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AbstractWe consider a Darcy-scale model for mineral precipitation and dissolution
in a porous medium. This model is obtained by homogenization techniques starting
at the scale of pores. The model is based on a phase-field approach to account for
the evolution of the pore geometry and the outcome is a multi-scale strongly coupled
non-linear system of equations. In this work we discuss a robust numerical scheme
dealing with the scale separation in the model as well as the non-linear character of
the equations. We combine mesh refinement with stable linearization techniques to
illustrate the behaviour of the multi-scale iterative scheme.

1 Introduction

Soil salinization and harvesting of geothermal energy are examples from real life in
which the pore-scale geometry can be affected by mineral precipitation and disso-
lution. While these processes are active at the pore scale (micro scale) and affect
the pore-scale structures, their effects are reflected in the Darcy-scale (macro-scale)
parameters such as the porosity and permeability.

Several approaches are available to account for the evolution of the micro-scale
geometry. To locate the micro-scale interfaces a layer thickness function is proposed
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in [8, 15],whereas a level set approach is considered in [2, 13, 14]. In both approaches,
upscaled models can be derived by solving micro-scale problems involving moving
interfaces. This makes the development of numerical schemes a challenging task as
it requires a very fine mesh reproducing the micro-scale details such as tracking the
movement of the interfaces.

Here we model the evolution of the micro-scale boundary through a phase-field
equation. We consider the phase-field model proposed in [3] in which the freely
moving interfaces (separating the fluid and the mineral) are approximated by a thin
diffuse interface layer described by a phase-field variable q. This function is an
approximation of the characteristic function that approaches 1 in the fluid phase and
0 in the mineral. Using the phase-field approach we avoid the difficulties related to
discontinuities in the domain. This model is hence defined over the entire domain
where the evolution of the phase field accounts the moving interface. Such models
are derived from a minimization of the free energy in [5]. In [16] a phase-field model
is extended to a precipitation and dissolution problems.

Since the main interest is the behaviour of the system at the macro scale, ho-
mogenization techniques are employed to derive upscaled models. The outcome is
a coupled and non-linear system of equations addressing flow, chemistry and the
phase-field evolution. Focusing on the two-scale model in [3], the main goal of this
paper is to develop a robust numerical scheme accounting for both scale separation
and the non-linearities in the model. This multi-scale iterative scheme borrows ideas
from [4], where a stabilized iterative coupling scheme is introduced for a phase-field
approach for fracture propagation.

This paper is organized as follows. In Section 2 the two-scale model is presented
briefly, where the governing equations in two different scales are displayed and the
strong coupling between the scales is discussed. In Section 3 we introduce the multi-
scale iterative scheme in order to solve the upscaled model. There we give some
details about handling the non-linearities and the convergence of the multi-scale
iterative scheme. Finally, Section 4 provides a numerical example and the discussion
of the results.

2 The two-scale phase-field model

We consider the two-scale phase-field model formulation of single-phase fully sat-
urated flow with constant density and viscosity introduced in [3]. There, the details
about the formal homogenization procedure can be found. Here we restrict to pre-
senting the upscaled model only.

We consider a periodic porous medium Ω ⊆ Rd. At each x ∈ Ω we identify
the variations at the micro-scale defining a fast variable. In other words, for each
macro-scale point x ∈ Ω we use one micro-scale cell . := [0, 1]d to capture the fast
changes encountered locally.

The unknowns q(x, C), ?(x, C) denote the macro-scale velocity and pressure in the
fluid and D(x, C) is the upscaled solute concentration. We hence have the macro-scale
flow and solute transport problems
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(P"1 )
{

(P"2 )
{ ∇ · qq = 0, in ΩT := Ω × (0,T],

qq = −K∇?, in ΩT,

mC (q(D − D★)) + ∇ · (qqD) = �∇ · (A∇D), in ΩT,

(1)

completed by initial and boundary conditions. Here � is the solute diffusivity and
D★ > D is the constant concentration of the mineral in the immobile domain. More-
over, the variable q defines the porosity and it is nothing but the average of the phase
field q over the micro-scale . . The matricesA andK are the effective diffusion and
permeability, respectively.

First, the phase field q(x, y, C) is updated for all x ∈ Ω and C > 0, by solving the
following micro-scale problem

(P`
q
)

{
_2mCq + W%′(q) = W_2∇2q − 4_q(1 − q) 1

D★
5 (D), in .,

q is . -periodic.
(2)

The phase field q has a smooth transition layer of width _ > 0 separating the phases.
This equation is coupled with the macro scale through the reaction rate, which is
chosen as 5 (D) := D2

D2
eq
−1 with Deq being a given equilibrium concentration. The term

%(q) = 8q2 (1 − q)2 is the double-well potential, which ensures that the phase field
approaches 0 and 1. The parameter W is the diffusivity of the interface that separates
the fluid and the mineral.

The macro-scale porosity in (1) is defined by the phase field q(x, C) :=∫
.
q(x, y, C)3y and the elements of the effective matrices A(x, C) and K(x, C) are

given by

Ars (·, C) =
∫
.

q (Xrs + mrls) 3y and Krs (·, C) =
∫
.

qwsr3y (3)

for r, s = 1, . . . , d. The functions ls and ws = [ws1, . . . ,w
s
d]C solve the following

cell problems, defined for each x ∈ Ω

(P`
�
)


(P`
 
)



∇ · (q(∇ls + es)) = 0, in .,

ls is . -periodic and
∫
.

ls3y = 0,

(∇Πs + es) + ` 5 ∇2 (qws) = 6(q, _)
q + X ws, in .,

∇ · (qws) = 0, in .,

Πs is . -periodic and
∫
.

Πs3y = 0.

(4)
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Here X > 0 is a small regularization parameter. The function 6(q, _) ensures that
there is zero flow in the mineral phase. This function is such that 6(1, _) = 0 and
6(0, _) > 0 (see [6]).

3 The multi-scale iterative scheme

We propose an iteratively coupled scheme to simulate the multi-scale behaviour
of the phase-field model presented in Section 2. In [4, 10] similar approaches can
be found but we remark that in the present case the coupling of different scales is
encountered.

We let # ∈ N be the number of time steps and ΔC = T/# be the time step size. For
= ∈ 1, . . . , # define C= = =ΔC and denote the time discrete solutions by a= := a(·, C=)
for a ∈ {q,A,K, ?, q, D}.

Applying the Euler implicit discretization, at each time step a fully coupled
non-linear system of equations has to be solved. For each = > 0, the iterative
algorithm defines a multi-scale sequence

{
q=
9
,A=

9
,K=

9
, ?=

9
, q=
9
, D=
9

}
with 9 ≥ 0 being

the iteration index. Naturally, the initial guess for q=0 and D=0 are q=−1 and D=−1.

Initial conditions
D0 and q0 for each .

Solve P`

q
for each .

Non-linear solver iterations

Solve Diffusivity
for each .

Solve Permeability
for each .

Solve P"
1

Flow
Solve P"

2
Concentration

Stopping criterium
‖q=

9 − q
=

9−1‖Ω + ‖D=9 −D=9−1‖Ω ≤ n ?

Porosity

No

N
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ti
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tio

n
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Fig. 1: Sketch of the iterative scheme.

The iterative scheme follows the idea in [4]. We let !q > 0 be a stabilization
parameter and for 9 > 0 with given D=

9−1 and q
=
9−1, one performs the following steps:

Step 1. For each x ∈ Ω, find q=
9
such that
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q=9 + ΔCW∇ · q=9 −
ΔC

_2 � (q
=
9 , D

=
9−1) + !q

(
q=9 − q=9−1

)
= q=−1, in .

q=9 is . − periodic.
(5)

where � (q=
9
, D=
9−1) := −W%′(q=

9
) − 4_q=

9
(1 − q=

9
) 1
D★
5 (D=

9−1).
Step 2. Given q=

9
find the effective matrices A=

9
and K=

9
in (3) by solving the cell

problems (4).
Step 3. Given K=

9
and A=

9
find ?=

9
, q=

9
and D=

9
by solving the system (1).

In Figure 1 we sketch the multi-scale iterative scheme. Here it is important to
remark that the behaviour of an efficient and robust non-linear solver for (5) af-
fects directly the convergence of the complete multi-scale iterative scheme. To deal
with the non-linearities we use a fixed-point iteration scheme, called L-scheme (see
[9, 11]).

The convergence of the iterative scheme in Steps 1-3 is a non-trivial task as it
involves multiple scales and couples non-linear and possible degenerate systems of
equations. Preliminary results are obtained in a simplified setting. Specifically, we
assume that the pore space is never clogged and that the mineral never disappears
completely. In other words, there exists two constants q<, q" ∈ (0, 1) such that
0 < q< ≤ q(x) ≤ q" < 1 for a.e x ∈ Ω. Moreover, the flow component is disre-
garded and the diffusion tensor is assumed not depending on the phase field. With
"1 = max

q∈[0,1]
D>0

{|m1� (q, D) |}, "2 = max
q∈[0,1]
D>0

{|m2� (q, D) |} and D̄ = max
x∈Ω
=∈N
{|D★ − D= (x) |}

one can prove the following.

Proposition 1 Let "1, "2, D̄ and q< be as above. If the time step is small enough,
namely

ΔC ≤ 2_2 min

{
1

"1 + "2 + 0.5D̄
,
q

2
<

"2

}
the scheme in Steps 1-3 is convergent.

The proof uses contraction arguments, we omit the details here.

4 A numerical example

We consider a simplified 2D situation where the processes are expected to be uniform
in the vertical direction. The macro-scale domain isΩ = [0, 1]2, where a dissolution
process is triggered by imposing a Dirichlet condition for the concentration on the
right boundary of Ω. This configuration is displayed in Figure 2, while Table 1
shows the parameters used for the simulation. In the following, all the solutions are
computed using the lowest order Raviart-Thomas elements.
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Solute Diff. � = 1
Mineral concent. D★ = 1
Equilibrium Deq = 0.5
Diffusivity W = 0.01

Transition zone _ = 0.08
Initial porosity q0 = 0.5
Max. porosity q" = 0.87
Initial condition D0 = 0.5
Stabilization !q = 1E−4

Table 1: The parameters Fig. 2: The configuration of the macro-
scale problem.

Figure 3 shows the evolution of the phase field corresponding to the macro scale
location (0.5, 0.5). At the micro scale we use a mesh refinement strategy to capture
the movement of the phase-field transition zone.

At each time step we construct a micro-scale mesh with 800 elements. This mesh
is refined in the first iteration of the scheme by following a prediction-correction
strategy. We refer to [1, 7] for more details about handling similar meshes.

As mentioned before, we use an L-scheme dealing with the non-linearities at the
micro scale. The non-linear term � (q, D) needs to be split in a convex and concave
part. Only the concave part is treated implicitly and the linearization parameter
corresponds to the Lipschitz constant of � with respect to q (which depends on the
concentration D) at every multi-scale iteration.

Fig. 3: The phase-field evolution at the macro-scale location (0.5, 0.5). From left to
right, the phase field at C = 0.2, 0.25 and 0.5.

The Darcy-scale solute concentration is displayed in Figure 4. Due to the chosen
boundary and initial conditions, this solution does not depend on the vertical com-
ponent and therefore the 1D projection in the horizontal direction is sufficient. The
results for the porosity and the effective parameters are shown in Figures 4 and 5.

We highlight that even if we are not computing the flow in this case, the effective
permeability can still be calculated. Where the concentration decreases, it induces a
dissolution of the mineral, which then increases the diffusivity and the permeability
until the system reaches the maximum porosity q" .
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Fig. 4: The 1D projection of the concentration and the porosity at different times.

Fig. 5: The 1D projection of the effective parameters at different times.

Finally, in Figure 6 we show the convergence of the norm of the residual ‖q=9 −
q
=

9−1‖Ω+‖D=9 −D=9−1‖Ω at different time steps. The non-linear solver at eachmicro-scale
domain . is stopped once the residual is below 1E−10.

Fig. 6: The convergence of the residual in the multi-scale iterative scheme.

In this numerical example the averaged number of degrees of freedom is 7.623.300
per time step. At the macro scale we have 512 elements and for each element the
porosity and the effective parameters must be updated at each iteration. Due to the
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local mesh refinement the micro-scale degrees of freedom vary between 1.200 and
1.400. However, the micro-scale problems are solved in parallel and this can be
improved by employing an adaptive strategy at the macro scale (see [12]).

We conclude that the multi-scale iterative scheme presented here is a valid ap-
proach to solve the two-scale phase-field model of precipitation and dissolution
processes. This scheme can easily be parallelized and the resulting simulations show
the influence of the micro-scale structural changes on the macro-scale parameters.

The next research steps are in the direction of proving the convergence of the full
numerical scheme, including the error analysis of themicro-cell problems.Moreover,
the study of the optimal choice of the stabilization parameter !q and the macro-scale
adaptivity are important to enhance the efficiency of the scheme.
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