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The process of initial ice formation in brine is a highly complex problem. In this paper,
we propose a mathematical model that captures the dynamics of nucleation and devel-
opment of ice inclusions in brine. The primary emphasis is on the interaction between ice
growth and salt diffusion, subject to external forcing provided by temperature. Within
this setting, two freezing regimes are identified, depending on the rate of change of the
temperature: a slow freezing regime where a continuous ice domain is formed, and a fast
freezing regime where recurrent nucleation appears within the fluid domain. The second
regime is of primary interest, as it leads to fractal-like ice structures.

We analyse the critical threshold between the slow and fast regimes, by identifying the
explicit rates of external temperature control that lead to self-similar salt concentration
profiles in the fluid domains. Subsequent heuristic analysis provides estimates of the
characteristic length scales of the fluid domains depending on the time-variation of the
temperature. The analysis is sustained by numerical simulations.
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1. Introduction

Sea-ice represents an important component of the Arctic and Antarctic ecosystems,
and forms the habitat for many micro-organisms. Of particular relevance are micro algae,
which have high impact on heat and CO2 exchange between the ocean and atmosphere
(Büttner 2011; Thoms et al. 2014; Holland 2013). Having a different reflection coefficient
(albedo) when compared to the ocean water, sea ice furthermore provides a feedback
mechanism within global climate models (Hunke et al. 2011; Holland 2013).

The yearly cycle of the of sea-ice contains different phases: initial growth, salt rejection,
and melting (Allison et al. 1985; Eicken 2003; Hunke et al. 2011). The processes of salt
rejection and melting has been studied extensively in laboratory settings Eide & Martin
(1975); Allison et al. (1985); Worster (1992); Eicken (2003); Vancoppenolle et al. (2006);
Peppin et al. (2007); Hunke et al. (2011); Wells et al. (2011). These experimental studies
provide the basis for the heuristic relationships required when developing computational
models, which in their turn are needed for understanding large-scale dynamics. In contrast
to this, studying the initial formation of the sea-ice in natural conditions is non-trivial,
as taking field samples is a complex and even dangerous process (Büttner 2011).

This paper is concerned with mathematical modeling of ice formation in brine. In par-
ticular, the phase transition and the micro-scale diffusion of salt are explicitly accounted
for, however, under idealized conditions: the temperature is constant in space and the
fluid is stagnant within the domain. In one and two spatial dimensions (1D/2D), this is
analogous to a column or a thin slit experiments.

The present work is complimentary to the classic work in Mullins & Sekerka (1964)
on the stability of an advancing front of ice. Their analysisis inherently multidimensional
and provides the conditions for an unstable evolution of the front. Our analysis is not
focused on the stability of the front itself, but rather on the potential for spontaneous
nucleation and growth of pre-frontal ice. To the best of our knowledge, there are no direct
laboratory experiments considering this processes, but solidification effects ahead of the
solid front in an analogous system has been observed experimentally in (Peppin et al.
2008).

Our analysis demonstrates that the interplay between the salt expulsions from the
ice and the salt diffusion within the fluid can lead to complex structures. In particular,
we identify cooling rates which allow for two types of self-similar freezing regimes: a
trivial regime with compact ice growth, and a non-trivial one where the ice growth forms
emerging fractal patterns. These fractal ice structures give insight into the transition be-
tween the liquid and the solid phase and therefore supplements the traditional, averaged
mushy-layer approaches (Worster 1997; Hunke et al. 2011).

In addition to identifying self-similar structures for the freezing problem, we also derive
an estimate for characteristic fluid-region length-scales, for general freezing regimes.
Both fractal forming behavior and the robustness of fractal patterns with respect to
perturbation of the initial conditions are verified numerically.

The structure of the manuscript is as follows. In section 2 we present the mathematical
model for the sea-ice dynamics and identify the descriptive parameter, the Sherwood
number. In section 3 we identify two regimes for the sea-ice formation and use a 1D model
to derive the necessary conditions for sub-critical (compact) ice growth, respectively
for super-critical (fractal) ice formation. Section 4 bridges the gap between the two
regimes and presents an approximate semi-analytical algorithm that can be employed for
characterizing the structure and distribution of the ice and brine regions formed inside
the sea-ice region depending on the temperature evolution. Section 5 verifies the analysis
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by comparison to numerical simulations of the governing model equations. Section 6
provides the conclusions.

2. The mathematical model

We consider the formation of ice in brine (salt water) with salinity u. Ice is formed due
to the temperature decay, which is assumed constant in space and monotonic in time.
The brine and ice together occupy the bounded domain G, consisting of two parts, the
brine sub-domain Ω and the ice sub-domain G\Ω̄, where Ω̄ stands for the closure of
Ω. As will be explained below, the two sub-domains are evolving in time, depending on
the a-priori unknown salinity u. Therefore on has Ω = Ω(t), with t > 0 being the time
variable. Although the analysis in later sections is carried for one spatial dimension, and
thus G is a bounded, open interval in R, the presentation of the mathematical model
is kept general and remains applicable for general dimensions. Note however that we do
not advective motion (in either the fluid nor the ice), and hence the model has greatest
physical relevance when the fluid is essentially stagnant.

We assume that the concentration of salt in ice is constant, and without loss of
generality we normalize this constant to zero:

u(t, x) = 0, for all t > 0 and x /∈ Ω(t). (2.1)

Since Ω is time dependent, the brine-ice interface also evolves in time, and one has
∂Ω = ∂Ω(t). In mathematical terms, ∂Ω is a boundary that moves freely inside G. The
resulting is a a Stefan-type model (Voller et al. 2004; van Noorden & Pop 2007; Bringedal
et al. 2015) that is capable to capture the complex geometry of the ice domain. This is
alternative to the approach where space averaged mushy-layers are adopted for the small-
scale mixture of ice and brine (Worster 1992, 1997; Petrich et al. 2004; Kutschan et al.
2010; Hunke et al. 2011).

The evolution of the salinity and the two phases, brine and ice, is governed by
standard conservation laws (see e.g. Petrich et al. (2004); Katz & Worster (2008); Peppin
et al. (2008)). For simplicity we assume that the energy is equilibrated instantaneously
over the space, meaning that the temperature is constant in the ice-water domain
G. This assumption is natural for 1D and 2D geometries (pipes and slits), where
the external temperature controls the system directly. In 3D, this assumption requires
thermal conduction to be sufficiently large relative to diffusion. With this assumption of
constant temperature, we are allowed to replace the energy conservation equation by an
algebraic relation between the critical salinity and the freezing temperature of the brine.
In this respect we refer to Worster (1992); Katz & Worster (2008)), where this relation is
provided as a phase diagram. As mentioned before, we assume that brine and ice coexist
as distinct phases in the domain G, whereas salt only appears as a dissolved component
in brine.

Further, instead of considering an up-scaled model involving averaged quantities like
salt or brine volume ratio, the starting point here is at the scale where sharp interfaces
separating the two phases can be identified. As mentioned before, these interfaces are
evolving in time in a a-priori unknown manner and are therefore free boundaries. Since
salinity is the controlling variable for freezing, the salinity of brine at the brine-ice
interface equals the temperature-dependent critical salinity:

u(t, x) = ucrit(T (t)) = ucrit(t) for t > 0, x ∈ ∂Ω(t). (2.2)

This is equivalent to saying that the freezing/melting temperature of the brine depends on
the salinity. The temperature is the underlying control mechanism allowing to distinguish
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between various ice formation regimes. Recalling the assumption made above on the
instantaneous energy equilibration, the temperature enters in the system only through
the critical salinity and plays further no explicit role in the present simplified model.
Therefore in what follows T will be replaced by ucrit as the control mechanism. This is
justified from physical point of view, as in general ucrit is a decreasing function of the
temperature and thus a one-to-one relationship can be defined between the two quantities.

2.1. Mass balance for salt

The strong form of the salt mass balance equation is

∂

∂t
u(t, x) = −∇ · ~Ju , for t > 0, x ∈ Ω(t), (2.3)

where ~Ju is the flux vector. Similar to Kutschan et al. (2010); Thoms et al. (2014), we
neglect the expansion effects due to phase change and assume further that the fluid is
at rest. As with the spatially isothermal assumption, this simplification can be justified
strongly in 1D and 2D for pipes and slits, but requires further justifications in 3D. With
diffusion is Fickian, the salt flux thus takes the form

~Ju (t, x) = −D∇u(t, x), for t > 0, x ∈ Ω(t), (2.4)

where D is the diffusion coefficient, here taken as a constant. With this, the equation
(2.3) becomes

∂

∂t
u(t, x) = D∆u(t, x), for t > 0, x ∈ Ω(t). (2.5)

2.2. Salt expulsion at the boundary

Since the ice is assumed salt-free, salt is expelled from the ice formed at the brine-ice
interfaces. In order to conserve mass at the brine-ice interface the normal component of
the salt expulsion flux ~Jbc ·~n and normal component of the diffusive flux ~Ju must equal

− ~Jbc · ~n+ ~Ju · ~n = 0, for t > 0 and x ∈ ∂Ω(t). (2.6)

Here ~n is the normal vector at the boundary ∂Ω pointing inside the fluid. Letting ~s
denote the position of the ice boundary, the conservation of salt as seen from the ice
domain implies that the expulsion flux is given by

~Jbc ≡ ucrit
d~s

dt
(2.7)

Together, equations (2.6) and (2.7) becomes a Rankine-Hugoniot condition at the brine-
ice boundary

−ucrit
d~s

dt
· ~n+ ~Ju · ~n = 0, for t > 0 and x ∈ ∂Ω(t). (2.8)

Figure 1 is a one-dimensional illustration of the advancement ds of the ice-water boundary
over an infinitesimal time dt, due to the increase of the critical salinity at the boundary
from ucrit to ucrit + ducrit. This results in the salt expulsion flux Jbc at the boundary
and the corresponding change in the overall salt profile from solid to dashed line as a
result of the diffusion in the water domain.

2.3. Nucleation

Salinity and phase transition are two processes that are strongly connected. As seen
from the discussion above, a decrease in the temperature can lead to freezing associated
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The system is completed by initial conditions.

2.5. Sherwood number

In the absence of spontaneous nucleation, the qualitative behavior of the ice-water
system can be characterized by a relation between the rate of the normal components
of two fluxes at the moving ice-brine boundary: the salt expulsion flux (2.7) and the
diffusive flux (2.4). We let ` be a time-dependent characteristic domain size that can
be seen as an average distance between ice boundaries. Observe that the entire process
considered here is controlled by the critical salinity ucrit, and this can change rapidly
in time, inducing different sea ice formation regimes. Consequently, the characteristic
domain size ` may change significantly in time.

We interpret K as a characteristic normal velocity of the ice-brine boundary ( to be
defined precisely below), which scales as

K ∼ d~s

dt
· ~n. (2.11)

The ratio of mass transfer rate to the diffusion rate is essential for this problem, and
is characterized by the Sherwood number (Cussler 2009), defined as (recall that the
non-dimensionalized diffusion constant is unity):

Sh =
K

`−1
. (2.12)

We emphasize that Sh may be variable in time as it depends on both ` and K, thus it
is in principle a function. By a slight abuse of language, we will nevertheless refer to Sh
as a ”number”. The case where Sh is constant in time will be of particular importance
later.

To make concrete the choice of K, recall that the evolution of the ice-water interface is
not known a-priori but represents an unknowns in the model. This evolution is controlled
by ucrit, which is a time dependent input parameter of the model. As mentioned, K itself
depends on time through `, which on its turn depends on ucrit. Therefore it makes sense
to express K in terms of the critical salinity. To do so we first refer to figure 1 sketching
the change in the ice-brine system encountered within an infinitesimal time dt. More
exactly, as suggested by the area of fresh ice, in the normal direction the ice front is
moving into the brine over the distance d~s · ~n, causing a salt expulsion into the brine.
The corresponding normal salt flux ~Jbc · ~ndt can be obtained from (2.7). Consequently,
the salt is distributed into the brine domain sized ` (the left part of 1), causing an increase
in the salinity by ducrit (the gray dashed curve). By mass conservation, one gets

~Jbc · ~ndt = ucritd~s · ~n ∼ `
(
d

dt
ucrit

)
dt. (2.13)

Dividing in the above by ucritdt, from (2.11) we obtain the definition of the characteristic
velocity of the system

K =
`

ucrit

d

dt
ucrit = `

d

dt
lnucrit.

Combining the definition of the characteristic normal velocity with the Sherwood number
in (2.12), we obtain

Sh = `2
d

dt
lnucrit. (2.14)

The Sherwood number as defined above will play a critical role in our subsequent analysis.
In addition to the Sherwood number, the model under discussion is also influenced
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by the nucleation threshold. This is accounted for through the nucleation multiplier µ
defined by equation (2.9), which is already a dimensionless parameter. In section 4 we
show that the qualitative behavior of the system can be characterized based exclusively
on two dimensionless parameters: the Sherwood number Sh and the nucleation multiplier
µ.

2.6. The dimensionless variables in 1D

While the mathematical model defined above is stated for arbitrary dimensions, the
analysis in the remainder of this manuscript is restricted to the case of one spatial
dimension. For concreteness, we reformulate the variables of (2.10) accordingly, by
employing the characteristic quantities discussed in section 2.5.

Now note that the freezing and nucleation given in (2.10) ensures that for the salinity
u one has

µucrit(t) 6 u 6 ucrit(t),

for any t > 0 and x in the brine domain. It therefore makes sense to introduce a time-
dependent normalization by the salinity ucrit, such that the dimensionless salinity is
constrained to the time-independent interval (µ, 1].

Furthermore, since the brine domain is a union of sub-intervals, we fix t > 0 and for
any brine interval we let x0(t) denote its left boundary and `(t) its length. This allows
rescaling the spatial coordinate x by considering

y = (x− x0(t))/`(t). (2.15)

This allows the solution to be defined on the unit interval y ∈ [0, 1]. Finally, with the
dimensionless time variable t̃ = t/Tch (as mentioned, Tch is a characteristic time) we can
define a dimensionless salinity ν through

ν : [0,∞)× [0, 1]→ (µ, 1], ν(t̃, y) = ν(t̃, (x− x0(t̃Tch))/`(t̃Tch)) =
u(t, x)

ucrit(t)
. (2.16)

To simplify the notation, from now on the time should be interpreted as dimensionless
and therefore we use the notation t instead of t̃. Since in the dimensionless form y =
0 and y = 1 are ice/brine boundaries and due to the scaling of the salinity one has
ν(0) = ν(1) = 1. Also, (2.9) guarantees that ν cannot decrease below µ. In other words,
whenever the minimum of ν is close to µ,the system is close to nucleation.

3. Rapid freezing in 1D

In the simplified 1D setting we consider (without loss of generality) that initially the
brine occupies the interval Ω(0) ≡ (0, `0), and that ice is present at the both boundaries.
This can be the result of an initial nucleation.

The evolution of the salinity in a brine interval during rapid freezing is exemplified in
figure 2, where three typical salinity profiles are displayed. To be more precise, let the
environmental temperature be decreasing and hence the ice front advances into the brine.
As stated, the temperature decay is associated with an increase of the critical salinity, as
given in equation (2.2). This process can be observed in figure 2, where the brine domain
is shrinking in time. On the other hand, the diffusion is smearing out the oscillations and
propagate the increase in the salinity at the boundary towards the center of the fluid
domain.

In the first instance, if the freezing is rapid the salinity changes near the boundary
are larger than the changes in the interior. This leads to salinity profiles taking maximal
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To simplify notation, since ν does not depend on, in this part we use the notation

ν1(y) ≡ ν(t, y). (3.2)

To find the boundary conditions leading to the critical case we consider ν1 as a self-
similar solution of the original problem, in the spirit of (Barenblatt 1996). Using (2.15)
and (2.5) together with the chain rule, we obtain

0 =
∂ν1(y)

∂t
≡ ∂ν(t, y)

∂t
=

1

u2crit

[
∂u(t, x)

∂t
ucrit −

ducrit(t)

dt
u

]
(3.3)

=
1

u2crit

[
∂2u(t, x)

∂x2
ucrit(t)−

ducrit(t)

dt
u(t, x)

]
(3.4)

=
1

`2(t)

∂2ν1(y)

∂y2
− 1

ucrit(t)

ducrit(t)

dt
ν1(y). (3.5)

This expression, together with the definition of the Sherwood number given in equation
(2.14) provides the equation for the self-similar solution ν1:

`2(t)
d

dt
lnucrit(t) = Sh =

∂2ν1(y)

∂y2
1

ν1(y)
. (3.6)

Since the self-similar solution ν1 does not include an explicit time-dependency, we make
the critical observation that for the critical case, the Sherwood number is constant. Thus
equation (3.6) provides two results. First, it is the ordinary differential equation for
the boundary salinity ucrit leading to a constant Sherwood number. Secondly, it is an
equation providing the self-similar solution ν1 for this external control.

3.1.1. The external control required for the critical case

We start with interpreting equation (3.6) in terms of ucrit. Observe that it involves
two unknowns, ucrit and `. These unknowns are related by mass conservation of salt in
the whole fluid domain, as there is no nucleation events.

In other words, mass conservation for salt gives us

d

dt

x0(t)+`0(t)∫

x0(t)

u(t, x)dx = 0 (3.7)

Using the definition of ν1 and transforming the above to the domain [0, 1] yields

d

dt


`(t)ucrit(t)

1∫

0

ν1(y)dy


 = 0. (3.8)

Since the integral is independent of time, we can conclude that the product of domain
size and critical consentration is independent of time, i.e.

`(t)ucrit(t) = ucrit,0`0 = 1 (3.9)

Combining equations (3.6) and (3.9), we obtain

ucrit(t) =

(
1− t

t∞

)− 1
2

. (3.10)

where the integration constant is identified as the time before the brine salinity blows
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up, which is related to the Sherwood number by

t∞ =
1

2Sh
. (3.11)

We note that from equations (3.9) and (3.11) that the size of the brine region satisfies

`(t) =
(

1− t
t∞

) 1
2

. Thus consistent with the notion of mass conservation, as the salinity

blows up when t approaches t∞ , the brine domain vanishes, `( t∞ ) = 0.

3.1.2. The salinity in the critical case

Wer now solve equation (3.6) to obtain ν1 and from this the salinity. From the definition
of ν in(2.16), the boundary conditions are

ν1(0) = ν1(1) = 1. (3.12)

The solution to (3.6) satisfying these conditions is

ν1(y) =
cosh(Sh

1
2 (y − 1

2 ))

cosh( 1
2Sh

1
2 )

, (3.13)

where cosh is the hyperbolic cosine function. The equation (3.13) defines a family of
solutions depending on the Sherwood number.

The above solutions are obtained in the absence of nucleation, in the sense that the
constraint ν > µ has not been enforced. The self-similar solution ν1 has a minimum at
y = 1/2, thus the nucleation threshold is given as

ν1 (1/2) =
1

cosh( 1
2Sh

1
2 )
> µ. (3.14)

Since the self-similar solution is not valid across nucleation events, we interpret inequality
(3.14) as a constraint on admissible Sherwood numbers for the critical solution, i.e. the
freezing must be sufficiently slow such that

Sh 6
(

2arcCosh
1

µ

)2

. (3.15)

This bound on the Sherwood number is essential, as it defines the largest possible
constant Sherwood number for this system. When inequality (3.15) is violated, nucleation
will happen, and thus the length-scale ` will be reduced, thus also reducing the Sherwood
number. Conversely, we can consider the equaity (3.15) as a characteristic property of
nucleation events. We explore these concepts in the next section.

3.2. The super-critical, fractal case

The super-critical case appears when freezing dominates the diffusion. Due to this, a
rapid increase of the critical salinity is encountered and ν, the ratio between the critical
salinity and the minimal one, decreases to µ, when nucleation appears. For symmetry
reasons, we expect that nucleation happens near the middle of a brine domain, we
approximate the splitting of the domain into two equal parts - see figure 3. This leads to
two domains of halved lengths and, by (2.14), to a decrease in the Sherwood number. A
lower Sherwood number together with a steeper salinity gradient near the newly created
boundaries, leads to a local diffusion-dominated solution profile until freezing starts to
dominate again and the process repeats. Following this scenario, one may expect a fractal
structure similar to a Cantor set for the fluid domain.
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i, this translates into

`((i+ 1)−) =
1

λ
`(i+). (3.18)

The superscripts ± should be interpreted as the right and left limits. Further, once a
spontaneous nucleation event is encountered in an interval each fluid sub-domain splits
into two halves, thus 2`(i+) = `(i−) and the total decrease of the domain over one
self-similarity period is given by (for all values of η)

`(η + 1) =
1

2λ
`(η). (3.19)

Additionally, we can express mass conservation of salt in the system as

n(η)¯̀(η)ū(η) = n(0)¯̀(0)ū(0) = ū(0) (3.20)

Letting ū(η) = 1
|Ω(η)|

∫
Ω

(η)u(η, x)dx stand for the average salinity in the brine at time

η. The quantity of ū(η) is unknown, but can be approximate by ucrit(η) to deduce the
characteristic domain size

¯̀(η) =
ū(0)

n(η)ucrit(η)
≈ 1

n(η)ucrit(η)
. (3.21)

We used earlier the integer i as a count of the number of nucleation times, and further-
more, will abuse slightly the notation by always interpreting i as the value of η rounded
up to the nearest integer, i.e. i = dηe. Combining equations (3.19) and (3.21), we now
obtain a direct expression for the dimensionless time, in terms of the new dimensionless
parameter λ:

`(i+) =
1

2i
1

ucrit(i)
. (3.22)

Equation (3.19) gives

i =
− ln(`(i+))

ln(2λ)
, (3.23)

which, together with (3.22) leads to

`(i+) = exp

(
ln(`(i+)

ln(2λ)
ln 2

)
1

ucrit(i)
=
`(i+)1−γ

ucrit(i)
, (3.24)

with the exponent

γ =
lnλ

ln 2λ
. (3.25)

This exponent represents an essential scaling parameter of the super-critical case, and
will appear throughout the following results. Note again that for large λ, we obtain γ ≈ 1,
and in particular recover the case from section 3.1.

From equation (3.24) we can now express ` as an explicit function of ucrit

`(i+) = ucrit(i)
−1/γ , (3.26)

Inserting the above into the definition of the Sherwood number, together with the ansatz
(3.17) yields,

ucrit(i)
−(1+2/γ) d

dt
ucrit(t) = Sh(0+) (3.27)

at any time t = f(i) when nucleation occurs.
It is natural to consider that the external control ucrit evolves continuously. As an
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example we observe that equation (3.27), is satisfied by the following equation, similar
in structure to (3.10)

ucrit(t) =

(
1− t

t∞

)− γ2
. (3.28)

As in the critical case, t∞ is a time when the entire domain is completely frozen, which
can be calculated analogously as before as

t∞ =
γ

2Sh(0+)
(3.29)

We close the section by noting that we can obtain an explicit expression for the non-
linear time-transformation, by combining equations (3.23), (3.26) and (3.28), which gives
the expression

t = f(η) = t∞
[
1− (2λ)−2η

]
. (3.30)

Thus, we have identified the relationship between super-fast freezing (in the sense of
equation (3.28) with γ < 1), and the relative importance of freezing and nucleation
processes as characterized by λ.

4. Estimating the ice properties for general boundary conditions

Section 3 shows that the freezing and nucleation in brine can be understood for critical
salinities ucrit(t) changing on the form of equation (3.28). In general situations this
critical salinity will not follow such temporal evolution, however we postulate that the
qualitative behaviour during freezing, and in particular the partitioning of the domain,
can be the same for a wider class of freezing rates. In this section we use the categorization
of the Sherwood number as the critical parameter for unstable ice growth to obtain
approximations for the characteristic length of the fluid/brine domain. In particular, we
exploit the fact observed in section 3.1, that during nucleation, the Sherwood number
can be approximated by equation (3.15).

As seen in section 3.1, nucleation leads to a split of a brine interval into two sub-
intervals. To capture this binary behaviour we consider the class of functions

P2,+ := {f : [0,∞)→ [0,∞), f is non-decreasing and for all k ∈ N, f(k) = sk}
To be precise, we consider a given, monotone critical salinity ucrit(t) and seek the integer
function n(t) ∈ P2,+ and the real function ¯̀ characterizing the number of brine regions
and their characteristic length, respectively.

Recall the expression for the characteristic system length given in (3.21). This expres-
sion can be used with the definition of the Sherwood number, equation (2.14), to obtain
the Sherwood number expressed in terms of the number of brine intervals

Sh(t) =
1

n2(t)u3crit(t)

ducrit(t)

dt
. (4.1)

As nucleation events occur, we know that the Sherwood number is well approximated
by the equality in equation (3.15). Using this, we define n∗(·) as the continuous function
obtained from the upper bound on Sh in the critical case

n∗(t) =
Ũ0

2

[
arcCosh

( 1

µ

)]−1( 1

u3crit(t)

ducrit(t)

dt

) 1
2

. (4.2)

Clearly, n∗(t) is in general not be a natural number, and may be decreasing. To obtain a
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(a) (b)

Figure 4. (a) The function ν at various times (darker color corresponding to later time); (b)
the solution surface plotted against dimensionless time.

discrete number of fluid domains, for any t > 0 we take the maximum value (over time)
of n∗ rounded up, to obtain

n(t) = max
06τ6t

dn∗(τ)eP2,+ , (4.3)

where dyeP2,+ is the smallest integer power of 2 that is larger than y. By definition, n(·)
is a function from P2,+. Moreover, for any t one has n(t) > n∗(t), thus it is implied that
freezing processes are excluded. From equations (4.3) and (3.21) we can also recover the
characteristic length ¯̀.

We emphasize on the fact that due to the approximation in equation (3.21), this
derivation is not exact. Its accuracy depends on whether and how fast the solution
approaches the self-similar structure assumed up to now. This aspect is investigated
in the section 5.3.

5. Numerical examples

In this section we present numerical solutions to the system of equations (2.10), derived
in the section 2.4. These solutions are computed by employing a cell-centered finite
volume method, which is presented in detail in the appendix A.

We start with numerical experiments that investigate the regimes identified in the
section 3. First, in the subsection 5.1 verify that the system converges to the self-similar
solution identified in equation (3.13) for the critical case.. Secondly, we consider the
super-critical regime, using the external control proposed in equation (3.28). Finally, we
consider the verify the applicability of the discussed in section 4, both for an idealized
case of external control provided by equation (3.28), as well as a more challenging case
with a logistic funciton controlling the freezing process.

5.1. Convergent solutions in the critical case

We start by considering the self-similar salinity profile for the critical case derived in
(3.10). Figure 4 presents the numerical results for the critical case. More precisely, it
displays the scaled, dimensionless salinity ν introduced in (2.16). The initial condition in
the numerical simulation is

ν(x, 0) = 0.01 · |x− .5|+ .995, for x ∈ [0, 1], (5.1)

and the computation is for Sh = 0.5 As seen in figure 4a, the numerical approximation
eventually converges to the analytical solution (3.13).

Figure 4b presents the solution in η×ν axes, see figure 4b. The lowest surface line in this

projection illustrates the time evolution of min(u)
max(u) = min(ν), that is, the quantity which
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(a) (b)

Figure 5. Demonstration of the fractal forming behavior for the super-critical conditions given
in equation (3.28). Figure (a). shows minimum concentration (lower bound) and concentration
profiles (colors), while figure (b) shows the concentration (colors) plotted on the domains as they
split, thus white represents ice. For both figures, time is given with respect to the transformed
time η.

will trigger secondary nucleation if it drops below the nucleation multiplier µ defined in
(2.9). Thus, the simulations reported here, are valid for any µ 6 0.993.

The convergence of the solution to the self-similar profile predicted by theory indicates
that the self-similar solution ν is robust with respect to perturbations, an observation
which is supported by other calculations not shown herein.

5.2. The numerical validation of the fractal forming behavior

The numerical experiments in this subsection verify that the condition for the external
control on the critical salinity given in equation (3.28) indeed leads to binary, Cantor-
set-type, fractals. This numerical approach particularly important since in the super-
critical fractal case it is not feasible to obtain an explicit self-similar solution as for
the critical case. For this example we use Sh(0+) = 0.02, which is consistent with a
nucleation threshold of 0.9925 according to inequality (3.15). The fractal formation is
then characterized by the balance between freezing and nucleation, which we set to
λ = 1.03.

The salinity profile immediately after nucleation events converges towards a (non-
symmetric) self-similar solution after a few nucleation events, and thus the initial condi-
tion is immaterial for the asympotitc behavior of the system. To reflect this, we only show
the solution after it has converged to the self-similar profile, typically within two-three
splitting steps. We return to the pre-asymptotic regime in section 5.3.1.

The solution is shown in figure 5 for a time-span covering several nucleation events. As
the numerical simulation evidences, each sub-domain splits into two equal sub-domains,
and with the period 1 in the non-linear time η. This provides a post hoc justification of
the assumptions stated in section 3.2.

The self-similarity of the solution implies that the process will continue as η → ∞,
leading to an countable infinity of splittings within finite time (recall that t∞ is finite).
This results in a bipartite tree of sub-domains that, at each time, is an approximation of
a Cantor-like set.

5.3. Applying the approximate method to determine the properties of the sea-ice

In this subsection we show validate the heuristically derived Sherwood number Sh and
mean brine-subdomain length-scale n derived in section 4. We use this opportunity to
consider the pre-asympotic regime alluded to in the previous section.
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Figure 6. Comparison of simulated and estimated Sherwood number and average sub-domain
size for a solution including the pre-asymptotic regime.

5.3.1. Fractal solutions including the pre-asymptotic regime

We consider an asymmetric initial condition leading to initial asymmetrical splitting,
and thus the different brine sub-domains have different widths. In this case, the fractal
does not have a pure binary structure anymore. This can be seen in figure 6, where
each individual branch of the solution approaches an asymptotic regime after about four
splittings. Note that for these figures, we choose to use dimensionless time t rather than
η, and to better visualize the results, we use the logarithm of t− t∞ as the x-axis.

As the numerical solution is driven by a prescribed ucrit(t), as detailed in section 5.2,
we can apply the estimates for the mean length scale, as well as the Sherwood numbers,
as given by equations (4.3) and (4.1). The estimates are compared against the true
values obtained from the simulation in the lower part of figure 6. Since the estimate from
section 4 does not know the initial salinity distribution, it cannot capture the details at
the earliest stage of the simulation. However, for later times, we find a very reasonable
agreement between the estimated and simulated values.

5.3.2. A generic rapid freezing scenario

As a final comparison, we consider a case of rapid freezing where the boundary salinity
controlling the freezing process does not follow the monomial scaling give in equation
(3.28). In particular, we consider the logistic function,

ucrit(t) = 1 +
5

(1 + exp(10(−t+ 1))
, for t ∈ [0, 1.5]. (5.2)
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Figure 7. Comparison of simulated and estimated Sherwood number and average sub-domain
size for a logistic function boundary conditions.

This choice is motivated by the transition from a slow, diffusion dominated, regime, via
a nucleation dominated regime, and finally a diffusion dominated regime. We consider
this a challenging test for the heuristic estimates derived in section 4.

The numerical solution and the comparison of the characteristic parameters are de-
picted on figure 7. We first note the rapid establishment of an asymptotic-like fractal
structure, in the sense of the division of the original brine-domain into 8 nearly equisized
partitions. This provides additional support to the applicability of the analysis of section
3 for general freezing regimes.

Secondly, we note from the lower figures that the estimates for characteristic brine-
domain length and Sherwood number is in general very close to the computed values.
Again the discrepancy is related to the salinity distribution at the onset of the freezing
process, which is not captured, leading to a prediction of premature nucleation. As the
nucleation process is established, the estimates approach the calculated values both of
Sherwood number and of domain-size, with the correct prediction of 8 fluid domains. As
expected, the heuristic algorithm gives a very close match for the final smooth regime
(starting from t ≈ 0.7) where the solution is close to the steady state.
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6. Conclusions

In this paper we have presented a mathematical model for the ice-formation in brine.
We avoid mushy-layer approximations, and formulate the model explicitly in terms of
the phase change (ice-brine) encountered at the lowest continuum scale.

For the one-dimensional setting, we identify three freezing regimes: a sub-critical
(slow) freezing regime where a continuous ice domain is formed, a critical regime when
self-similar profiles are determined explicitly, and a super-critical (fast) freezing regime
leading to fractal-like structures. A main contribution of the work is the explicit charac-
terization of the critical regime, which the transition between solid and fractal freezing.

We exploit the characterization of the critical regime to both give a structural un-
derstanding of super-critical (nucleation-dominated) freezing, but also to derive closed-
form estimates of characteristic ice-domain length-scales for the whole time-dependent
freezing process. These latter estimates form the initial steps towards a more rigorous
understanding of the link between freezing condition and physical parameters for the
resulting porous structure.

A finite volume method is proposed for solving the moving boundary models posed at
the smallest scale. This numerical approach is used to verify the exact solution obtained in
the critical regime. Under the fractal behaviour conditions obtained in the super-critical
regime, the numerical solution shows the expected nucleation process, approaching a
Cantor-set-like fractal structure.
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Appendix A

This appendix presents the numerical method used to solve the model equations at
the scale of a single brine domain.

To obtain a numerical solution for the one-dimensional model in section 2 we have
modified a standard finite volume method with an explicit Euler time stepping.

Due to the ice domains acting as barriers, the scheme only needs to account for a single
brine domain - multiple domains are handled by recursively calling new instances of the
scheme. It is therefore sufficient for the numerical method to handle a) diffusion of salt
in the brine phase, b) motion of ice interfaces, and c) nucleation events. The diffusion of
salt in the brine phase is standard, and will not be discussed further.

The motion of ice interfaces is necessary to resolve on a sub-grid scale. Thus, as
indicated in figure 8, the ice domain is permitted to partially enter cells, and these
cells thus have an internal variable indicating the salt content. It is important to note
that the boundary cells have prescribed salt concentration, and it is imperative that the
mass balance relations for diffusion out of the boundary cell is solved together with the
propagation of the ice boundary. The scheme allows for the ice to completely fill a cell
during a time-step, and continue into the neighboring cell.

Finally, a similar approach is taken for the nucleation events. In particular, the salt
balance is again ensured strongly. Thus the nucleation event is associated with the
formation of a non-zero amount of ice, which is calculated such that the expelled salt
provides the correct critical salinity in the remaining parts of the cell(s) where the
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