
An efficient numerical scheme for

fully coupled flow and reactive

transport in variably saturated

porous media including dynamic

capillary effects

D. Illiano, I.S. Pop, F.A. Radu

UHasselt Computational Mathematics Preprint

Nr. UP-19-15

Dec. 19, 2019



An efficient numerical scheme for fully coupled
flow and reactive transport in variably saturated
porous media including dynamic capillary effects

Davide Illiano, Iuliu Sorin Pop and Florin Adrian Radu

Abstract In this papers we study a model for the transport of an external component,
e.g., a surfactant, in variably saturated porous media.We discretize the model in time
and space by combining a backward Euler method with the linear Galerkin finite
elements. The Newton method and the L-Scheme are employed for the linearization
and the performance of these schemes is studied numerically. A special focus is set
on the effects of dynamic capillarity on the transport equation.

1 Introduction

In this work, we concentrate on efficiently solving reactive transport models in
saturated/unsaturated porous media [8, 10]. Such media are observable in the section
of the soil closer to the surface where, in the upper part of the domain, we have a
coexistence of both water and air phases while, below the water table, the soil
becomes fully saturated.

In particular, our model includes dynamic capillarity effects. The capillary pres-
sure is commonly defined as the difference between the pressures of the two phases,
in our case, the air and the water. Note that, in the Richards model, the air pressure
is set to be equal to zero.

Typically, the capillary pressure is assumed to be a nonlinear decreasing function
depending on the water saturation. However, numerous studies are showing that such
formulation is often too simplistic and that dynamic effects, due to the changes in
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time of the water phase, should also be included [2, 3, 5, 11, 13]. Based on this, we
consider here the system:

∂tθ − ∇ ·
(
K(θ,Ψ)(∇Ψ + ez)

)
= S1,

Ψ + pcap(θ, c) = τ(θ)∂tθ,

∂t (θc) − ∇ · (D∇c − uwc) + R(c) = S2.

(1)

The first equation is the Richards equation, whereas the second is an ordinary
differential equation used to include the non-equilibrium effects in the capillary
pressure/water content relation. Equilibrium models are obtained for τ = 0. Fur-
thermore, the third equation is the reactive transport equation. Here, θ is the water
content, Ψ the pressure head, c the concentration of the chemical component, K
the conductivity, ez the unit vector in the direction opposite to gravity, D the dif-
fusion/dispersion coefficient, uw the water flux, R(c) the reaction term and finally
S1 and S2 are any source terms or external forces involved in the process. Note that
uw := −K(θ,Ψ)(∇Ψ + ez) where K is a nonlinear function depending on θ and Ψ.
In the van Genuchten model [4] one has:

K(θ,Ψ) =


Ksθ
1
2

[
1 −

(
1 − θ n

n−1

) n−1
n

]
, Ψ ≤ 0

Ks, Ψ > 0.
(2)

Ks is the saturated conductivity and n is a soil dependent parameter.
The system (1) is completed by boundary conditions for Ψ and c, and initial

conditions for θ and c.
The rest of the paper is organized as follows: in Section 2 the equations are

discretized and linearized. Section 3 includes a numerical example, based on the
literature [6], which allows us to compare the different numerical schemes. Finally,
Section 4 will conclude this paper with our final remarks.

2 The Numerical Schemes

Applying a Euler implicit time-stepping to (1) gives a sequence of time discrete
nonlinear equations. To solve them we apply different linearization schemes: the
Newton method, the L-Scheme and a combination of the two [7, 9]. They are here
compared thanks to a numerical example inspired by reactive models.

The equations in (1) are fully coupled due to the double dependency of the
capillary pressure of both the water content θ and the concentration c. In general,
pcap is a function of only θ, e.g., pcap := 1/α(θ−1/m − 1)1/n as presented in [4].
Anyhow, it has been observed [12] that, if an external component is involved, the
surface tension becomes a function of the concentration c and thus, the capillary
pressure itself is influenced by this, i.e. pcap := pcap(θ, c).
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In the following, we use the standard notations of functional analysis. The domain
Ω ⊂ Rd , d = 1, 2 or 3, is bounded, open and has a Lipschitz continuous boundary ∂Ω.
We denote by L2(Ω) the space of real-valued, square-integrable functions defined on
Ω and H1(Ω) its subspace containing the functions having also the first order weak
partial derivatives in L2(Ω). H1

0 (Ω) is the space of functions belonging to H1(Ω),
having zero values on the boundary ∂Ω. We denote by < ·, · > the L2(Ω) scalar
product and by ‖·‖ the associated norm. Finally, assume that K is continuous and
increasing, pcap ∈ C1 ((0, 1], [0,∞)) is decreasing and τ ∈ C1 ((0, 1], [0,∞)) .

We now combine the backward Euler method with linear Galerkin finite elements
for the discretization of the problem (1). Let N ∈ N be a strictly positive natural
number, define the time step size ∆t = T/N and tn = n∆t (n ∈ 1, 2, . . . , N).
Furthermore, Th is a regular decomposition of Ω, Ω = ∪

T∈Th
T, into d-dimensional

simplices, with h denoting the maximal mesh diameter. The finite element space
Vh ⊂ H1

0 (Ω) is defined by

Vh := {vh ∈ H1
0 (Ω) s.t . vh |T ∈ P1(T), T ∈ Th}, (3)

where P1(T) denotes the space of the afine polynomials on T.
The fully discrete Galerkin formulation of the system (1) can be written as:
Problem P(n) Let n ≥ 1 be fixed. Given Ψn−1

h
, θn−1

h
, cn−1

h
∈ Vh , find Ψn

h
, θn

h
, cn

h
∈

Vh such that there holds

< θnh − θ
n−1
h , v1,h > +∆t < K(θnh,Ψ

n
h )(∇Ψ

n
h + ez),∇v1,h > = ∆t < S1, v1,h >, (4)

∆t < Ψn
h, v2,h > +∆t < pcap(θnh, c

n
h ), v2,h > = < τ(θnh)(θ

n
h − θ

n−1
h ), v2,h >, (5)

and

< θnhcnh − θ
n−1
h cn−1

h , v3,h > +∆t < D∇cnh + un−1
w cnh,∇v3,h >

+∆t < R(cnh ), v3,h > = ∆t < S2, v3,h >,
(6)

for all v1,h, v2,h, v3,h ∈ Vh .
Remark 1 We use un−1

w := −K(θn−1
h

,Ψn−1
h
)(∇Ψn−1

h
+ ez) for the convective term

in the transport equation, for simplicity reasons. Nevertheless, all the simulations
presented in this paper have also been performed with un

w := −K(θn
h
,Ψn

h
)(∇Ψn

h
+ ez)

instead of un−1
w and the results were almost identical.

In the following,we propose different solving strategies for the systemof equations
presented above. These strategies are built on the ones discussed in [7], extending
them to the case of dynamic capillary pressure (τ(θ) , 0). They are either a mono-
lithic solver of the full system, or a splitting approach obtained by solving first
the flow component, using a previously computed concentration, then updating the
transport equation, using the newly computed pressure and water content. In both
cases, one has to iterate. Each iteration requires solving a non-linear problem, for
which, either the Newton methods or the L-Scheme [7, 9, 10] are considered. These
strategies are then named: monolithic-Newton scheme (MON-Newton), monolithic-
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L-Scheme (MON-LS), nonlinear splitting-Newton (NonLinS-Newton) and nonlinear
splitting-L-Scheme (NonLinS-LS).

The index j denotes the iteration index. As a rule, the iterations start with the
solution obtained at the previous time step, for example Ψn,1 := Ψn−1. This is not
necessary for the L-Scheme, which is globally convergent, but it appears to be a
natural choice.

2.1 The monolithic Newton method (MON-NEWTON)

The Newton method is a well-known linearization scheme, which is quadratic but
only locally convergent. Applying the monolithic Newton method to (4)-(6) leads to

Problem MN(n,j+1) Let Ψn−1
h

, θn−1
h

, cn−1,Ψ
n, j
h
, θ

n, j
h

cn, j
h
∈ Vh be given, find

Ψ
n, j+1
h

, θ
n, j+1
h

, cn, j+1
h

∈ Vh such that

< θ
n, j+1
h

− θn−1
h , v1,h > +∆t < K(θn, j

h
,Ψ

n, j
h
)(∇(Ψ

n, j+1
h
) + ez),∇v1,h >

+∆t < ∂θK(θn, j
h
,Ψ

n, j
h
)(∇(Ψ

n, j
h
) + ez)(θ

n, j+1
h

− θ
n, j
h
),∇v1,h >

+∆t < ∂ΨK(θn, j
h
,Ψ

n, j
h
)(∇(Ψ

n, j
h
) + ez)(Ψ

n, j+1
h

− Ψ
n, j
h
),∇v1,h >

= ∆t < S1, v1,h >,

(7)

∆t < Ψn, j+1
h

, v2,h > +∆t < pcap(θ
n, j
h
, cn, j

h
), v2,h >

+∆t < ∂θpcap(θ
n, j
h
, cn, j

h
)(θ

n, j+1
h

− θ
n, j
h
), v2,h > +∆t < ∂cpcap(θ

n, j
h
, cn, j

h
)

(cn, j+1
h

− cn, j
h
), v2,h >= < τ(θ

n, j
h
)(θ

n, j+1
h

− θn−1
h ), v2,h >

+ < ∂θτ(θ
n, j
h
)(θ

n, j
h
− θn−1

h )(θ
n, j+1
h

− θ
n, j
h
), v2,h >,

(8)

and

< θ
n, j
h

cn, j+1
h

− θn−1
h cn−1

h , v3,h > +∆t < D∇cn, j+1
h

+ un−1
w cn, j+1

h
,∇v3,h >

+∆t < R(cn, j
h
), v3,h > +∆t < ∂cR(cn, j

h
)(cn, j+1

h
− cn, j

h
) >

= ∆t < S2, v3,h >,

(9)

hold true for all v1,h, v2,h, v3,h ∈ Vh .

2.2 The monolithic L-scheme (MON-LS)

The monolithic L-scheme for solving (4)-(6) reads as
Problem ML(n,j+1) Let Ψn−1

h
, θn−1

h
, cn−1,Ψ

n, j
h
, θ

n, j
h

cn, j
h
∈ Vh be given,

LΨ1 , Lθ1 , L2, L3 > 0, big enough.
Find Ψn, j+1

h
, θ

n, j+1
h

, cn, j+1
h

∈ Vh such that
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< θ
n, j+1
h

− θn−1
h , v1,h > +∆t < K(θn, j

h
,Ψ

n, j
h
)(∇(Ψ

n, j+1
h
) + ez),∇v1,h >

+∆t < LΨ1 (Ψ
n, j+1
h

− Ψ
n, j
h
),∇v1,h > +∆t < Lθ1 (θ

n, j+1
h

− θ
n, j
h
),∇v1,h >

= ∆t < S1, v1,h >,

(10)

∆t < Ψn, j+1
h

, v2,h > = −∆t < pcap(θ
n, j
h
, cn, j

h
), v2,h >

+ < τ(θ
n, j
h
)(θ

n, j+1
h

− θn−1
h ), v2,h > + < L2(θ

n, j+1
h

− θ
n, j
h
), v2,h >

(11)

and

< θ
n, j
h

cn, j+1
h

− θn−1
h cn−1

h , v3,h > +∆t < D∇cn, j+1
h

+ un−1
w cn, j+1

h
,∇v3,h >

+∆t < R(cn, j
h
), v3,h > + < L3(c

n, j+1
h

− cn, j
h
), v3,h > = ∆t < S3, v3,h >,

(12)

hold true for all v1,h, v2,h, v3,h ∈ Vh .
The L-Scheme does not involve the computations of derivatives, the linear systems

to be solved within each iteration are better conditioned, compared to the ones given
by theNewtonmethod [7, 9], and it is globally (linearly) convergent. The convergence
of the scheme has been proved, for the equilibrium model (τ(θ) = 0) in [7], and can
be easily extended to the non-equilibrium formulation given by the system (10)-(12).

2.3 The splitting approach (NonLinS)

The splitting approach for solving (4)-(6) reads as
Problem S(n,j+1) Let Ψn−1

h
, θn−1, cn−1,Ψ

n, j
h
, θ

n, j
h
, cn, j

h
∈ Vh be given, find

Ψ
n, j+1
h

, θ
n, j+1
h

∈ Vh such that

< θ
n, j+1
h

− θn−1
h , v1,h > +∆t < K(θn, j+1

h
,Ψ

n, j+1
h
)(∇(Ψ

n, j+1
h
) + ez),∇v1,h >

= ∆t < S1, v1,h >,
(13)

∆t < Ψn, j+1
h

, v2,h > +∆t < pcap(θ
n, j+1
h

, cn, j
h
), v2,h >

= < τ(θ
n, j+1
h
)(θ

n, j+1
h

− θn−1
h ), v2,h >,

(14)

hold true for all v1,h, v2,h ∈ Vh .
Then, with Ψn, j+1

h
and θn, j+1

h
obtained from the equations above, find cn, j+1

h
∈ Vh

such that

< θ
n, j+1
h

cn, j+1
h

− θn−1
h cn−1

h , v3,h > +∆t < D∇cn, j+1
h

+ un−1
w cn, j+1

h
,∇v3,h >

+∆t < R(cn, j+1
h
), v3,h > = ∆t < S2, v3,h >,

(15)

holds true for all v3,h ∈ Vh .
The three equations above can be then linearised using either the Newton method

(NonLinS-Newton) or the L-Scheme (NonLinS-LScheme).
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2.4 The mixed linearization scheme

It has been already observed, for a different set of equations [9], that combining
the Newton method and the L-Scheme can improve the convergence of the scheme.
The Newton method is quadratically but only locally convergent and it can produce
badly conditioned linearized systems. Moreover, the time step is subject to severe
restrictions for guaranteeing the convergence of the scheme, and this has also been
observed in numerical examples [1, 7, 9].

Contrarily, the L-Scheme is globally convergent and the linear systems to be
solved within each iteration are better conditioned, however, it has only a linear rate
of convergence.

The mixed formulation, obtained combining the two schemes, appears to be the
best approach and shows practically both global and quadratic convergence. The
Newton method commonly fails to converge, if the initial guess is too far from the
actual solution. Since this guess is usually the solution at the previous time, this can
force restriction on the time step. Instead of reducing the time step one can obtain a
better approximation of the initial guess, for the Newton method, by performing few
L-Scheme iterations. In the numerical simulation here presented, up to 5 iterations
were sufficient to reach a good initial guess for the Newton iteration, which ensured
its convergence.

3 Numerical examples

In this section, we use a benchmark problem, from [6], to compare the different
linearization schemes and solving algorithms defined above. It describes the recharge
of a two-dimensional underground reservoirΩ ⊂ R2, in the interval of time t ∈ (0, 3].
The boundary of the domain and theDirichlet boundary conditions are defined below.

Ω = (0, 2) × (0, 3),
ΓD1 = {(x, y) ∈ ∂Ω|x ∈ [0, 1] ∧ y = 3},
ΓD2 = {(x, y) ∈ ∂Ω|x = 2 ∧ y ∈ [0, 1]},
ΓD = ΓD1 ∪ ΓD2,

ΓN = ∂Ω \ ΓD,

Ψ(x, y, t) =


−2 + 2.2 ∗ t, on ΓD1, t ≤ 1
0.2, on ΓD1, t > 1
1 − y, on ΓD2,

c(x, y, t) =


1, on ΓD1, t ≤ 1
0, on ΓD1, t > 1
3 − y, on ΓD2 ∪ ΓN .

Furthermore, no flow conditions are imposed on ΓN . The initial conditions are
given by Ψ(x, y, 0) := 1 − y, c(x, y, 0) := 3 − y and θ(x, y, 0) := 0.39. The cap-
illary pressure is defined as pcap(θ, c) := (1 − θ)2.5 + 0.1 ∗ c, the conductivity
is given by (2) and τ(θ) = 1. Finally, the parameters implemented are: Ks = 1,
LΨ1 , Lθ1 , L2 = 0.01, L3 = 0.1 and the iterations stop whenever all the error norms,

Ψn, j+1 − Ψn, j



 , 

θn, j+1 − θn, j


 and 

cn, j+1 − cn, j



, are below 10−6.



Linearization schemes for non-standard flow and reactive transport 7

We performed the simulations using regular meshes, consisting of squares, with
sides dx = {1/10, 1/20, 1/40}. We considered two fixed time steps ∆t = 1/10 and
∆t = 1/50.

In Figure 1, we can observe the total numbers of iterations required by the different
linearization schemes and solving algorithms. Next to the name of each scheme we
report, between parenthesis, which time step ∆t has been used.

We can observe, as the Newton method in the monolithic formulation, converges
only for coarse meshes, for ∆t = 1/10. For the smaller time step, ∆t = 1/50, it con-
verges for all of the tested meshes.
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1/dx
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m
b

e
r 
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e
ra

ti
o

n
s

Numbers of iterations

Newton (mono dt=1/10)

Newton (mono dt=1/50)

Newton (NonLS dt=1/10)

L Scheme (mono dt=1/10)

L Scheme (NonLinS dt=1/10)

Mixed (mono dt=1/10)

Mixed (NonLinS dt=1/10)

Fig. 1 Total numbers of iterations for different solvers

The L-Scheme converges for
both time steps, but, since it
is linearly convergent, for ∆t =
1/50 would require more itera-
tions than the Newton method.

The results obtained thanks
to the mixed formulation are
particularly interesting.We can
observe that this scheme, both
in the monolithic and splitting
formulation, converges for all
the tested meshes also in case
of a large time step. Moreover,
thanks to theNewton iterations,
it appears to be faster than the classical L-Scheme. It is as robust as the L-Scheme
and as fast as the Newton method. For more details regarding the mixed scheme, we
refer to [9].

4 Conclusions

In this paper, we considered multiphase flow coupled with a one-component reactive
transport in variably saturated porous media, including also the dynamic effects in
the capillary pressure. The resulting model is nonlinear and for this reason, three
different linearization schemes are investigated: the L-Scheme, the Newton method
and a combination of the two. We also studied both monolithic solvers and splitting
ones.

The tests show that, for this particular set of equations, the best linearization
scheme is the one obtained combining the Newton method and the L-Scheme. Such
scheme appears to be both quadratically and globally convergent.
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