the pore scale model
is de�ned in a two-dimensional thin strip, where a free-boundary model for precipitation and dissolution is
included. The Darcy-scale model is derived by transversal averaging. [27] extend this by considering a general
porous medium with periodic grains, and a level set formulation is used to account for the presence of the free
boundary at the pore scale. These models were later extended to include temperature-dependence for a thin
strip [7] and for a periodic porous medium [8], where the e�ective properties of the latter model was considered
further in [10]. Also, the upscaling in transport dominated regimes, leading to models that are similar to Taylor
dispersion is performed in [9, 19]. A similar model is considered in [24], but restricted to pore-scale di�usion
processes in evolving domains. There a Darcy-scale model is derived, for which the existence of strong solutions
is proved up to clogging.

As mentioned above, di�erent approaches are possible when considering free boundary models. One can
formulate an explicit equation for the location of the free boundary, through e.g., the width of the mineral
phase in a thin strip as in [9, 7, 19, 28, 30]. For more general geometries, a level set formulation has been
widely used, as in [8, 24, 27]. Upscaling using homogenization of level-set formulations can be tedious due to
the strong coupling between the level set equation and the other model equations, as the asymptotic expansion
has to be applied also for the level set and hence for the location of the interface, as done in [8, 24, 27]. However,
the upscaled model still relies on solving the pore-scale level set equation, which is quite challenging for the
numerical implementation.

An alternative approach for modeling evolving interfaces is through phase �elds. A phase �eld is an ap-
proximation of the characteristic function, and hence attains the value 1 in one domain and 0 in the other,
but has a smooth, di�use transition zone of non-zero width across the interface [11, 20]. The evolution of the
phase �eld is through a phase �eld equation, which can be derived from a minimization of the free energy.
Most commonly used are the Allen-Cahn [4] and Cahn-Hilliard [12] equations for evolution of the phase �eld.
While the Cahn-Hilliard equation has the advantage of conserving the phase �eld parameter, it introduces
fourth-order spatial derivatives which can lead to numerical di�culties. For the Allen-Cahn formulation one
can prove that the phase �eld remains bounded by 0 and 1 and thus in the physical regime, as it involves only
second-order derivatives. On the other hand, it is generally not conservative, although conservative reformula-
tions for two-phase �ow [15] and multi-component systems [21] exist. However, these formulations are globally
and not locally conservative. The Allen-Cahn equation allows the interface to evolve due to curvature e�ects
(Gibbs-Thomson e�ect), which may or may not be desirable from a chemical point of view [23]. We will use
an Allen-Cahn equation for our phase �eld formulation, although curvature e�ects are not our primary point
of interest. We mention that [32] formulated an Allen-Cahn equation for a solid-liquid interface evolving due
to solute precipitation and dissolution, where surface curvature e�ects were removed. However, the model does
not include �uid �ow.

To introduce a di�use transition zone, the model equations (i.e. the conservation of mass, momentum and
solute) need to be reformulated in the combined domain of �uid and mineral in a consistent manner. The
combined domain is then stationary. This reformulated model has to incorporate the boundary conditions of
the original model at the evolving interface as part of the model equations. An essential property of a phase
�eld formulation is that the corresponding sharp-interface formulation (i.e., the original model equations and
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boundary conditions at the evolving interface) is recovered when the width of the di�use interface approaches
zero [13, 20]. This limit can be investigated using matched asymptotic expansions [11].

Considering mineral precipitation and dissolution, [29] proposed a phase �eld formulation based on Allen-
Cahn for the movement of the liquid-solid interface, but without �ow in the �uid phase. Later [22] extended an
equivalent formulation of [29] to include two �uid phases - with curvature e�ects between them - but still without
�ow. There, the interfaces are moving due to curvature e�ects. An Allen-Cahn formulation for two-phase Stokes
�ow with curvature e�ects on the evolving �uid-�uid interface, but without chemical reactions, was formulated
in [1]. Using matched asymptotic expansion techniques, in each of these three papers it is shown that the
phase �eld models reduce to the corresponding sharp-interface models. The aim in this paper is to formulate
a phase �eld model for mineral precipitation and dissolution, in which the �ow of a �uid phase transporting
the precipitating solute is also taken into account. The model builds on the ones in [22, 29]. Compared to [1],
where the moving interface separates two mobile �uid phases, the current moving interface separates a mobile
phase (the �uid) and an immobile (mineral) phase. Therefore the formulation in [1] cannot be applied here.
In this respect, the present situation is more similar to the melt convection model considered in [5], where the
interface between stationary solid and �owing �uid is evolving due to melting. However, [5] did not consider
the sharp-interface limit for their phase �eld formulation.

This paper is organized as follows. In section 2 the phase �eld formulation is introduced, based on the
sharp interface formulation. Next, in section 3 we show that the phase �eld formulation reduces to the sharp
interface formulation when the width of the di�use interface approaches zero. Then homogenization techniques
are applied in section 4 to derive Darcy-scale counterpart of the phase �eld model proposed here. Finally,
section 5 provides some numerical examples. First we study the behaviour of the upscaled model parameters in
terms of the di�use interface parameter, and then the convergence of the homogenization process for a simpli�ed
situation, where the model is de�ned in a thin strip.

2 Formulation of the reactive transport problem

Before introducing the phase �eld formulation, we formulate �rst the corresponding sharp interface model
including a free boundary. Both models are restricted to the case where only one �uid phase is present, which,
in the case of a porous medium, can be seen as a single-phase, fully saturated �ow. Moreover, the density and
viscosity of the �uid are assumed constant. Furthermore, we only consider a simpli�ed electrochemical system,
where the precipitate is formed at the boundaries of the �ow domain (the pore walls) and is the product of
the reaction between two ions di�using into and transported by the �owing �uid. If the di�usion coe�cients
of the two ions is the same, whereas the system is electro-neutral, one can simplify the chemistry by only
considering one equation for the solute concentration, as knowing the concentration of one solute and using the
electro-neutrality of the system the other concentration is obtained straightforwardly (see [16, 25, 30]).

The models below are given in a dimensional framework. The nondimensionalization is discussed later, in
section 4.2.

2.1 Sharp interface formulation

We start with the sharp interface formulation, which motivates later the phase �eld model. In this case, we let Ω
denote the entire domain (the porous medium), which is divided into two disjoint sub-domains: one occupied by
the �uid, and another occupied by the mineral. The mineral layer is the result of precipitation and dissolution,
and has therefore a variable thickness that is not known a-priori. Hence the domains occupied by the �uid and
by the mineral are both time-dependent. Letting t ≥ 0 stand for the time variable, and denoting by Ωf (t) the
(time-dependent) �uid domain, the conservation laws for the �uid, its momentum and for the solute are:

∇ · q = 0 in Ωf (t), (1a)

ρf∂tq + ρf∇ · (q⊗ q) +∇p = µf∇2q in Ωf (t), (1b)

∂tu+∇ · (qu) = D∇2u in Ωf (t). (1c)

Here q is velocity and p is pressure in the �uid, and ρf and µf are the constant density and viscosity of the
�uid. Finally, u is solute concentration and D its di�usivity.
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In the mineral domain Ωm(t), the mineral is immobile and has a constant concentration u∗, which reduces
(1a)�(1c) to

q = 0, in Ωm(t).

In what follows we assume that the concentration in the mineral is always larger than the one in the �uid,
namely u∗ > u(x, t) for all t ≥ 0 and x ∈ Ωf (t).

We let Γ(t) stand for the free boundary separating Ωf (t) and Ωm(t). Observe that for any time t one has

Ω = Ωf (t) ∪ Ωm(t) ∪ Γ(t), and Ωf (t) ∩ Ωm(t) = ∅.

At Γ(t), to guarantee the mass balance we adopt the Rankine-Hugoniot boundary conditions for the �uid and
for the solute. We assume that the chemistry does not lead to any volume change, which means that one mineral
mole takes exactly the same volume as the one occupied in the �uid by the ion moles forming the mineral (see
[8, 27]). With this, the conditions at the moving interface are

vn + γκ = − 1

u∗
f(u) on Γ(t), (2a)

q = 0 on Γ(t), (2b)

vn(u∗ − u) = n ·D∇u on Γ(t), (2c)

where vn is the speed of the moving interface in the normal direction n pointing into the mineral, γ is the
di�usivity of the interface, and κ is the curvature of the moving interface.

Observe that (2a) is describing the movement of the free boundary due to precipitation and dissolution.
More precisely, the function f is the di�erence between the precipitation rate and the dissolution rate. Without
being restricted to this choice, we use a simple reaction rate inspired by the mass action kinetics, namely

f(u) = fp(u)− fd = k

(
u2

u2
eq

− 1

)
, (3)

where ueq is the (known) equilibrium concentration for which u∗ > ueq, and k is a reaction constant of dimension
mol
m2·s . This choice of reaction rate corresponds to a preicipitation rate increasing with ion concentration and
a constant dissolution rate. Note that, to avoid dissolution whenever no mineral is present, in [16, 25] the
dissolution rate is given as a multi-valued rate involving the Heaviside graph.

As follows from (2a), next to the precipitation and dissolution, the free boundary is also moving due to
surface curvature. The latter e�ect is more common for two-phase �ow, but can also occur for interfaces
separating a �uid and solid phase. This assumption is natural when minimizing the surface free energy [2, 23].
In our case, γ will be very small.

The last two conditions at Γ(t) are ensuring the mass balance for the �uid and for the solute. Since we
assume no volume change in connection with the chemistry, the normal component of the �uid velocity is zero
at the moving boundary. Combined with the no-slip condition it follows that the �uid velocity q is zero at the
moving boundary. Finally, (2c) is the Rankine-Hugoniot condition for the ions. The �ux on the right-hand side
is due to di�usion as the convective �ux is zero, following from (2b). Also, the mineral is immobile, so the �ux
in the mineral sub-domain is 0 whereas the concentration u∗ is �xed.

For completeness we mention that the location of the moving interface Γ(t) can be determined as the 0
level-set of a function S : Ω× [0,∞)→ R satisfying

S(x, t) =


< 0 if x ∈ Ωf (t),

0 if x ∈ Γ(t),

> 0 if x ∈ Ωm(t).

Then, S satis�es the equation
∂tS + vn|∇S| = 0 for x ∈ Ω.
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2.2 Phase �eld formulation

An alternative to the sharp-interface formulation given above is to consider a phase-�eld formulation. In this
case one uses a phase �eld, which is an approximation of the characteristic function. The non-dimensional phase
�eld φ are close to and approaches 1 in the �uid phase, and to 0 in the mineral, and has a smooth transition of
(dimensional) width O(λ) > 0 separating the phases. In other words, λ > 0 is a phase �eld parameter related
to the thickness of the di�usive transition region. It is to be expected that when passing λ to 0, one obtains
in the limit the original sharp-interface model. In consequence, the phase-�eld approach replaces the interface
between the two phases by a smooth transition region where di�usive e�ects are included. The advantage is
that the model equations can now be de�ned on a stationary domain (here Ω) and not in time-evolving domains.
This approach, however, requires the �ow and transport equations to also be de�ned in the mineral phase as
well. Here we extend the phase �eld models in [22, 29] to include �ow:

λ2∂tφ+ γP ′(φ) = γλ2∇2φ− 4λφ(1− φ)
1

u∗
f(u), (4a)

∇ · (φq) = 0, (4b)

ρf∂t(φq) + ρf∇ · (φq⊗ q) = −φ∇p+ µfφ∇2(φq)− g(φ, λ)q +
1

2
ρfq∂tφ. (4c)

∂t
(
φ(u− u∗)

)
+∇ · (φqu) = D∇ · (φ∇u). (4d)

The model is explained in detail below.

2.2.1 Comments on the phase �eld equation (4a)

The parameter λ > 0 appearing in the phase �eld equation is assumed small and is related to the width of the
di�use interface. Further, P (φ) = 8φ2(1 − φ)2 is the double-well potential, which ensures that the phase �eld
mainly attains values (close to) 0 and 1 for small values of λ. Formally, this follows from the observation that,
if λ is small, the term P ′(φ) dominates in (4a), implying that φ approaches one of the three equilibrium values
0, 1/2, 1. Later we show that 1/2 is an unstable equilibrium, from which the conclusion follows.

The reaction rate f(u) and di�usion parameter γ are the same as in the sharp interface formulation. Note
that, due to the 4φ(1− φ) factor, the reaction term is non-zero only in the di�use transition zone between the
two phases and this factor assures that φ stays between 0 and 1. Note that in sharp-interface models, further
dissolution after all mineral is dissolved is usually avoided by using a multi-valued dissolution rate based on a
Heaviside graph (see [16, 25]), which complicates the analysis and the development of numerical schemes (see
[3, 18]). This is super�uous for the phase �eld formulation proposed here as in the absence of mineral only the
water phase is present, implying φ = 1 and therefore no dissolution can take place.

2.2.2 Comments on the �ow equations (4b) and (4c)

The �ow equations are now also de�ned in the mineral phase. To ensure that �ow only occurs in the �uid and
not in the mineral, some modi�cations have been made: Firstly, the �ow velocity q and pressure gradient ∇p
have become φq and φ∇p. This leaves the �ow equations unchanged in the �uid phase when φ = 1, whereas
these quantities are vanishing in the mineral phase where φ = 0.

Secondly, the term g(φ, λ)q is added. Here, g(φ, λ) is a decreasing, surjective and twice di�erentiable
function ful�lling g(1, λ) = 0 and g(0, λ) > 0. This way, q = 0 is the only possible solution when φ = 0 (also
see assumption A.4 in [14]). Moreover, this term must also ensure that the velocities in the di�use transition
zone between φ = 0 and φ = 1 are low and therefore works as a interpolation function for velocities in this
zone. In [5], dealing with a similar model for melting and solidi�cation, an arti�cial friction term in introduced
to ensure the desired behavior for φq inside the di�use interface. Using the current notation, their friction term
would correspond to g(φ, λ) = K(1−φ)2φ

λ2 for some constant K [5]. However, as will be explained in Remark 2,
a term of O(λ−2) would hamper the phase �eld model to approach the sharp interface model when λ↘ 0, and
therefore is not adopted here.

A similar idea is adopted in [14], focusing on shape optimization, where the term g(φ, λ) = K√
λ

(1−φ)n
φ+n is

applied. The constant n > 0 determines the shape of the function g. More precisely, a larger value of n leads to
a function that is close to an a�ne one, behaving as (1−φ). In [14], n = 10 was found to work better regarding
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numerical results. Inspired by [14], we let here g(φ, λ) = K
λ

(1−φ)n
φ+n with n = 10. Later we will see that this gives

good numerical results for the present model too. However, any function g ful�lling the requirements listed
previously can be adopted, the speci�c choice being rather based on the impact on the numerical behavior.

Finally, the term 1
2ρfq∂tφ is added to (4c) account for the combined �ow with accumulation of the phase

�eld variable, to ensure conservation of kinetic energy when there is precipitation. Note that the two time
derivatives can be combined and rewritten to ρf

√
φ∂t(
√
φq), a formulation used in e.g. [6].

2.2.3 Comments on the ion transport equation (4d)

Compared to [22], the only di�erence appearing in the ion transport equation (4d) is in the presence of the
convective term. Note that the time derivative can be rewritten as ∂t(φu + (1 − φ)u∗). This is nothing but
the derivative of the ion concentrations u (in the �uid phase) and the mineral concentration u∗ (in the mineral
phase). Recalling that in the mineral phase there is no di�usive or convective transport, (4d) is nothing but the
total mass balance of the species.

2.2.4 Decreasing energy of the phase �eld formulation

The energy associated with the model (4) is given by

E =
1

2
ρfφq

2 + γλ−1P (φ) +
1

2
γλ|∇φ|2 + φF (u),

and is the sum of the kinetic energy, the free energy of the phase �eld, and the energy of the ions. The function
F (u) is de�ned implicitly as a solution to the equation

1

u∗
f(u) = F (u)− F ′(u)u+ F ′(u)u∗.

As f(u) is increasing with u, F (u) is convex for u < u∗. Di�erentiating the above, we get that

∂t(φF (u)) = F ′(u)∂t
(
φ(u− u∗)

)
+

1

u∗
f(u)∂tφ.

When considering (4) on a bounded domain Ω with no-slip boundary conditions for q and zero Neumann
boundary conditions for φ and u at the boundary ∂Ω, one gets

d
dt

∫
Ω

Edx =

∫
Ω

[
−µf∇(φq) : ∇(φq)− g(φ, λ)q2 −DφF ′′(u)|∇u|2

− λ−1
(
ν − 1

u∗
f(u)

)(
ν − 4φ(1− φ)

1

u∗
f(u)

)]
dx,

where ν = γλ∇2φ − γλ−1P ′(φ). The �rst three terms on the right hand side describe energy dissipation due
to viscosity, friction close to the mineral, and di�usion of ions. The fourth term might be positive and thus
lead to an increasing energy. This will be the case if curvature e�ects (see (2a)) counteract the ion reaction.
However, for �xed λ, we get a bounded energy growth as in [22]. Note that the increasing energy is possible due
to the factor 4φ(1 − φ) in the reactive term in (4a). Using a multi-valued Heaviside graph for the dissolution
rate instead of the 4φ(1− φ)-factor, as commented on in section 2.2.1, would result in a model with decreasing
energy, while a regularized Heaviside graph would not. To limit the values of φ between 0 and 1 and to ease
the following analysis and numerical implementation, we choose to keep the factor 4φ(1 − φ) and not use a
Heaviside graph.

2.3 Regularized phase �eld formulation

The model (4) is formulated in the full domain Ω. In doing so, the term g(φ, λ)q is included to ensure that
q = 0 in the mineral phase. Observe that the ion concentration u and the �uid pressure p are also de�ned in
the region occupied by the mineral in the sharp interface formulation. For u, a possible extension in the mineral
domain is u∗, but this may lead to di�culties related to the regularity of u in the transition from the phase
�eld model to the sharp interface one, when λ→ 0. Moreover, there is no indication about how to extend p in
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the mineral domain. At the same time, the model in (4) does not provide any information about what values u
and p should attain in the mineral domain. Although the structure of the phase �eld equation (4a) assures that
φ will never reach 0 (nor 1), unless initialized so or if appearing on the boundary ∂Ω, φ can become arbitrarily
close to 0 (and 1). From a numerical point of view, this can lead to a badly conditioned discretization, as the
last two equations in (4) are close to degenerate whenever φ ↘ 0 and cannot be used to determine u and p in
the mineral. To avoid this, we regularize the model by adding a small, non-dimensional δ > 0 to the phase �eld
φ in the mass, momentum and solute conservation equations. The regularized model becomes

λ2∂tφ+ γP ′(φ) = γλ2∇2φ− 4λφ(1− φ)
1

u∗
f(u), (5a)

∇ ·
(
(φ+ δ)q

)
= 0, (5b)

ρf∂t
(
(φ+ δ)q

)
+ ρf∇ ·

(
(φ+ δ)q⊗ q

)
= −(φ+ δ)∇p

+µf (φ+ δ)∇2
(
(φ+ δ)q

)
− g(φ, λ)q +

1

2
ρfq∂tφ, (5c)

∂t
(
(φ+ δ)(u− u∗)

)
+∇ ·

(
(φ+ δ)qu

)
= D∇ ·

(
(φ+ δ)∇u

)
, (5d)

Note that this regularization is only needed to facilitate the numerical discretization. However, for completeness
we use it also in the analysis given below.

Remark 1. The results for decreasing and limited growth of the free energy discussed in section 2.2.4 are also
valid for the regularized formulation. To see this, one only needs to replace φ by φ + δ in the terms associated
with the kinetic energy and the energy of the ions.

3 The sharp interface limit of the phase �eld formulation

As stated before, the phase �eld model can be seen as an approximation of the sharp interface model, de�ned
in the entire domain and where the free boundary is replaced by a di�use interface region. To justify this, we
investigate the limit of the phase �eld model in (5) as λ, the width of the di�use transition zone, approaches zero
and show that this limit is exactly the model in section 2.1 We follow the ideas of [11] and distinguish between
the behavior of the solution close to the interface and far away from it. To this aim we �rst let L be a typical
length in the model and introduce the new, dimensionless parameter ξ = λ/L related to thickness of the di�use
interface region. We investigate the behavior of the solution as ξ ↘ 0 by expanding the unknowns in terms of ξ
and equating terms of similar order. This is done in two di�erent ways, close to the di�use interface (the inner
expansions) and away from it (the outer expansions), which are connected by applying matching conditions in
the transition region where both expansions are valid.

Before proceeding we mention that for the phase �eld equation the steps are the same as in [22] and therefore
these are only shown brie�y. Throughout this matched asymptotic analysis we take the regularization parameter
as δ = ξ.

3.1 The two expansions and matching conditions

Away from the interface, we consider the outer expansion of φ, u, p and q. For φ this reads

φout(t,x) = φout0 (t,x) + ξφout1 (t,x) + ξ2φout2 (t,x) + . . . , (6)

and similarly for the other unknowns.
For the inner expansion, valid near the di�use interface, we switch to local coordinates. More precisely, we

let Γ(t) denote the set of points yξ ∈ Ω along which φ(yξ, t) = 1/2. Observe that these points depend on t, and
of ξ as the model depends on λ = Lξ. With s being the parameterization along Γξ(t) (s being a scalar in the
two-dimensional case) and nξ the normal vector at Γξ(t) pointing into the mineral, one can de�ne r, the signed
distance from a point x near Γξ(t) to this interface. Clearly, r depends on x and on t, and is positive in the
mineral region. One gets

x = yξ(t, s) + rnξ(t, s), (7)
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as presented in Figure 1. It can be shown (see [11]) that

|∇r| = 1, ∇r · ∇si = 0, ∂tr = −vn, ∇2r =
κ+ 2Πr

1 + κr + Πr2
,

where κ and Π are the mean and Gaussian curvature of the interface. Further, the point yξ has the expansion
yξ = y0 + ξy1 + . . . , where y0 is a point on the interface Γout

0 (t) de�ned through φout0 = 1/2, and similarly
nξ = n0 + ξγ1n1 +O(ξ2), where n0 is the normal vector of Γout

0 (t).
With z = r/ξ and in terms of z and s, we consider the inner expansions

φin(t,x) = φin0 (t, z, s) + ξφin1 (t, z, s) + ξ2φin2 (t, z, s) + . . . , (8)

and similarly for the other unknowns. In the curvilinear coordinates (7), by the scaling of the z variable, the
derivatives are rewritten as follows. For a generic variable v or v, we obtain [11]:

∂tv = −ξ−1vn,0∂zv
in + (∂t + ∂ts · ∇s)v

in +O(ξ),

∇xv = ξ−1∂zv
inn0 +∇Γv

in +O(ξ),

∇x · v = ξ−1∂zv
in · n0 +∇Γ · vin +O(ξ),

∇2
xv = ξ−2∂zzv + ξ−1κ0∂zv +O(1),

where we have used ∇2
xr = κ0 + O(ξ) is the lowest order mean curvature and vn = vn,0 + O(ξ). Here, κ0 and

vn,0 are the curvature and normal velocity of the interface Γout
0 (t). Further, in the last equality, the properties

|∇r| = 1 and ∇r · ∇si = 0 have been used.

yξ(t, s)

yξ + rnξ(t, s)nξ

Figure 1: Local coordinates near the interface.

For the outer expansion and a �xed t and s we let y1/2± denote the limit r ↘ 0 (i.e. from the mineral side),
respectively r ↗ 0 (from the �uid side) of x rewritten in terms of the local coordinates in (7). We associate
the corresponding limit values of the outer expansion with the ones for the inner expansion, obtained when
z → ±∞. More precisely, we assume that the two expansions of the phase �eld φ ful�ll the following matching
conditions [11]:

lim
z→±∞

φin0 (t, z, s) = φout0 (t,y1/2±), (9a)

lim
z→±∞

∂zφ
in
0 (t, z, s) = 0, (9b)

lim
z→±∞

(
φin1 (t, z, s)− (z + y1)∇φout0 (t,y1/2±) · n0

)
= φout1 (t,y1/2±), (9c)

lim
z→±∞

∂zφ
in
1 (t, z, s) = ∇φout0 (t,y1/2±) · n0, (9d)

and similarly for the other unknowns.
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3.2 Outer expansions

Following the steps in [22], we substitute the outer expansion (6) for φ into the phase �eld equation (5a). For
the O(1) term, which is the leading order, one obtains

P ′(φout0 ) = 0.

This equation has three solutions: φout0 = 0, 1/2, or 1. Using the formal argument in [29], the �rst and the last
solution are stable since P ′′(0) and P ′′(1) are positive, whereas φout0 = 1/2 is unstable since P ′′(1/2) < 0. In
view of this, we see that in the limit ξ → 0 one obtains the solutions φout0 = 0 and φout0 = 1, and let Ωf0 (t) and
Ωm0 (t) be the (time dependent) sub-domains of Ω where φout0 is 1 and 0, respectively.

Using the outer expansions in the �ow equations (5b) and (5c) and the ion conservation (5d), it is straight-
forward to show that the original sharp interface model equations (1) are recovered for the points in Ωf0 (t).
Moreover, for the �ow equations one also obtains qout0 = 0 in Ωm0 (t).

3.3 Inner expansions

We now apply the inner expansions and the matching conditions to the phase �eld model to recover the boundary
conditions at the evolving interface.

3.3.1 Phase �eld equation

For the phase �eld equation (5a) we follow the steps in [22] and obtain that the dominating O(1) terms satisfy

P ′(φin0 ) = L2∂2
zφ

in
0 . (10)

Due to (9), one has limz→−∞ = φin0 (t, z, s) = 1 and limz→∞ φin0 (t, z, s) = 0. Further, φin0 (t, 0, s) = 0.5 as this
should de�ne the moving interface when ξ → 0. Hence, multiplying (10) by ∂2

zφ
in
0 , integrating the result in z

and using the matching conditions ful�lled by φin0 and the speci�c form of P (φ), one gets

∂zφ
in
0 = − 4

L
φin0 (1− φin0 ). (11)

Since φin0 (t, 0, s) = 1/2, the solution is

φin0 (t, z, s) = φin0 (z) =
1

1 + e4z/L
=

1

2
(1 + tanh(

2z

L
)). (12)

For the O(ξ) terms one obtains(
P ′′(φin0 )− L2∂2

z

)
φin1 = (L2vn,0 + L2γκ0)∂zφ

in
0 − 4Lφin0 (1− φin0 )

1

u∗
f(uin0 ).

We view the left-hand side as an operator L depending on φin0 and applied to φin1 . As L is a Fredholm operator of
index zero, the above equation has a solution if and only if the right-hand side, denoted by A(φin0 ), is orthogonal
to the kernel of L. As follows from (10), ∂zφin0 lies in the kernel of L. Since vn,0, κ0 and uin0 are independent of
z (the latter will be shown in the following section), the solvability condition implies

0 =

∫ ∞
−∞

A(φin0 )∂zφ
in
0 dz

= L2(vn,0 + γκ0)

∫ ∞
−∞

(∂zφ
in
0 )2dz − 4L

1

u∗
f(uin0 )

∫ ∞
−∞

φin0 (1− φin0 )∂zφ
in
0 dz

=
2

3
L(vn,0 + γκ0 +

1

u∗
f(uin0 )).

From this, applying matching conditions for u at the moving interface we obtain the condition

vn,0 = −γκ0 −
1

u∗
f(uout0 (t,y1/2−)),

which is the �rst boundary condition (2a) at the moving interface.
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3.3.2 Mass conservation equation

The dominating O(ξ−1) term arising from inserting the inner expansions into (5b) is

∂z(φ
in
0 qin0 ) · n0 = 0. (13)

By integrating with respect to z and using matching conditions, we obtain

qout0 (t,y1/2−) · n0 = 0.

In other words, the normal component of the velocity is zero at the moving interface. To conclude the same for
the tangential component, we consider the momentum conservation equation.

3.3.3 Momentum conservation equation

The dominating O(ξ−2) term in the momentum equation (5c) is

µfφ
in
0 ∂

2
z (φin0 qin0 ) = 0.

Integrating with respect to z and using matching conditions results in

qout0 (t,y1/2−) = 0,

which is the second boundary condition (2b) at the moving interface.

Remark 2. Note that choosing g(φ, λ) = Kφ(1−φ)2

λ2 as in [5], would lead to the dominating O(ξ−2) terms being

µfφ
in

0 ∂
2
z (φin0 qin

0 ) = Kφin0 (1− φin0 )2qin

0

Although µf and K are constants, and φin0 is known through (12), solving this equation for qin

0 is not straight-
forward and therefore it is unclear whether qout

0 (t,y1/2−) = 0 is recovered in this case.

3.3.4 Ion conservation equation

The dominating O(ξ−2) term obtained by inserting the inner expansions into (5d) is

∂z(φ
in
0 ∂zu

in
0 ) = 0.

Integrating with respect to z and using matching conditions and the fact that φin0 > 0, we obtain

∂zu
in
0 = 0,

hence uin0 = uin0 (t, s) as mentioned in the previous section.
Taking advantage of ∂zuin0 = 0 and of (13), the O(ξ−1) terms satisfy

−vn,0(uin0 − u∗)∂zφin0 = D∂z(φ
in
0 ∂zu

in
1 ).

Integrating with respect to z from −∞ to +∞ and applying matching conditions, lead to

vn,0(uout0 (t,y1/2−)− u∗) = −D∇uout0 (t,y1/2−) · n0,

which is the third boundary condition (2c) at the moving interface.
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4 Upscaling using periodic homogenization

We now consider the phase �eld model (5) to be de�ned in a periodic porous medium. The pore scale, where
grain, mineral and �uid-�lled void space are explicitly separated, will be the micro scale, and we will in the
following derive a macro scale model describing the e�ective behavior of the system. More precisely, we consider
a domain D containing small, periodically distributed grains, as sketched in Figure 2. In a porous medium, D
represent the union of the void space, mineral space and the grain space, where the grains will be considered as
perforations. We will refer to the union of the void space and mineral space as the pore space. The grains are
impermeable for �uid and no reactions take place there. Hence, the phase �eld model (5) is not de�ned in the
grain space but only in the pore space of D. The grains do not change with time, while the moving boundary
between mineral and �uid, located in the pore space of D, is still handled by the phase �eld equation as a di�use
interface. We assume that the mineral precipitates on the boundary of the perforations or at already existing
minerals, and not inside the void space. Another important assumption is that the void space in D is connected
and that the mineral never grows in such a way that the pore space is clogged.

Figure 2: Structure of porous medium. Fluid-�lled void space is marked with white, mineral is dark grey, and
non-reactive grain is light grey. The pore space is the union of the void space and mineral space.

The porous medium D contains many periodically repeating grains. This means that the phase �eld model
(5) is de�ned on a domain of high complexity. In such cases, the averaged behavior of the system is of primary
interest. In consequence we apply periodic homogenization techniques to �nd e�ective equations valid at a
larger scale, where the micro scale oscillations are no longer visible, but their e�ect is still taken into account.
This is done by identifying a scale separation and applying asymptotic expansions on non-dimensional versions
of the model equations.

4.1 The scale separation

In the dimensional setting we let ` be a typical length scale at the micro scale (that is, the pore scale), e.g., the
width of the right-most box in Figure 2) and L a typical length scale at the macro scale, e.g. the width of the
domain D. With this we de�ne ε = `/L, re�ecting the ratio between the micro and macro scales. We assume
that ` is much smaller than L, hence ε is a small number.

In what follows we rewrite the model in non-dimensional form. In doing so we introduce a local unit cell
Y = [0, 1]dim, as seen in Figure 3, where dim is 2 or 3, depending on spatial dimension, and we let the local
variable y ∈ (0, 1)dim describe points within Y . The local cell consists of the �uid part F and mineral part M ,
and the grain part G as sketched in Figure 3. Hence, locally the phase �eld model is de�ned in the pore space
P = F ∪M , while G de�nes the perforation. The boundary ΓP de�nes the (stationary) internal boundary
between perforation and the domain for the phase �eld model. The boundary ∂Y denotes the outer boundary
of the unit cell Y . At this boundary we will later apply periodic boundary conditions allowing to decouple the
unit cells from each other. However, when referring to internal boundaries, the boundary ΓP is meant.
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nP

F

M

G

Figure 3: Local pore Y = [0, 1]d. The �uid part (white) is F , mineral part (dark grey) is M and grain part
(light grey) is G, along with a normal vector nP at the internal boundary ΓP . The outer boundary of the local
pore, ∂Y , is marked with black.

To distinguish between the two scales in the model we use x as the variable at the macro scale, which is
then connected to the local, micro scale variable y through y = ε−1x. This can be interpreted as x only seeing
the macro-scale behavior, while the zoomed-in y sees the micro-scale rapid changes in a single cell. Hence for
each macro-scale point x, we can identify a unit cell, with its own local variable y.

With this we have that the perforated domain of the phase �eld model is the union of all the local pores P ,
scaled by ε. This means that the domain depends on ε and can be written as

Ωε = ∪w∈WD{ε(w + P )},

whereWD is a subset of Zdim satisfying D = ∪w∈WD{ε(w+Y )}, which is the complete (non-perforated) medium
domain seen to the left in Figure 2. We use ε as a superscript to indicate dependence on ε. The union of all
internal boundaries ΓP is denoted by

Γε = ∪w∈WD{ε(w + ΓP )}.

4.2 Non-dimensional model equations

For identifying which terms are dominating in the model and hence are important for the upscaling, we �rst
non-dimensionalize the model equations (5). The assumptions made below on the typical �ow rate, viscosity
and pressure di�erence, ensure that we are in the range of Darcy's law, which means that at the macro scale the
conservation of momentum equation (5c) becomes a Darcy-like law. Also, we ensure that the di�use interface
(that is, the transition between mineral and �uid) stays within a local pore. Non-dimensional variables and
quantities are denoted with a hat and are de�ned as

t̂ = t/tref, x̂ = x/L, ŷ = y/`, λ̂ = λ/`,

q̂ε = q/qref, ûε = u/uref, p̂ε = p/pref, û∗ = u∗/uref,

D̂ = D/Dref, µ̂f = µf/µref, ρ̂f = ρf/ρref k̂ = k/kref,

γ̂ = γ/γref K̂ = K/Kref.

Note the superscript ε for the variables having a highly oscillatory behavior. We assume that the reference
quantities are related by

qref = L/tref, pref = q2
refρrefL

2/`2, Dref = L2/tref, µref = ρrefLqref

kref = uref`/tref, γref = `2/tref, Kref = ρrefqrefL/`.
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The above choices imply that the time scales for transport, di�usion and precipitation and dissolution are
comparable, which corresponds to a regime where the Pèclet, Reynolds and Damköhler numbers are of O(ε0),
and ensure we are in the range of Darcy's law. Further, the scaling of γref together with the scaling of λ with `
correspond to a Cahn number of O(ε) which is needed to keep the di�use transition zone within a local pore.
Similarly, the choice of Kref is made to still ensure low velocities in the di�use transition zone. With the choice
of kref, the non-dimensional reaction rate is given by f̂(û) = k̂(û2/û2

eq − 1).
Since from now on we will only use non-dimensional variables, we skip the hat on all variables. With this,

the dimensionless model reads

λ2∂tφ
ε + γP ′(φε) = ε2γλ2∇2φε − 4λφε(1− φε) 1

u∗
f(uε) in Ωε, (14a)

∇ ·
(
(φε + δ)qε

)
= 0 in Ωε, (14b)

ε2ρf

(
∂t
(
(φε + δ)qε

)
−1

2
qε∂tφ

ε +∇ ·
(
(φε + δ)qε ⊗ qε

))
+ (φε + δ)∇pε

= ε2µf (φε + δ)∇2
(
(φε + δ)qε

)
− K

λ

(1− φε)n
φε + n

qε in Ωε, (14c)

∂t
(
(φε + δ)(uε−u∗)

)
+∇ ·

(
(φε + δ)qεuε

)
= D∇ ·

(
(φε + δ)∇uε

)
in Ωε, (14d)

∇φε · nε = 0 on Γε, (14e)

(φε + δ)∇uε · nε = 0 on Γε, (14f)

qε = 0 on Γε. (14g)

Remark 3. Note that the analysis below remains unchanged if δ = 0, when clogging is not considered. In other
words, including an ε-independent regularization parameter δ does not a�ect the upscaling. The presence of
δ > 0 ensures that the resulting model is not degenerate, which is important for the numerical examples.

4.3 The formal asymptotic expansions

We apply the homogenization ansatz, namely we assume that the unknowns can be written as a series expansion
in terms of ε with explicit dependence on the micro- and macro-scale variables. For the phase �eld φε this reads

φε(t,x) = φ0(t,x,y) + εφ1(t,x,y) + ε2φ2(t,x,y) + . . . , (15)

where the functions φi(t,x,y) are Y -periodic in y. Similar expansions are assumed for all the dependent
variables. The introduction of the micro-scale variable y is an important aspect: While the φε needs to resolve
both the micro scale and macro scale behavior, we assume that the functions in the series expansion can separate
between slow variability through x and fast variability through y. Further, the series expansion allows to capture
the dominating behavior in φ0, while lower order behavior is captured through the subsequent terms. Also note
that macro-scale x is de�ned in the entire (non-perforated) domain D, while y is de�ned locally in a pore P .

As y is a local variable behaving like y = ε−1x, the spatial derivatives need to be rewritten accordingly.
Hence, for a generic variable v one has

∇v(x,y) = ∇xv(x,y) +
1

ε
∇yv(x,y), (16)

where ∇x and ∇y are the gradients w.r.t. x, respectively y. We insert the asymptotic expansions (15) and the
rescaled derivatives (16) into the model equations (14), and equate terms of same order with respect to ε to
isolate the behavior of the system on di�erent scales. In the regularized equations, the term φ0 + δ will appear
frequently and we will use the notation φδ0 = φ0 + δ in this case. Note that φδ0 > 0.

4.3.1 Phase �eld equation

Equating the dominating O(1) terms in the phase �eld equation (14a), gives

λ2∂tφ0 + γP ′(φ0) = γλ2∇2
yφ0 − 4λφ0(1− φ0)

1

u∗
f(u0).
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The dominating term of the corresponding boundary condition (14e) gives ∇yφ0 · nP = 0. Observe that the
above equation is similar to the original (14a), but involves only spatial derivatives w.r.t. y. Although φ0 still
depends on x, x only appears as a parameter as no derivatives w.r.t. x are involved. Recalling the Y -periodicity
in y, φ0 solves the following cell problem for the phase �eld:

λ2∂tφ0 + γP ′(φ0) = γλ2∇2
yφ0 − 4λφ0(1− φ0)

1

u∗
f(u0) in P,

∇yφ0 · nP = 0 on ΓP , (17)

Periodicity in y across ∂Y.

These cell problem are de�ned for each macro scale x, meaning thus for each pore as in Figure 3. However, the
cell problems are decoupled locally due to the periodicity requirement.

4.3.2 Mass conservation equation

The dominating O(ε−1) term in (14b) gives

∇y ·
(
φδ0q0

)
= 0 in P, (18)

which will be needed in the derivation for the momentum and ion conservation equations. Next, the O(1) terms
provide

∇x ·
(
φδ0q0

)
+∇y ·

(
φδ0q1 + φ1q0

)
= 0.

Integrating w.r.t y over P , applying the Gauss theorem and the boundary conditions q0 = q1 = 0 on ΓP
together with periodicity, one gets

∇x ·
(
φδ0q0

)
= 0 in D. (19)

The overline-notation indicates a quantity averaged over the micro scale. Formally, one can extend the quantities
de�ned in the pore space P by 0 inside the perforations G, allowing for an average over the entire cell Y . For
a scalar variable v(t,x,y) we de�ne v(t,x) = 1

|Y |
∫
Y
v(t,x,y)dy =

∫
P
v(t,x,y)dy. Note that |Y |, the volume of

Y , is 1. In this way, the average of the highest order term of the phase �eld, φ0(t,x), will correspond to the
porosity at time t at the macro-scale location x.

4.3.3 Momentum conservation equation

The dominating O(ε−1) term in (14c) yields
φδ0∇yp0 = 0,

meaning that p0 = p0(t,x) is independent of y. The O(1) terms give

φδ0(∇xp0 +∇yp1) = µfφ
δ
0∇2

y

(
φδ0q0

)
− K

λ

(1− φ0)n

φ0 + n
q0. (20)

We use the linearity of the equation and determine p1 and q0 in terms of (the gradient of) p0. With Πj(t,x,y)
and wj(t,x,y) solving the cell problems

φδ0(ej +∇yΠj) + µfφ
δ
0∇2

y

(
φδ0w

j
)

=
K

λ

(1− φ0)n

φ0 + n
wj in P,

∇y ·
(
φδ0w

j
)

= 0 in P, (21)

wj = 0 on ΓP ,

Periodicity in y across ∂Y, j ∈ {1, . . . ,dim},

we observe that

p1(t,x,y) =

dim∑
j=1

Πj(t,x,y)∂xjp0(t,x)

q0(t,x,y) = −
dim∑
j=1

wj(t,x,y)∂xjp0(t,x),
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now ful�ll (18) and (20). The boundary condition for wj on ΓP follows from q0 = 0 on ΓP . Note that the cell
problem is solved in y for a �xed x. Hence, as with the phase �eld cell problem, one can solve for single pores
independently.

Multiplying with φδ0 in the last equality and averaging over Y gives

φδ0q0 = −K∇xp0 in D, (22)

where the components of the permeability tensor K(t,x) are given by

kij(t,x) =

∫
P

φδ0w
j
i dy, with i, j ∈ {1, . . . ,dim}.

Here, wji are the components of wj , which are the solutions of the cell problems (21) with the continuous
extension wj = 0 inside the grain.

4.3.4 Ion conservation equation

The dominating O(ε−2) term from the ion conservation equation (14d) and dominating O(ε−1) term from the
corresponding boundary condition (14f) give

∇y ·
(
φδ0∇yu0

)
= 0 in P,

φδ0∇yu0 · nP = 0 on ΓP ,

along with periodicity in y. This implies that u0 = u0(t,x) is independent of y.
Further, the O(ε−1) terms from (14d) and O(1) terms from (14f) give

∇y ·
(
φδ0(∇xu0 +∇yu1)

)
= 0 in P,

φδ0(∇xu0 +∇yu1) · nP = 0 on ΓP ,

where we used (18) for the convective term. We exploit again the linearity of the problem and formulate
u1(t,x,y) in terms of (the derivatives of) u0(t,x). We let the weight functions ωj(t,x,y) solve the cell problems

∇y ·
(
φδ0(∇yω

j + ej)
)

= 0 in P,

φδ0(∇yω
j + ej) · nP = 0 on ΓP , (23)

Periodicity in y across ∂Y, j ∈ {1, . . . ,dim},

As earlier, the cell problems are solved in y for a �xed x. Then, for an arbitrary ũ1 = ũ1(t,x) we obtain that

u1(t,x,y) = ũ1(t,x) +
dim∑
j=1

ωj(t,x,y)∂xju0(t,x).

As will follow from below, only ∇yu1 will be needed for obtaining the upscaled model, therefore the function
ũ1 plays no role in the upscaling and it is not necessary to specify it.

The O(1) terms from (14d) and O(ε) terms from (14f) give

∂t
(
φδ0(u0 − u∗)

)
+∇x ·

(
φδ0q0u0

)
+∇y ·A

= D
(
∇y ·B +∇x ·

(
φδ0(∇xu0 +∇yu1)

)
in D × P,

B · nP = 0 on ΓP .

where A = φ1q0u0 + φδ0q1u0 + φδ0q0u1 and B = φδ0∇xu1 + φδ0∇yu2 + φ1∇xu0 + φ1∇yu1. The above equation
contains derivates in both x and y. To �nd the upscaled model we integrate in y over the domain P , apply
Gauss' theorem in y, use the boundary condition on ΓP and the periodicity requirement to remove the ∇y ·A
and ∇y · B terms. For the velocity terms in A, we also apply the boundary condition (14g), which gives
q0 = q1 = 0 on ΓP . This leads to the upscaled reaction-advection-di�usion equation

∂t
(
φδ0(u0 − u∗)

)
+∇x ·

(
φδ0q0u0

)
= D∇x · (A∇xu0) in D. (24)
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The component of the matrix A(t,x) are

aij(t,x) =

∫
P

φδ0(δij + ∂yiω
j)dy, with i, j ∈ {1, . . . ,dim},

where ωj is the solution of the cell problem (23). Hence, the upscaled ion conservation equation (24) is to be
solved for x ∈ D only, but receiving information from the microscale y through the e�ective di�usion matrix
and the e�ective velocity.

4.4 Summary of upscaled equations

To summarize, the upscaled system of equations consist of the three equations (19), (22) and (24) on the
macro scale, for the unknowns φq0(t,x), p0(t,x) and u0(t,x). The upscaled system is completed by three
supplementary cell problems (17), (21) and (23) to be solved locally in each single pores, providing e�ective
properties for the upscaled system.

The regularization δ was kept throughout the upscaling procedure for consistency. We introduced this
regularization for avoiding a degeneracy in the system, which would create di�culties in the numerical imple-
mentations. For the upscaled model, these di�culties are encountered in the cell problems. Hence, we only
consider φδ0 in the e�ective properties and set δ = 0 in (19), (22) and (24). Then, for macro scale x ∈ D, and
for t > 0,

∇x · (φ0q0) = 0 in D,
φ0q0 = −K∇xp0 in D,

∂t
(
φ0(u0 − u∗)

)
+∇x · (φ0q0u0) = D∇x · (A∇xu0) in D,

where the phase �eld φ0(t,x,y) is updated locally in each pore by solving

λ2∂tφ0 + γP ′(φ0) = γλ2∇2
yφ0 − 4λφ0(1− φ0)

1

u∗
f(u0) in P,

∇yφ0 · nP = 0 on ΓP ,

for all x ∈ D and t > 0. The e�ective matrices K(t,x) and A(t,x) are found through

kij(t,x) =

∫
P

φδ0w
j
i dy, where

φδ0(ej +∇yΠj) + µfφ
δ
0∇2

y

(
φδ0w

j
)

=
K

λ

(1− φ0)n

φ0 + n
wj in P,

∇y ·
(
φδ0w

j
)

= 0 in P,

wj = 0 on ΓP ,

and

aij(t,x) =

∫
P

φδ0(δij + ∂yiω
j)dy, where

∇y ·
(
φδ0(∇yω

j + ej
)

= 0 in P,

φδ0(∇yω
j + ej) · nP = 0 on ΓP ,

for i, j ∈ {1, . . . ,dim}. The unknowns wj(t,x,y), Πj(t,x,y) and ωj(t,x,y) ful�ll periodicity requirements in
y across ∂Y .

5 Numerical experiments

To illustrate the behavior of the upscaled equations and their dependence on the di�use interface width, we
consider two examples: First, we will solve the cell problems for various choices of λ, showing how the e�ective
ion di�usivity and the �ow permeability depend on the width of the di�use interface. Secondly, to illustrate the
behavior of the full system of equations, we consider a simpli�ed geometry, namely a thin strip.
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5.1 Solutions to cell problems

For sharp-interface models, cell problems for �ow and di�usion for moving-boundary problems using a level set
formulation have been derived in [8, 27]. A reasonable simpli�cation is to assume that that if the grains are
initially circles (or spheres), the reaction rate is uniform inside each pore and the mineral layer will evolve in a
radially symmetric manner and the union of the grain and of the mineral remains a circle (or sphere), see [27].
Hence, the level set formulation can be rewritten into an equation for the radius R(t,x) of the solid (grain and
mineral), where the cell problems depend on R(t,x) [10, 27]. In the radially symmetric case, the e�ective ion
di�usivity and the permeability will be scalars.

We adopt a similar approach here, by solving the cell problems (21) and (23) to determine the e�ective
permeability and ion di�usivity by assuming that the phase �eld has a smooth transition (of O(λ)) at some
distance R from the center of the cell. We do not attempt to determine permeability and di�usivity curves as
functions of R as in [10, 27] (see e.g. Figure 3 in [27]), but instead choose some values of R and investigate the
behavior as we let the di�use interface width λ vary.

The cell problems (21) and (23) are discretized using a control volume method on a staggered cartesian grid,
where the cell problem unknowns ωj and Πj are de�ned in the centers of the control volumes, and the vectors
wj are at the edges. For �uxes we apply upstream approximation for the convective terms and two-point �ux
approximation for di�usive terms. The grid is uniform and quadratical with 800 grid cells in each direction, so
that we have at least 8 grid cell through the di�use transition zone for the smallest λ. Note that the size of the
non-reactive part G does not a�ect the resulting values of the e�ective variables as long G is well within the
mineral phase. For all the cell problems we use a regularization of δ = 10−8.

Remark 4. Specifying a phase �eld corresponding to a circular mineral with radius R is not straightforward
as no analytical expression exist. An approximate phase �eld can be found by assuming radial symmetry and
considering the reaction-free version of (17) in polar coordinates. That is, we seek φ(t, r) solving

λ2∂tφ+ γP ′(φ) = γλ2 1

r
∂r(r∂rφ). (25)

Because of the non-conservative property of the Allen-Cahn equation, a radially symmetric phase �eld drop will
always shrink towards the center due to curvature e�ects. Using this, we consider the initial condition

φ(t = 0, r) =
1

1 + exp(−4(r −R0)/λ)
, (26)

where R0 is larger than the radius R, which is the mineral radius we seek a phase �eld for. Following from
the curvature-driven movement, the mineral will shrink according to the radial Allen-Cahn equation (25). The
simulation is stopped when the radius of the transition region reaches R, that is when φ = 0.5 at r = R. As
boundary conditions we apply φ = 0 at r = 0 and φ = 1 at r = 1. It could be tempting to directly specify (26)
with R0 = R as the phase �eld, but this would not ful�ll the steady-state version of (25). Although (26) has
similar structure as (12), which is the solution of the one-dimensional steady-state version of the Allen-Cahn
equation, this �nding cannot be extended to the radially symmetric case due to the structure of the Laplace
operator in polar coordinates. This also means that the initial condition (26) is only an approximate initial
condition.

5.1.1 Permeability

For the cell problem (21) providing the permeability we consider mineral radii of R = 0.2, 0.3, 0.4. The
corresponding permeability values for these mineral radii are K = 0.0328, 0.0109, 0.0018, respectively [10].
The applied values of λ in (26) will be λ = 0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005. In Figure 4, the
phase �eld permeability values are compared to the permeability values resulting from the corresponding sharp
interface models. It becomes clear that the phase �eld permeability values are approaching the ones for the
sharp interface models as the values of λ are decreasing. However, the relative errors are large, and are for
λ = 0.01 equal to 5%, 7% and 15% for R = 0.2, 0.3, 0.4, respectively. These deviations can be explained by
the fact that �ow takes place in the di�use transition zone, which enhances the �ow through the entire cell,
and hence overestimates the permeability. This e�ect is diminished when the parameter K in the phase �eld
cell problem (21) is increased, but larger values of K could also lead to an underestimation of the permeability
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if λ is large. For the results in Figure 4, K = 25 was used. Hence, �nding a good choice for the interpolation
function g(φ, λ) in (5c) is essential in the numerical implementation.
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Figure 4: Permeability values for R = 0.2 (top), R = 0.3 (middle) and R = 0.4 (bottom), for various values of
λ. The sharp interface values are plotted at λ = 0.

5.1.2 E�ective ion di�usivity

For the e�ective di�usivity cell problem (23) we consider the same values for R and λ. The e�ective di�usivities
for the sharp-interface model are, for these three values of R, A = 0.7767, 0.5585, 0.3221, respectively. These
values have been found by solving the corresponding sharp-interface cell problems for the di�usion tensor, whose
formulation can be found e.g. in [27], using the PDE toolbox in Matlab on recursively �ner grids until four digits
of accuracy are obtained. The phase �eld e�ective di�usion values are compared to the corresponding sharp
interface e�ective di�usion values in Figure 5. Although the phase �eld values seemingly converge towards a
slightly di�erent value than the value provided by the sharp interface model, it is worth noting that the relative
errors are rather small (< 0.3% in all cases), hence the e�ective di�usion tensors are well approximated even
for large values of λ. Note that when de�ning the transition zone to being where φ = 0.5, leads to a slightly
over-estimated size of the grain as the transition zone spreads out radially, which can explain why the di�usion
values approaches a slightly too low value. For example, for R = 0.3 the true porosity is 0.7173, while the phase
�eld found in Remark 4 with R = 0.3 and λ = 0.01 gives a porosity of 0.7171. Other potential sources of errors
would be di�erence in numerical solvers between the di�use and sharp-interface discretizations.

5.2 Flow through a thin strip

A simple but instructive test case is when the general model (14) is formulated in a two-dimensional thin strip,
mimicking the �ow through a long pore. In this case, the scale separation is de�ned through the ratio ε = `/L
between the width ` and the length L of the strip. In the non-dimensional case, the domain of the thin strip
is (x, y) ∈ (0, 1)2 due to di�erent scaling of the transversal coordinate y. Note that y now plays the role of the
transversal variable, and not a local one, but is still scaled as y = ε−1x and represents the direction where rapid
changes are occurring.
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Figure 5: E�ective di�usion values for R = 0.2 (top), R = 0.3 (middle) and R = 0.4 (bottom), for various values
of λ. The sharp interface values are plotted at λ = 0.

The model equations for the original two-dimensional strip are (14). The resulting e�ective model for the
thin strip is one-dimensional and is found through asymptotic expansions and transversal averaging of the model
equations. Sharp interface formulations for models in a thin strip and considering reactive transport leading to
changes in the pore geometry have been formulated and upscaled in [7, 9, 19, 28].

When transversally averaging the model equations, we use a slight reformulation for the phase �eld equation.
Assuming that the mineral is only present as a layer on the upper and lower wall of the strip, and using symmetry
across the middle of the strip, the phase �eld for the lower half of the strip can be approximated by

φ(t, x, y) =
1

1 + e−4(y−d)/λ
, (27)

where d(t, x) is the mineral layer width. This form of the phase �eld is similar to the one used in the matched
asymptotic expansions (12), but remains, however, an approximation as zero Neumann conditions at the bottom
wall y = 0 and symmetry at y = 1/2 are not ful�lled. With the unknowns d(t, x), φ(t, x), u0(t, x), and φqx0 (t, x),
the upscaled equations obtained by transversal averaging are

∂td = f(u0), (28a)

φ = 1 +
λ

2
log
(
1 + e−4(0.5−d)/λ

)
− λ

2
log
(
1 + e4d/λ

)
, (28b)

φqx0 = 1, (28c)

∂t(φ(u0 − u∗)) = −∂x(φqx0 (u0 − u∗)) +D∂x(φ∂x(u0 − u∗)), (28d)

for x ∈ (0, 1) and t > 0. The derivation of these equations can be found in appendix A. Note the absence
of a momentum conservation equation, and hence the pressure is not obtained here. Further, we assume that
clogging of the pore due to mineral precipitation does not occur, which means that no degeneracy occurs. This
allows taking δ = 0, but performing the upscaling for δ > 0 is straightforward.

The original equations (14) are formulated on the scaled strip (x, y) ∈ [0, 1]2, but using symmetry at y = 0.5.
Therefore only half of the strip needs to be considered. For both the original system (14) and the transversally
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averaged system (28), we design an example including dissolution. We let u0(t = 0) = uε(t = 0) = 0.5 in the
entire domain initially, and inject an ion concentration of u0 = uε = 0.25 at x = 0. At the outlet x = 1 we
assume zero Neumann condition for the ion concentration. The reaction rate is chosen to be f(u) = u2/0.52−1,
corresponding to an equilibrium concentration of u = 0.5. Hence, net dissolution will occur when injecting
a lower ion concentration. Initially the strip is assumed to be halfway �lled with a mineral layer at top and
bottom, that is d(t = 0) = 0.25. The phase �eld in the original equations is initialized with (27) using d = 0.25.
Also, we apply zero Neumann condition for the phase �eld at both inlet and outlet. The original model (14)
is initiated with constant pressure and zero velocity. In the upscaled system (28), the inlet condition φqx0 = 1
also gives the �ow through the strip. For the original equations (14), the inlet condition for the along-strip
component of the �ow rate qε, qε,x, is formulated using a time-dependent parabolic pro�le such that qεx = 0
at y = d(t, 0), ∂yqε,x = 0 at the symmetry line y = 0.5, and φεqε,x = 1 is ful�lled. The outlet condition for
pressure is zero Neumann condition.

The following (non-dimensional) constants have been used in the simulations:

D = 1, u∗ = 1, γ = 0.0075, K = 25, ρf = 1, µf = 1,

The value of γ is chosen small to ensure low surface curvature e�ects, while the value of K is chosen large to
avoid too much �ow in the di�use transition zone. Also note that the mineral concentration is chosen arti�cially
low so that large changes in the mineral width occurs [28]. We let δ = 10−6 in the original model (14) for all
simulations.

Similar to the method in section 5.1, both the original equations (14) and the averaged system (28) are
discretized using a control volume method on a staggered cartesian grid where ion concentration, pressure and
phase �eld are de�ned in the centers of the control volumes, and the velocities across the edges. We apply
upstream approximation for the convective terms and two-point �ux approximation for di�usive terms. For the
original equations rectangular grids are used, where the resolution in the transversal direction is �ne enough to
resolve the di�use transition zone properly. For time stepping Euler backward is used for both models. The
resulting nonlinear systems of equations are solved using Newton iterations in each time step, with the previous
time step as initial guess.

5.2.1 Comparison to sharp interface formulation

For the upscaled system of equations (28), we can compare the obtained solution with similar upscaled models
based on a sharp interface formulation, such as the ones found in [7, 28]. Discretizing the sharp interface model
with same method, and choosing same initial and boundary conditions, we can investigate the e�ect of the
di�use interface λ on the model variables.

The are some minor di�erences in ion concentration u0, and accordingly in the value of mineral width d as
the reaction rate depends on u0. Figure 6 shows the ion concentrations in the sharp interface model and in the
phase �eld model for various values of λ at t = 0.5. For smaller values of λ, the ion concentration approaches
the values found through the sharp interface model. The di�erences in values for the mineral width are small
(largest absolute di�erence for λ = 0.05 is 0.003).

5.2.2 Comparison to original two-dimensional formulation

We can also check the quality of the upscaling procedure; namely, whether the transversal averages of the output
from the original equations (14) approaches the model output found by the upscaled model (28) as ε approaches
zero. For this comparison we �x a value of λ and let ε vary. For simplicity we consider λ = 0.05, 0.01, and
ε = 0.1, 0.05, 0.025, 0.01, 0.005, where the latter corresponds to a strip that is 200 times longer than its width.
A typical snapshot from a simulation, with λ = 0.05 and ε = 0.1 is seen in Figure 7. Even for such a "large"
value of ε, the derivatives with respect to y of e.g. ion concentration, is practically zero. The �ow �eld is found
through solving Navier-Stokes, and the along-strip component shows a parabola-like pro�le as expected for this
regime. Some �ow inside the di�use interface can be seen.

By vertically averaging the results from the original equations (14) and comparing to the results from the
already upscaled model (28), we �nd in general good correspondence. There is little variability in the transversal
direction for ion concentration already for relatively large values of ε, as illustrated in Figure 7 for ε = 0.1.
Hence, the averaged ion concentration does not deviate much when decreasing ε. However, some di�erence is
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Figure 6: Ion concentration inside thin strip at t = 0.5. Right �gure shows zoomed in view near the middle of
the strip, where the largest di�erences between the model runs are found.
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Figure 7: Phase �eld (left) and ion concentration (right) in thin strip at t = 0.5. Note that the y-axis is scaled
to �t between 0 and 0.5, but should be between 0 and 0.5ε. Velocity �eld is given as vector overlay and is mainly
along the strip. The transversal component of the velocity �eld has been scaled with 1/ε. For this simulation,
ε = 0.1 and λ = 0.05. The domain was discretized with 50 control volumes in the x-direction and 150 control
volumes in the y-direction.
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found in the dissolution of the mineral between the two-dimensional model (14) and the upscaled model (28).
These di�erences do not change with smaller ε. The upscaled system of equations uses directly ∂td = f(u)/u∗,
which is equivalent to the reaction rate found in an sharp interface model, while the original phase �eld equation
still has an e�ect from the interface width λ in the reaction rate. Also, the upscaled model uses an approximated
phase �eld which does not ful�ll the boundary conditions at the top and lower boundaries. However, as seen
from Figure 8 and Figure 9, the di�erences in d and u are very small already for λ = 0.05.
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Figure 8: Width of mineral layer d(t, x) inside (the lower half of) the thin strip at t = 0.5 for λ = 0.05 (left)
and λ = 0.01 (right). Note that the colored lines, corresponding to averaged results from the original equations
(14), are (almost) on top of each other. The mineral width is found through the phase �eld by (0.5− 0.5φ

ε
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Figure 9: Transversally averaged ion concentration inside thin strip at t = 0.5 for λ = 0.05 (left) and λ = 0.01
(right). Note that the colored lines, corresponding to averaged results from the original equations (14), are
(almost) on top of each other.

6 Conclusions

We have derived a phase �eld model for reactive transport with mineral precipitation and dissolution. Compared
to other modeling approaches involving free boundaries moving due to precipitation and dissolution, the phase
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�eld model has the advantage of being formulated in a �xed domain. The free boundary is then replaced by a
di�use interface region.

The model proposed here extends the one in [22] by incorporating �uid �ow. The extension provides
mass and momentum conservation by modifying the Navier-Stokes equations, where the phase �eld variable is
incorporated. The momentum conservation equation is further modi�ed by adding a source term to ensure that
no �ow in the pure mineral phase. Using matched asymptotic expansions, we have shown that the phase �eld
model reduces to the expected sharp interface model when the width of the di�use interface approaches zero.
Hence, the phase �eld model captures �uid �ow and solute transport in the �uid phase, and, as anticipated,
no-slip and Rankine-Hugoniot jump conditions at the evolving �uid-mineral interface.

When considering a porous medium, the model proposed here can be seen as a pore scale model. By
considering the medium as a periodically perforated one, an upscaled counterpart of the phase �eld model
is obtained by means of homogenization techniques. The resulting e�ective equations are valid at the Darcy
scale. We obtain the cell problems providing the e�ective ion di�usion are as in [22]. Here we also obtain cell
problems for obtaining the e�ective permeability and porosity. In particular, since the porosity in a cell is the
average of the phase �eld over that cell, the model also provides an equation describing the evolution of the
porosity in time, depending on the macro scale location. Numerical experiments show the behavior of the cell
problems with respect to the width of the di�use interface, where the di�usive cell problems provide accurate
results for relatively large values of the width of the di�use interface, while the permeability is prone to being
overestimated.

The use of a phase �eld model instead of a sharp interface formulation avoids some potential numerical
pitfalls as there is no need to e.g. solve the level set equation. Using a di�use interface as replacement of a
sharp interface simpli�es the development of numerical simulation tools, but also introduces a relaxation which
can lead to inaccurate numerical results. As seen from the numerical experiments, the permeability could easily
be overestimated or underestimated due to arti�cial �ow in the di�use transition zone. Hence, using a small
value for the width of the di�use interface is important for obtaining a good representation of the �ow at the
pore scale or in the cell problems, which in turn puts constraints on how �ne the grid has to be near the di�use
interface.

A Thin strip model

We derive here the averaged thin strip model using a phase �eld formulation, as given in (28). The starting
point is the original phase �eld model for a porous medium (14), but formulated in a thin strip having width `
and length L, such that ε = `/L de�nes the scale separation. Hence, in the non-dimensional setting, the strip
has width and length 1, but where derivatives in the y-direction (across the strip) are scaled with 1/ε. Hence,
for a dummy variable v(x, y) one gets

∇v(x, y) = ∂xvi +
1

ε
∂yvj,

where i and j are unit vectors in the along-strip and transversal direction. Due to symmetry we consider only
the lower half of the strip. As explained earlier, the phase �eld approaching value 1 in the �uid part and 0 in
the mineral part is given by

φ(t, x, y) =
1

1 + e−4(y−d)/λ
, (29)

where y = d(t, x) de�nes the transition between �uid and mineral where φ = 0.5. This formulation uses d(t, x)
as an unknown as in sharp-interface models, but still incorporates a phase �eld variable that a�ects the model
formulation. However, as φ in (29) does not ful�ll the zero-Neumann and symmetry boundary conditions, we
are making a small error by using this phase �eld. We here derive the upscaled (transversally averaged) model
for the current formulation. As there will be no problems with degeneracy in the equations for the resulting
thin strip model, we let δ = 0. It is, of course, possible to do the transversal averaging also with δ > 0, and
would only require the phase �eld φ being replaced with φ+ δ in the ion and mass conservation equations.
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A.1 Equation for d(t, x)

The equation for d(t, x) is obtained by inserting (29) into the phase �eld equation (14a) and collect the lowest
order terms in ε, O(ε0). This gives

λ2∂tφ0 + γP ′(φ0) = γλ2∂2
yφ0 − 4λφ0(1− φ0)

1

u∗
f(u0)

Inserting (29) for φ and using the equalities

∂tφ = − 4

λ
φ(1− φ)∂td,

∂2
yφ =

42

λ2
φ(1− φ)(1− 2φ),

and cancelling equal terms and common factors, results in

∂td =
1

u∗
f(u). (30)

Hence, the phase �eld φ(t, x, y) is given by (29), where the mineral width d(t, x) follows from (30).
Note that the resulting equation for d(t, x) is the same model equation as used in the sharp interface thin

strip formulations as [7, 28]. However, the phase �eld φ(t, x, y) will still appear in the upscaled solute transport
and �ow equations. This allows to illustrate the behavior of the phase �eld model with respect to λ and ε in a
simple setting.

A.2 Equation for the averaged phase �eld

The transversally averaged phase �eld will be needed in the upscaled thin strip model. In view of the symmetry,
the transversal average of (29) is

φ = 2

∫ 1/2

0

1

1 + e−4(y−d)/λ
dy = 1 +

λ

2
log
(
1 + e−

4
λ (0.5−d)

)
− λ

2
log
(
1 + e

4
λd
)
.

A.3 Equation for mass conservation

The lowest order term arising from the mass conservation equation (14b) yields

∂y(φqy0 ) = 0,

which together with the boundary condition (14g) gives that the lowest order transversal velocity component
qy0 is independent of y. The next order provides

∂x(φqx0 ) + ∂y(φqy1 ) = 0,

where qx0 is the lowest order along-strip velocity component and qy1 is the �rst order transversal velocity com-
ponent. This equation is integrated in y from 0 to 1/2, which together with boundary condition (14g) at y = 0
and symmetry at y = 1/2 gives

∂x(φqx0 ) = 0.

A.4 Equation for average �ow rate

Inserting asymptotic expansions into (14c), from the lowest order term one gets

φ∂yp0 = 0,

implying that p0 = p0(t, x) is independent of y. The logitudinal (along the strip) component of the O(1) terms
provide

0 = −φ∂xp0 + µfφ∂
2
y(φqx0 )− K

λ

(1− φ)n

φ+ n
qx0 .
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We let v = φqx0 represent the unknown and insert the expression for φ, (29) when necessary. Then,

µfv
′′ − K

λ

ne−4(y−d)/λ(1 + e−4(y−d)/λ)2

1 + n(1 + e−4(y−d)/λ)
v = ∂xp0, (31)

where ′ indicates derivative with respect to y. The variables t and x appearing in d and p are considered
parameters. Hence, we have a inhomogeneous, second-order, linear ODE with non-constant coe�cients. Finding
simple analytical expressions for the solution of v is not straightforward. Instead, the boundary condition
φqx0 = 1 can be used to resolve the �ow through the strip together with mass conservation. This means that we
will not be able to solve the pressure inside the thin strip.

A.5 Equation for ion concentration

Inserting (29) for φ and asymptotic expansion for uε into (14d) and equating the lowest order terms yields

∂y(φ∂yu0) = 0.

Together with the lowest order boundary condition φ∂yu0 = 0 at y = 0, 1 and that φ > 0, it follows that

u0 = u0(t, x).

Hence, u0 is independent of the transversal variable y. Integrating (14d) in y from 0 to 1/2, and applying
boundary conditions (14f) and (14g) on the lower boundary and symmetry conditions on y = 1/2, results in∫ 1/2

0

∂t(φ(uε − u∗))dy +

∫ 1/2

0

∂x(φqε,x(uε − u∗))dy = D

∫ 1/2

0

∂x(φ∂x(uε − u∗))dy,

where qε,x is the along-strip component of the qε. Using the asymptotic expansions and using that u0 is
independent of y leads to

∂t(φ(u0 − u∗)) + ∂x(φqx0 (u0 − u∗)) = D∂x(φ∂x(u0 − u∗).
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