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Abstract

This thesis concerns the upscaling of two-phase/unsaturated flow and transport problems
in porous media. Whereas the mathematical models at the pore scale are in general well
understood, but due to their complexity, they are not suited for large-scale numerical
simulations. Hence, in practice, Darcy-scale models are better suited. The aim of this
thesis is to derive multiscale mathematical models that bridge the gap between pore-
and Darcy-scale models. Asymptotic expansions together with transversal averaging and
periodic homogenization are used to derive Darcy-scale models starting from pore-scale
models. These resulting models are expressed in terms of effective Darcy-scale quantities
like saturation, concentration, pressure and Darcy velocity. The derived Darcy-scale mod-
els are important since they describe the averaged behaviour of pore-scale models, but
still reproduce the main flow features observed at the pore-scale.

First, we consider a pore-scale model for two-phase/unsaturated flow, defined in a
two-dimensional thin strip. We use a sharp-interface approach to model the evolution
of the free boundary. We consider three cases: two-phase flow with solute-dependent
surface tension (the Marangoni effect), two-phase flow with constant surface tension, and
unsaturated flow with constant surface tension. By assuming that the ratio between the
width and length of the strip approaches 0, we use formal asymptotic expansion methods
and derive the limit of transversally averaged models over the thin strip. Depending on
the dimensionless parameters, different upscaled models in various pore-scale regimes are

obtained. The resulting models involve Darcy-type laws for the flow, with a concentration-
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dependent surface tension effect (Marangoni effect) and a capillary pressure-saturation
dependency involving a second-order derivative of the saturation. These formal results
are validated by numerical experiments. We compare the solution of the upscaled models
valid in the same capillary regime with the transversally averaged pore-scale quantities,
and show that the Marangoni effect influences the overall flow.

Since the porous geometry largely influences the averaged/upscaled quantities and
their behavior, we also consider a more general domain, namely a periodically perforated
domain. We use a phase-field model for two-phase flow and surfactant transport at the
pore scale. Using periodic homogenization theory, we derive a two-scale phase-field model
describing the averaged behaviour of the system at the Darcy scale. The resulting two-
scale model includes extended Darcy-type laws for the effective velocities, accounting for
the concentration-dependent surface tension. The effective quantities are found through
the corresponding local (cell) problems at the pore scale. For this two-scale phase-field
model, we formulate a numerical scheme and present numerical results highlighting the

influence of the solute-dependent surface tension.
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Chapter

Introduction

Flow and transport models in porous media are encountered in several real-life situations
of practical relevance. Prominent in this sense are energy (enhanced oil recovery [100],
geothermal energy [129]), environmental or civil engineering (geological CO2 sequestration
[48], concrete carbonation [112]), technological applications (fuel cells [11, 68], nano-
materials [188]) and biological systems (blood vessels [183], biofilms [98]). Common for
all these applications is that the flow and transport processes occur and interact at different
scales for different applications [62,74,181,191]. This complexity makes the mathematical
and numerical analysis of such processes very challenging. Since the past half-century,
upscaling of such processes from a micro to a macro scale has been a common practice
among researchers [56,187]. The goal is to find effective (upscaled) models which are not
only less complex to describe but also very efficient to simulate.

In this thesis, we derive mathematical models for flow and transport problems in
porous media involving different scales. More specifically, we start with mathematical
models valid at the micro scale, here it is referred to as the pore scale. Later, we derive
upscaled models valid at a much larger scale, namely the scale of the application. The
larger scale of our interest is commonly referred to as the Darcy scale and can be viewed
as a macro scale in contrast to the pore scale. In short, the goal is to derive upscaled
models with a focus on two-phase or unsaturated flow coupled with the transport of a

soluble surfactant.
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In Section 1.1, we briefly discuss the physical processes regarding two-phase flow in
porous media. Subsequently, we provide a short overview of the considered mathematical
models at the scale of pores in Section 1.2.1, and further, we discuss commonly used
models at the Darcy scale in Section 1.2.2. We present upscaling methods that bridge
the gap between pore-scale and Darcy-scale models in Section 1.3. In Section 1.4, we
introduce the numerical schemes used to solve the resulting Darcy-scale models. We
formulate the main goals of the thesis in Section 1.5. Finally, we summarize the thesis in

Section 1.6.

1.1 Physical processes in porous media

A porous medium is a material that contains pores (or voids) and a skeletal structure, the
solid grains. The solid grain network may be very complex. Examples of porous media
are rocks, soil, cement, wood, cork, nappies and face masks. We are interested in the
case when one or more fluids (e.g., liquid and gas) occupy the pore space and species
(solute/surfactant) maybe present in the fluids.

The porous medium is "fully saturated” if the entire pore space is filled with only
one liquid phase. It is "unsaturated” if the pores are filled only partially with a liquid
phase and otherwise by a gas that has no impact on the overall flow. If two liquids are
present and influence each other, one deals with "two-phase” flow in a porous medium.
For example, in groundwater hydrology, one deals with the flow of two fluids (water and
air) in the subsurface, which is a porous medium. In oil recovery applications, two fluids
(water and oil) flow through the reservoir rock. The first application is an example of
unsaturated flow, while the latter is a two-phase flow system.

The two-phase or, more general, the multi-phase and multi-component flow and trans-
port through a porous medium is inherently a process occurring at multiple scales [79].
Here we consider the pore scale as a micro scale, as opposed to the Darcy scale (the
macro scale), where a volume containing both solid grains and pores is considered as
representative elementary volume (REV) [20]). This volume is the smallest volume at
which average properties do not vary with the change in REV size. In Figure 1.1, pore

and Darcy scales are illustrated, where zooming in at the Darcy scale shows a detailed
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structure of the pore scale with two fluids and a surfactant. Darcy-scale processes occur
in scales ranging from centimeters up to kilometers. On the other hand, those at the pore
scale are within scales of millimeters or micrometers or even below. Hence there exists a

clear scale separation between these scales.

Surfactant

?

Flud 2 Grain Fluid 1

Figure 1.1: The left figure is a schematic representation of the porous medium 2 at the
Darcy scale. The right figure is the representation of a two-phase flow and surfactant
transport system with an evolving fluid-fluid interface (colored red) at the pore scale.
It presents grains (colored gray) surrounded by void space (the pores) occupied by two
immiscible fluids (blue and orange) and surfactant species (white dots). Black arrows
indicate fluid velocity. The internal solid-fluid boundaries of the void space are colored

orange and the outer one is colored green.

Since the total number of grains and voids of the porous medium is enormous, simu-
lating flow is not feasible at the pore scale. The grain and void spaces, and the two (or
more) fluid phases cannot be explicitly separated at the Darcy scale but can be modelled
through average quantities such as porosity and saturation. For many applications, one
is only interested in the average quantities at the Darcy scale. Therefore, a Darcy-scale
model would be suitable. However, one would be interested in a Darcy-scale model that
incorporates pore-scale influences. The derivation of Darcy-scale equations incorporat-

ing the pore-scale effects is one important research topic of flow in porous media. This



4 CHAPTER 1. INTRODUCTION

derivation is a type of upscaling.

1.1.1 Flow in porous media

At the Darcy scale, the flow of each fluid phase is typically described with the help of Darcy-
scale quantities like the absolute permeability and the fluid-specific relative permeability.
The absolute permeability depends strictly on the composition and topology of the solid
part of the medium. The relative permeability is considered to be a function of saturation.

Based on experiments, Henry Darcy [58] formulated one of the first mathematical
models for the Darcy-scale flow in a porous medium. In these experiments, one fluid
phase occupied the entire pore volume of the medium, and hence the porous medium was
fully saturated. The empirical law observed by Darcy shows that permeability links the
pressure gradient to the fluid flow velocity at the Darcy scale.

We mention [40,152,182] among the first attempts to model unsaturated flow through
porous media. In these studies, Darcy's law for the saturated case is extended to un-
saturated media, namely Richard’s equation [152]. In the setting of two-phase flow,
we mention the Buckley-Leverett equation [41]. It describes the average displacement
behaviour of the mixtures of multi-phase (oil-water-gas) flow through the sand. The
Buckley-Leverett equation is nothing but generalized Darcy's laws for multi-phase flow.

Traditionally, the Darcy-scale flow models involve the mass balance equations for each
fluid phase, the Darcy laws for each fluid velocity with a saturation-dependent (relative)
permeability, and the phase-pressure difference (the capillary pressure). In general, the
permeability and capillary pressure depend nonlinearly and monotonically on the satu-
ration of the (wetting) fluid. These nonlinear relations have been formulated based on
experimental observations and lack a mathematical derivation from governing pore-scale
models (see [20,78]).

Although extensively used, traditional Darcy-scale models need improvements, as also
motivated by experimental results. As shown in [121], the capillary pressure-saturation
function also depends on the process (infiltration or drainage). Furthermore, the break-
through curves determined in [26] between the phase-pressure difference and the saturation
reveal that the dependency is not necessarily monotone. Next, there is indirect evidence

of the limited validity of assuming a linear relationship between the capillary pressure
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and the saturation. In this respect, we mention that effects like saturation overshoot
or finger formation, clearly evidenced in experiments reported, e.g., in [59, , ,190]
and [70,151], cannot be modeled by using traditional Darcy-scale models.

Multiple extensions of Darcy's law for unsaturated or two-phase flow in porous media
have been proposed to overcome these drawbacks. In this sense, we start by mentioning
[3,21,22,135,173], where different play-type hysteresis models are proposed (an overview
is provided in [159]), and we refer to [21,77] for models incorporating dynamic effects in
the capillary pressure - saturation dependency. Inspired by the thin-film model proposed
in [85], a phase-field model involving the second-order spatial derivative of the saturation
in the capillary pressure is proposed in [9, 54, 55] for unsaturated flow in porous media.
In [61], a model accounting for the differences between percolating and non-percolating
parts of fluid is discussed, whereas the interfacial area concept is incorporated in the
porous media flow models discussed in [76, 125, 137].

The effectiveness of such extensions in capturing phenomena like saturation overshoot
and fingering is evidenced in [50, 55, 80, 97, , , , , , ]. Two different
major strategies can be observed in these papers. The first one is to present numeri-
cal simulations for the extended models, aiming at reproducing the experimental results
quantitatively. The second strategy relies on mathematical analysis, particularly on the
travelling waves. The focus is mainly on the qualitative behaviour of the solution and, in
particular, the dependence on the parameters appearing in the extended models.

Alternatively to the extended models discussed above, one can consider mathematical
models that are valid at the scale of pores, which lead to models posed in a complex
domain consisting of the entire pore space of the porous medium. Such an approach
allows for incorporating detailed pore-scale physics, which is generally better understood.
A pore-scale model is useful for formulating physical processes on local pore structures in
the porous medium. Pore-scale model equations are valid separately in the pore and grain
spaces. This difference between pore and grain space allows a more precise mathematical
formulation of the appropriate physical processes.

Pore-scale modeling is very useful for simulating fluid flow in the pore space. We refer
to [72,87,168] for a review of numerical approaches for simulation of fluid flow at the pore

scale. Closer to the studied case in Chapter 2 are [111] and [110], where direct numerical
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simulation tools are developed to understand the flow and the interface dynamics at the
scale of pores, and these tools are then incorporated into a multi-scale simulator. Due to
the computational cost, a numerical simulation for the entire domain of interest at such
a detailed level remains infeasible for practical applications.

In this thesis, we use upscaling to derive averaged (upscaled) models at the Darcy scale
from pore-scale models. These Darcy-scale models incorporate pore-scale effects through
upscaled effective (average) quantities. Additionally, upscaled models are computationally
less expensive to simulate compared to pore-scale models.

The upscaling of saturated flow in a porous media is well understood (see e.g., [34])
whereas the unsaturated flow or the two-phase, immiscible flow have many unsolved issues.
The major challenges are due to the presence of evolving interfaces at the pore scale, which
separate the two fluid phases [115] and the modelling of the fluid-fluid interface contact
with grain boundaries [108]. In Chapters 2 and 3, we address the first issue due to evolving
fluid-fluid interfaces at the pore scale and derive (non-standard) Darcy-scale models using

upscaling.

1.1.1.1 Moving fluid-fluid interface

When referring to two fluid phases, a peculiar aspect of the pore-scale modelling is that,
since the fluids are assumed immiscible, they are separated at the pore scale by an interface
having a location that is not known a-priori. Its location depends on the surface tension
between the fluids and on the fluid velocities (which may depend on the surfactant). In
mathematical terms, this interface represents a free boundary in the model.

The fluid-fluid interface separates the regions occupied by the two fluids. At the Darcy
scale, the interface determines the saturation of both fluids. However, simply knowing the
saturation of the two fluids is not sufficient for describing the flow of both phases. It is
crucial to quantitatively not only understand, but rather include the underlying processes
that affect the interface between the two fluids. Further, the dynamics of the triple points
in R?, or curves in R? where the interface meets the solid grain need to be taken into
account.

When dealing with free-boundary problems, one can consider several mathematical

modelling strategies. The simplest situation is when the domain is either one-dimensional,
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or has a rectangular or cylindrical structure, and the free boundary is along the symmetry
axis. In this case, one can identify the free boundary through the distance to the domain
boundary along the symmetry axis. Such a strategy is adopted in [117] and in Chapter 2 of
this thesis. In a similar context, but with a free boundary transversal to the symmetry axis,
parametric curves or surfaces have been used to model two-phase flow in a rectangular or
cylindrical structure [108, 115].

More realistic situations can be considered when assuming periodically distributed
grains, which will be done in Chapter 3. In this case, the simplest approach is to assume
a radial symmetry for the grain and the free boundary. Then, the free boundary can be
identified through the radius of the curve/surface, as done, e.g., in [65, 167], where a
model for water diffusion into absorbent particles is proposed. If radial symmetry cannot
be assumed, level sets can be used to identify the free boundary, e.g., [34,36,67,177].

In the sharp-interface approaches mentioned above, the main difficulty in the analysis
and numerical simulation of such mathematical models is having discontinuities on each
side of the interface and that the domains of the two fluids change with time. To avoid
discontinuities and dealing with time-dependent domains, diffuse-interface approach, e.g.,
phase-field (see [2]), offers a good alternative. In this case, the sharp interface is approx-
imated by a diffuse interface region and the model is defined in a fixed domain [46, 106].
The phase-field indicator is a smooth approximation of, say, the characteristic function of
the domain occupied by one of the fluid phases. Then, a critical aspect is to guarantee
that, when the diffuse interface width approaches 0, the model reduces to the original
one, involving sharp interfaces. Phase-field models can capture topological changes such
as merging and splitting and have thus been used successfully for direct numerical sim-
ulation of multi-phase flows [28, 90]. For different applications, we refer to [37, 180],
where a (pore-scale) phase-field model is developed for a precipitation-dissolution model
involving one fluid phase, to [150,153] for two fluid phases, to [73] for two-phase flow in-
cluding temperature-dependent surface tension, and to [103,120] for fracture propagation
in poroelastic media. Figure 1.2 shows a schematic representation of the sharp interface

versus the phase-field approximation of the free boundary between the two fluids.



8 CHAPTER 1. INTRODUCTION

Surfactant Surfactant

Sharp interface

\

Diffuse interface
Fluid 1 Fluid 2 region Fluid 1

Fluid 2

Figure 1.2: Schematic representation of the sharp interface versus diffuse interface to

model a freely moving fluid-fluid interface.

1.1.2 Surfactant transport in a porous media

The surface tension between the two fluid phases can be influenced by the presence
of a surfactant in one or both fluids in multiphase flow in porous media. Important
examples in this sense are enhanced oil recovery [100, 185] or applications involving, e.g.,
microfluidics [94,123] or thin-film flows [53,75]. For more examples of models that account
for surfactant transport in porous media, we also refer to [36,91,99,124,166].

The transport of surfactant in a fluid is determined by the fluid flow velocity and by
the concentration gradient of the surfactant. A convection-diffusion equation is used at
the pore scale to model the surfactant transport. Moreover, the surfactant can alter the
surface tension at the fluid-fluid interface and create a surface tension gradient, which
influences the capillary pressure and hence the overall flow. Such processes encountered
at the pore scale have impact at the Darcy scale. The flow driven by variations in the
surface tension is known as the Marangoni effect [160]. It is usually caused by surfactant
or concentration gradients and helps the fluids to move from the region with higher
concentration of surfactants to that with lower concentration. Hence, the transport of
surfactant concentration can not be ignored. In many industrial applications such as

microfluidics [63] and enhanced oil recovery (EOR) (see [83,126,163]), Marangoni effects
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play an important role.

In surfactant EOR, two fluids (water-oil) occupy the pores, and a surfactant is added
to reduce the surface/interfacial tension (IFT) between trapped oil and injected water in
the reservoir rock. The surface tension gradient drives the oil to move from the region with
higher concentration of surfactant to that with the lower concentration. Consequently, the
surfactant increases the mobilization of oil left inside the pores of the rock after primary

or secondary recovery and therefore enhances the recovery of oil. See Figure 1.3 for the

graphical illustration of the IFT reduction mechanism in the surfactant EOR process.
Rock Surfactant

Mobilized

oil

Trapped oil inside :> Reduction of IFT I:>Mobilized oil after

pores before due to surfactant surfactant addition
addition of surfactant

Figure 1.3: A schematic representation of the working principle of surfactant in EOR.

1.2 Overview of mathematical models in porous media

This section focuses on the single-phase and two-phase/unsaturated flow and surfactant
transport models in porous media. First, the governing model equations for flow and
transport are introduced at the pore scale, and later the commonly used model equations

at the Darcy scale are presented.

1.2.1 Pore-scale models

We consider here pore-scale models for single-phase, two-phase or unsaturated flow
through a porous medium. The pore-scale models also consider the possibility of one

fluid transporting a (soluble) surfactant species.
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The structure of the pore-scale models is described in Sections 1.2.1.1-1.2.1.4, which
include two major components: the flow of the two separate phases and the diffusion and
transport of the surfactant. Additionally, initial and boundary conditions are specified to
complete the model equations. In Section 1.3 and Chapter 2, we use these pore-scale

models to derive Darcy-scale models.

1.2.1.1 Single-phase flow

We start by presenting the model for single-phase flow, where the entire pore space is
occupied by one fluid. The fluid is assumed incompressible, and its density and viscosity
are assumed constant. Figure 1.4 sketches the geometry of a single-phase flow system in

a general porous medium. Outer boundary of the
Internal boundary  zoomed in pore-scale domain

ot

Grain Fluid

Figure 1.4: The left figure is a schematic representation of the porous medium €2 at the

Darcy scale. The right figure is the representation of single-phase flow at the pore scale.
It presents grains (colored gray) surrounded by void space (the pores) occupied by single
fluid (blue). The internal solid-fluid boundaries of the void space is colored orange and

the outer one is colored green. Black arrows indicate fluid velocity.

In what follows, we let 2 denote the entire domain (the porous medium), which consist
of a solid grain space and a fluid-filled pore space Qp. We define (0, 00) the time interval
in which the flow takes place and write @ = Qp X (0, 00).

Let p, p denote the viscosity and density of the fluid. Then, for any time ¢t > 0, the

flow of a single-phase fluid is modelled by the incompressible Navier-Stokes equations
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(see [24,130]), which describe the conservation of momentum and mass,
POV + p(v-V) v+ Vp— uViv =0, in Q, (1.1)
V.v=0, in Q, (1.2)

where v is the velocity and p is the pressure. For simplicity, the flow is assumed horizontal,
so that gravity effects are neglected.

The boundary of Qp consist of the inner part I'g, which is the union of all grain
boundaries of the outer part and the outert part, 9Qp \ I'g, where 9Qp = Qp \ Qp,
which is the union of all pore boundaries. In Chapters 2 and 3, we assume that the grain

boundary is impermeable to the fluids. Also, there is no-slip along I'g,
v =0, onIg x (0,00). (1.3)

Note that this condition is appropriate if the Knudsen number Kn> 10 (see [78]). The
single-phase model (1.1)-(1.3) is completed by initial and boundary conditions. For ex-
ample, one can use an initial velocity and periodic boundary conditions on 02p to close
the system.

By neglecting the inertia effects and assuming a low Reynolds numbers, instead of

(1.1), one can use the Stokes equations (see [31])
pV2v = Vp, in Q. (1.4)

In Section 1.3, we introduce upscaling methods used in this thesis and for simplicity, we
use Stokes equation (1.4) and (1.2) to describe the flow. Whereas in Chapters 2 and 3,

we use the Navier-Stokes equations (1.1)-(1.2) to fully describe the flow.

1.2.1.2 Two-phase flow

We extend the situation before by assuming that two incompressible and immiscible fluid
phases occupy the pore space (2p. The model equations for two-phase flow at the pore
scale are similar to those in the single-phase flow case. The main difference is that

one needs to solve the conservation laws (momentum (1.1) and mass (1.2)) for each
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phase o = I,II. Moreover, these are posed in time-dependent subdomains Q) =
{Q(a)(t) xt|t > 0}, which correspond to the parts of Qp occupied by fluid .. The velocity
vectors are denoted by V() = (V(a,1);V(a,2)), Where the index a = I, 11 distinguishes
between the non-wetting (fluid-1) and the wetting fluid (fluid-11), respectively. Let ji(o)
and p(q) denote the (constant) viscosity and density of phase o = I,II. Then the

momentum and mass conservation laws are

P09V (0) T Pla) (V(@) - V) V(@) + VPla) = @) VV(e) =0, 0 Qua),  (15)
V- Via) =0, in Q(a), (1.6)

where p(,) denotes the pressure of phase «. As in the case of single-phase flow, gravity
effects are neglected. Figure 1.5 sketches the geometry of a two-phase flow system in a

general porous medium.

\\“‘\\\\\\\\\‘\ / P
\\\\\\\\\\\\\\\\ 1 /
T G||'ain Fluid 2

Figure 1.5: The left figure is a schematic representation of the porous medium 2 at

the Darcy scale. The right figure is the representation of a two-phase flow system with
evolving fluid-fluid interface (colored red) at the pore scale. It presents grains (colored
gray) surrounded by void space (the pores) occupied by two immiscible fluids (blue and
orange). Black arrows indicate fluid velocity. The internal solid-fluid boundaries of the

void space is colored orange and the outer one is colored green.
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To solve the two-phase flow model (1.5)-(1.6), we need to prescribe appropriate initial
and boundary conditions. Furthermore, the models for phases I and II are coupled
through boundary conditions at the fluid-fluid interface T'(t). We assume that the two
fluids are separated by a sharp interface with zero thickness which changes with time.
The movement is not known a-priori, hence is a moving boundary at I'(¢). Figure 1.6

presents a schematic representation of fluid-fluid interface I'(¢).

MO)

— I'(t) Qn(t)

Figure 1.6: Schematic representation of two-phase flow and surfactant transport system
with evolving fluid-fluid interface (colored red). It presents two immiscible fluids (blue

and orange) and surfactant species (white dots). Black arrows indicate fluid velocity.

First, we assume that the fluids have no phase change. Hence there is no mass transfer

across the interface I'(¢) and therefore the velocities of the two fluids are equal at T'(¢),
Vi) = v, on {D(t) x {t},¢ > 0}. (L7

Second, we assume that the normal velocity v,, of I'(¢), equals the normal velocities of

the two fluids,
V(a) N = vy, on {I'(t) x {t},t > 0}, for a = 1,11, (1.8)

where n denote the unit normal vector on I'(Z) pointing into Q(;)(t) from Q1) (t) and t

the unit tangent vector.
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The flow and the surface tension v between the fluids give rise to a stress at the

fluid-fluid interface T'(t). We use the stress tensors

T(a) = —pel + e ((VVi@) + (VV@) ") (a=111).

If the surface tension ~y is affected by the presence of a surfactant having concentration ¢
in one of the fluids, one has v as a function of ¢. For example, in [165] the following law

is proposed

’y(c)’ymf(lbln( < +1)), (1.9)

Q Cref

where a, b are constants, 7, is a reference surface tension and ¢, is a reference concen-

tration. The tangential stress gradient of the surface tension is
Vsy(e) ==V y(c) —n(n-Vy(c)).
With this, the third boundary condition on the fluid-fluid interface reads (see [102])
(Ty — Tny) -n=7(c) (V-n) n—V,v(c), on {I'(t) x {t},t > 0}.

This jump can be written in terms of the normal and the tangential components. At I'(¢),

the jump (see [105]) in the normal component of the normal stress is

((T(,) ~T(p) .n) ‘n=n(c) (V-n), on {T(t) x {t},t > 0}. (1.10)

Due to the dependency of the surface tension v on ¢ the tangential component of the

normal stress has a jump at I'(¢) ( the Marangoni effect),

((T(,) ~Tup) - n) t=—t-V (), on {D(t) x {t},t >0}, (1.11)

which helps the flow of the fluids with lower surface tension going towards the region of

larger surface tension.
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For « = I, 11, on the solid-fluid interfaces I'g, we assume no-slip for both fluids,
V(a) = 0, on I'g and for ¢ > 0. (1.12)

Finally, the initial velocity for each phase @ must be specified to close the system.

Remark. Whenever the surface tension is constant, as happening, e.g., in the absence of
a surfactant or with a constant surface tension, the tangential components of the normal

stresses are equal at T'(t). In this case, v(c) = v, and (1.10)-(1.11) reduce to

((T(,) ~T(p) - n) ‘n=v (V-n), on {T(t) x {t},t > 0}, (1.13)

((Ty = Tan) -n) -t =0, on {T'(t) x {t},t > 0}. (1.14)

1.2.1.3 Unsaturated flow

Unsaturated flow is a special case of the two-phase flow model described in Section
1.2.1.2. For unsaturated flow, we assume that the pressure in fluid-1 is constant and that
its mobility is infinite. Essentially, this means that fluid-I plays no role for the flow of
fluid-1l. This situation appears, e.g., if fluid-1 is air and is connected to the atmosphere.
Then, the unknowns are reduced to those corresponding to fluid-ll. The model equations
in Section 1.2.1.2 are hence simplified by giving up the equations for a = I, keeping only

the Navier-Stokes equations in the region occupied by fluid-II,

pandvan + pan (Van - V) van + Voan — panVevan =0, in Qur,
V-vian =0, in Q(rr).

Moreover, if we assume that the surface tension is constant, at the gas-fluid interface

I'(t), the boundary conditions (1.8) and (1.10)-(1.11) reduce to

V() - = Up, on {I'(¢) x {t},¢t > 0},
(T(H) : n) -n=—y(V-n), on {T'(¢) x {t},t > 0},

(T(H) -n) t=0, on {T(t) x {t},¢ > 0}.
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We still assume a no-slip boundary condition (1.12) for phase o = IT on the fluid-solid
interface I'g and the initial velocity for phase o = IT is needed to close the unsaturated

flow model.

1.2.1.4 Surfactant transport

We consider one chemical species, a surfactant that is only soluble in one fluid, say in
fluid-11. Its molar concentration is denoted by c. Additionally, there is no mass transfer
of the surfactant from fluid-1l to fluid-1. Hence, the molar concentration of the surfactant
in fluid-1 is zero. The surfactant transport is due to the fluid flow and the concentration

gradient, resulting in
atC+V' (—DVC+V(11)C) :0, in Q(]]), (115)

where D is a (constant) diffusion coefficient. Figure 1.1 sketches the geometry of a
two-phase flow and surfactant transport system in a general porous medium.
At I'(t), one has the mass balance for the solute, while the normal flux into the solid

matrix is zero at I'g,

(—DVC—FV(H)C) -n = cu,, on {I'(¢) x {t},t > 0},

(—DVC + V([[)C) -n =0, on I'g and for ¢ > 0.

Finally, one needs an initial distribution for the surfactant concentration to complete the

transport model.

1.2.2 Darcy-scale models

In this section, we discuss existing Darcy-scale models for flow and surfactant transport in
a porous medium. In Darcy-scale models no distinction is made between the pore space
and the skeleton of the porous medium. These models describe the averaged behavior of
the system by considering so-called representative elementary volumes (REV) [20] where
detailed information from the pore scale is not available. Note that gravity effects are

neglected here as in the previous Section 1.2.1.
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1.2.2.1 Single-phase flow

We begin with a single-phase flow in a d-dimensional porous medium Q C R%(d € {2, 3}).
Its outer boundary is 9Q. Let K € R?*4 be the absolute (or intrinsic) permeability of the
porous medium. Typically, K is a symmetric positive definite tensor. In the case of an
isotropic medium, the permeability tensor reduces to a scalar quantity. The Darcy-scale
model equations for the incompressible single-phase flow in a porous medium are the

Darcy law [58] and the conservation of mass,

V= —EVp, in Q, (1.16)
W

V-Vv=gq, in Q, (1.17)

where ¥V is the Darcy (or volumetric) velocity, p is the fluid pressure and ¢ stands for
internal sources or sinks ( depending on the sign of ¢). The model equations (1.16)-
(1.17) are the simplest equations for modelling single-phase flow in a porous medium.
Boundary conditions have to be specified to complete the single-phase flow model.
For simplicity, one can use the homogeneous Dirichlet boundary conditions on 02 for the

pressure.

1.2.2.2 Two-phase flow

If two fluids are present in the porous medium, we consider fluid-I as non-wetting and
fluid-1l as wetting. Let S(a) be the saturation (the ratio of fluid « volume in an REV,
and of the REV volume) of phase a,« € {I,I1I}. Additionally, let ® be the porosity
of the porous medium (the volume of the pore space in an REV over the volume of the
REV). At the Darcy scale, the model equations for two-phase flow are given by the mass

conservation of the fluid phases o = I, IT (see [20,78])

cI>8tS(a) +V V() =¢a), In Q x (0,00), (1.18)
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where ¥V, is the volumetric flux, and g, is the source/sink term of phase o.. With p(,)

being the pressure, ¥, satisfies the Darcy-Buckingham law (see [20])

IC k T, .
Vi) =— ﬁVp(a), in © x (0, 00). (1.19)

Here pi(q) is the dynamic (constant) viscosity of phase «. Further k(r,o) denotes the
relative permeability and it models the relative transmigration rate of phase « through
the medium. This function is usually obtained from experimental observations.

The model equations (1.18)-(1.19) are the typically used model equations for modelling
two-phase flow in a porous medium. However, they do not form a closed system. To solve
this system, one needs additional closure relationships. By the definition of saturation,
one has S(,) € [0,1]. Since the voids are occupied by either phase, the first closure

relation is
S(I) + S(II) =1 (1.20)
Secondly, the relative permeability is assumed to be a function of saturation

ko) = k@) (Sun))s

which is typically a monotonic function. In standard flow models, the phase pressure
difference, which is called the capillary pressure, is also assumed to be a function of the

saturation,

Py — P = pe(Siry)- (1.21)

In practice, p.(S(rr)) is assumed to be a monotonically decreasing function. Commonly
used p. — S(rp)-relationships are by Brooks-Corey and van Genuchten (see [38,39,175]).
The van Genuchten and Brooks-Corey models are often combined with Mualem and
Burdine relationships [44, 122] to obtain the k(, o) — S(;1)-dependency.

To complete the two-phase flow models at the Darcy scale, one needs to consider

appropriate initial and boundary conditions. For instance, one can prescribe Dirichlet
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boundary conditions on OS2 for phase pressure or saturation. Also the initial saturation
must be prescribed.

These typical standard models (1.18)-(1.21) for two-phase flow have some limitations.
The constitutive relationships are derived empirically under equilibrium (static or no flow)
conditions which can not incorporate all the dynamics of pore-scale processes and their
(non-equilibrium) effects (fluid-fluid interface, interfacial surface tension, immiscibility
etc.) that alter the fluid distributions in the porous medium. The scaling functions for
capillary pressure are not a monotonic function of saturation, but several curves are present
for the same medium. More precisely, they are time-dependent and can not describe effects
due to hysteresis (or memory effects) and dynamic capillarity [121]. Consequently, using
traditional equilibrium models for two-phase flow, one can not address non-monotonic
phenomena such as saturation overshoots and gravity driven fingering effects observed by
experiments [60,71]. Examples of non-standard two-phase flow models which incorporate
non-monotonic effects and dynamics of the capillary pressure are [3,21,82,93,145,173].

As an alternative to the mentioned extended models, in Chapters 2-3, we employ
formal upscaling and use asymptotic expansion methods to derive non-standard Darcy-
scale models for two-phase flow accounting for the behavior of the fluid-fluid interface at

the pore scale.

1.2.2.3 Unsaturated flow

The Darcy-scale model equations for unsaturated flow in a porous medium is similar to
the two-phase flow model in Section 1.2.2.2. One only needs the model equations for the

(wetting) fluid-11, which is described by the following mass balance equation [20, 78],
(I)atS([[) +V 'V([[) =q(11)> in Q x (0,00) (122)
where S(;p) is the saturation and g7y is the source/sink term. Similar as in Section

Section 1.2.2.2, one has

K ke .
Vi = — #Vp(n), in Q x (0, 00). (1.23)
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Combining the Buckingham flux law (1.23) with the mass balance (1.22), one gets

K k. .
®9;S(11y =V - (/L(’H)Vp(][)> +qry, in 2 x (0,00), (1.24)

w

which is the well-known Richards equation.
Note that (1.24) is not closed since it has three unknowns: saturation, pressure, and

relative permeability of fluid-1l. This is resolved by the closure relationships

pn) = Pe(Sury), and kg rpy := kg0 (Srn)- (1.25)

Commonly used relationships for the p. — S(rr) and k(. 11y — S(rr)-relationships can be
found in [38, 39,44, , ]

To solve the unsaturated model equations, one needs to consider appropriate initial
and boundary conditions. For example, one can prescribe the normal Darcy flux at the

boundary, and an initial saturation.

1.2.2.4 Surfactant transport

At the Darcy scale, the mass transport of the surfactant concentration c is given by the
convection-diffusion equation [78]

<I>8t(S(H) C) + V. (J +V(H)C) =0, in Q x (0,00). (1.26)

Here J is given by Fick's law, J = —DVc and D is an effective diffusion coefficient. Note
that in Chapters chapter 2 and 3, we derive similar Darcy-scale effective equations for
surfactant transport by applying upscaling methods from pore-scale equations (1.15). To

close the system, an initial concentration profile and boundary conditions are needed.

1.3 Upscaling methods in porous media

In this section, we discuss upscaling methods for problems involving flow and transport
in porous media. There are many contributions in the study of upscaling methods for

porous media flows such as analytical methods, stochastic methods, numerical methods,
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see [18,49,56,62,64] for an overview. Here we briefly discuss analytic techniques which are
relevant for this thesis. Since pore-scale models are unsuitable for large-scale simulations,
the idea of analytic upscaling is to derive the Darcy-scale models by using averaging
procedures over the pore scale. As mentioned in Sections 1.2.2.2 and 1.2.2.3, commonly
used Darcy-scale models include parameters which need to be determined experimentally
and additional effects such as dynamic effects due to evolving interfaces are included
ad-hoc or are simply neglected. To overcome such issues, our goal here is to formally
derive (averaged) Darcy-scale models based on model formulations from the pore scale,
including the effects of the evolving interface. Then one can formulate the expressions
for the effective parameters through upscaling.

Various analytic upscaling techniques can be considered to derive Darcy-scale models:
transversal averaging, homogenization and volume averaging. Transversal averaging can
be applied when a simple geometry (e,g, long, thin tube or strip) is considered (see [33,

,116,117,134,162,179]). Although simplified, upscaling using transversal averaging
still provides Darcy-like model equations for effective quantities as in general porous media.
In this way, the relevant model components and features can be included in the upscaling
and the corresponding Darcy-scale models can be derived for different dominating effects.
As in [118], we choose transversal averaging in Chapter 2 for upscaling a model in thin
domain with two fluid phases which accounts for the evolution of the fluid-fluid interface
due to flow and concentration-dependent surface tension. It is worth to mention that the
novelty of our work lies in the fact that we consider different pore-scale regimes in the
upscaling analysis and derive non-trivial averaged (upscaled) models at the Darcy scale
including physical effects, e.g., Marangoni effects.

Homogenization is widely used for multi-phase flow and transport models in peri-
odically perforated domains, with small-scale heterogeneities. Periodic homogenization
provides a powerful framework to derive both the effective parameters and the Darcy-
scale equations. It is based on two strong assumptions, scale separation and periodic-
ity [5,84,131]. In particular, it uses a scale separation parameter €, to separate the scales
into a slow and a fast scale. By assuming ¢ < 1, one can introduce two independent
variables, a large-scale (slow) variable x and a small-scale (fast) variable y = X. The

slow scale relates to the averaged behaviour to the system, and the fast scale represents



22 CHAPTER 1. INTRODUCTION

the pore-scale characteristics. Additionally, one assume that all functions of y are peri-
odic, i.e. the small scale features are periodic. The next stage is the formal analysis of
the equations in the limit of ¢ — 0 by asymptotic expansions [4,5]. In Chapter 3, we
use homogenization trough asymptotic expansions to derive upscaled Darcy-scale mod-
els characterized by effective parameters. We refer to [19, , 154] which uses periodic
homogenization as an upscaling approach for developing two-phase Darcy-scale models.
Comparing to [113], we assume a minimal set of assumptions when deriving the upscaled
model. There are also many results through rigorous homogenization for two-phase flow
which can be obtained under suitable conditions. For example, we refer to [6,27,114],
where the convergence of the upscaling process is proved by the concept of two-scale
convergence. However, the influence of the evolving fluid-fluid interface has not been
included in these proofs.

An alternative to homogenization is the method of volume averaging, which has been
successfully applied to upscaling two-phase flow in porous media in [51,101,140,141,184].
Using volume averaging method, one needs to develop constitutive relationships in order
to close the averaged (upscaled) models for the effective parameters. Whereas there is no
need to derive such closure relationships when using homogenization [119,184]. However,
one requires local periodicity assumption which is similar to a closure condition.

In this thesis, we use transversal averaging and homogenization together with the
asymptotic expansion method. In this context, we mention that asymptotic homogeniza-
tion methods either in a thin strip or in a periodic porous medium have been applied for
many situations in which evolving interfaces are encountered at the pore scale. Exam-
ples in this sense are the evolving fluid-solid interface due to mineral precipitation and
dissolution, see [33,34,35,95,157,178,179], or due to biofilm growth or other biological
processes [98, , , , , , ]. In these studies, the derived Darcy-scale models
resemble many of the models (Taylor-dispersion model [169], Taylor-Jaffe model [170])
commonly accepted in literature and additional effects (e.g., variations in the temper-
ature) are included by rational approaches. In contrast to these models, we account
for two-phase flow with an evolving fluid-fluid interface at the pore scale and include
concentration-dependent surface tension effects, on the upscaled, averaged behavior.

In the following, we present the two upscaling approaches: transversal averaging and
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homogenization. For simplicity, we consider a single-phase flow model and assume that
the flow is governed by the Stokes system (1.4) and (1.2). Additionally, we consider a

no-slip boundary condition (1.3) on the grain boundary. Namely,

pAvV =Vp, in Qp,
V-v=0, in Qp, (1.27)

v=0, on I'g.

Note that in Chapters 2 and 3, we consider a two-phase flow case but the main steps of
the formal upscaling is still similar.

In Section 1.3.1, we bring (1.27) to a dimensionless form. Subsequently, in Section
1.3.2, transversal averaging is applied to a thin and long pore representing the local
pore geometry (see Figure 1.7) to derive an upscaled model. Later, in Section 1.3.3,
homogenization is used to derive the Darcy-scale model for the case of a complex medium,
which consists of periodically distributed solid grains surrounded by a connected pore
space (see Figure 1.9). To derive the Darcy-scale models using the formal upscaling and

asymptotic expansion methods, we follow the procedures outlined in [34].

1.3.1 Dimensionless pore-scale equations

To identify the model components that have a larger or smaller impact than others, we
first bring the model to a dimensionless form. The dimensionless model is formulated by
relating the dimensional quantities to the reference ones. For the dimensionless pore-scale
two-phase flow models, we refer to Chapter 2 and Chapter 3.

To make the equations dimensionless, we introduce a dimensionless scale separation
parameter €, which will be necessary for applying the upscaling methods in Sections 1.3.2
and 1.3.3. Typically, € is the ratio of two length scales, the pore scale and the problem

related scale, € = %ﬁ Therefore, € is a small dimensionless parameter.
re:
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Table 1.1: Reference variables and their primary dimensions

Reference variables Description Primary units
l pore length [m]

Tref characteristic length [m]

Dref pressure [kg m~t s72]
Vref velocity [m s~

Lhref viscosity [kg m~1 s71]

Using the reference variables in Table 1.1, we define the dimensionless model param-

eters and variables, denoted with a hat

x= x)r(ef“a B Hl:ef’ﬁe B il)}:-)efﬁe B ’U:,efﬁ = Tret ¥, (1.28)

We assume that the reference viscosity is fiyef = 52”;7;?“ The fluid viscosity is chosen to
scale with €2 so that viscous forces are balance with the pressure. We need this assumption
to derive a non-trivial Darcy-scale model when € — 0. If viscous forces dominate which
corresponds to jie or i, then after upscaling, this leads to a "frozen” profile when € — 0.
Using the dimensionless variables from (1.28) in the Stokes equation (1.27) and ap-

plying the chain rule we obtain the dimensionless Stokes model

AV = Vp©, in Qp, (1.29)
V-¥¢ =0, in Qp, (1.30)
V=0, on I'g, (1.31)

where Qp = {2|2,0f & € Qp}.

1.3.2 Upscaling using transversal averaging

In this section, we present the framework of Chapter 2, where the upscaled models for
two-phase or unsaturated flow are derived from a pore-scale model defined in a single pore
in a porous medium, namely a thin strip. Additionally, here the pore-scale equations are

simple Stokes equations whereas in Chapter 2, it is governed by Navier-Stokes equations.
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By considering the simplicity of the geometry, as in Chapter 2, asymptotic expansions and
transversal averaging are used here for upscaling. To introduce the method, we begin by

defining the pore geometry.

1.3.2.1 Geometric settings

Here the geometry is simple and represented by a two-dimensional channel of length L
and width [ (see Figure 1.7).
L

X

Figure 1.7: A schematic representation of the geometry of the single-phase flow model.

We assume that the width [ of the strip is very small compared to the length L. Hence,
a scale separation parameter can be identified as the dimensionless ratio, € := % Since
it is assumed as a small number, | and L can be treated as the characteristic scales of
the pore and Darcy scale, respectively. We denote & = ¥ and §j = ¥ as a dimensionless
variables. The consequence is that (Z,9) € (0,1)2.

In the dimensionless form, the pore space (domain occupied by the fluid) is the square
Qp ={(2,9) e R0 <2 <1,0<§ <1},
with boundary 9Qp. The boundary between the pore walls and fluid is

Ig={(9) eR’0<&<1,9€{0,1}}.

The dimensionless model is the Stokes system (1.29)-(1.31). Here we do not specify

the inflow and outflow boundary conditions since they are not influencing the upscaling
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procedure. This is because we assume that there are no boundary layers near the inflow
and outflow boundaries. We refer to [131] for more explanations on boundary layers and

homogenization.

1.3.2.2 The Darcy-scale model equations

To derive effective equations from the dimensionless single-phase Stokes-model (1.29)-
(1.31), we assume scale separation represented by e and use asymptotic expansion method
with respect to €. Since in this section only the non-dimensional variables are used, for
the ease of presentation the hats are suppressed. We assume that all the variables are
smooth and depend regularly on €. Then we apply the homogenization ansatz for the

model unknowns p¢ and v*,

p(z,y) = °(2,y) + e’ (2,y) + O(€?),

v<(z,y) = ) (z,y) + evi(z,y) + O(?), (1.32)

vs(z,y) = 3 (@, y) + evy(z,y) + O(e?),
where pi(z,y,t),v](z,y,t) and v}(x,y,t) are functions describing the O(e3) order ap-
proximation (for j =0, 1,---) of pressure and velocity components in - and y-directions,
respectively.

Since the scaling of the spatial coordinates is different, the derivatives also need to be

rescaled. Hence, the dimensionless gradient and the Laplacian operator are given by
1
V= <8w, ay,> , (1.33)
€
1
A= {0Opx+ 50y - (1.34)
€

Applying the homogenization ansatz (1.32) and using the rescaled gradient operator (1.33)

leads to

1
Vpt = (830, eay) (po +ept + 2p? + (9(63)) ,
1
€

(0,0,p") + (820", 0yp") + € (8up", 9yp*) + O(€°), (1.35)
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and

1
(az, ) o5 105) = 00+ 0,05,
€

1
00 + €0,v1 + O(e?)) + — (3yvg + €dyvy + O(e?))

(
%a + (9,00 + 9yv3) + O(e). (1.36)

Similarly, using the rescaled Laplacian operator (1.34) together with the homogenization

ansatz (1.32) provides

Ave = <87'7' + ayy) (vi,v3),
— (2un 50w ) (0 + o} + O(). (0 + 0} +0()).
1
2

1
(ayyv(l)vayyvg) + p (8yyvi7ayy7}%) +O(1). (1.37)

Using the above three expansions in (1.29)-(1.31) and writing the z- and y-components

of (1.29) separately gives

10y 03 + €udyyvi = 0,p° + €dup' + O(€2), in Qp,
Oy, v5 = %(%po + yp' + O(e), in Qp,
. %ayvg (0000 £ 0,00) + O(0), inQp,  (1.38)
0=+ vl +0(), on I'g,
0 =03+ vy + O(e?), on I'g.

Note that v§ does not play any role in the upscaled model since the e~! term of the third

equation and €” term of the y-component of the last equation of (1.38) give
dyvy =0, in Qp and v5 =0, on I'g,

which leads to

v9 = 0,in Qp. (1.39)
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The €' term of the second equation of (1.38) gives d,p° = 0, implying that p® is

y-independent, hence
P (z,y) = p°(2). (1.40)

To find the upscaled/averaged equation for the velocity, we first define the averaged

quantity

o(x) ::/0 o9 (z,y)dy. (1.41)

Subsequently we integrate the ” term of the first equation of (1.38) three times with
respect to ¥, which leads to
11

fu;@meogng (1.42)

v(x) =

which is Darcy’s law for single-phase flow. Note that there is usually a permeability factor
proportional to the width of the fluid-layer cubed (see Chapter 2). Since the thin strip
has unit width, this factor is here 5.

Let dx be the width of a thin section of the pore space Qp which is defined by

Yp ={(z,y)|lz1 <z <21 +0x,0<y <1} with0<z <L
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(1,0)  e| (x1+6z,0)

Figure 1.8: Thin section of the void space.

To show that the averaged velocity is divergence-free, we integrate the mass conser-

vation (1.30) over Yp, which gives

/ V-vidV = 0.
Yp

By applying Gauss's theorem to the integral above and divide it by dz, we obtain

1

— vi-eds=0,
ox oYp

where e is the outward unit normal vector. Since the boundary 0Yp consists of four parts;

the right, left, up and down (see Figure 1.8), we can write

LY e e I
0 :a/o (1)17112) . (1,0)dy|z=z1+5z + &A (’[)171;2) . (_1’0)dy|zzzl
1 z1+éw 1 r1+d0x
+ E /z1 ('Uiavg) . <07 1)dx|y:1 + E /3;1 (’UE)*US) . (07 _1) d$|y:07

e L
O:%/O Uidy|x=x1+6x_%/0 T p—

1 x1+0x 1 x1+0x
+ —/ vsdx|y=1 — —/ vsdx|y=o.
0T 4y oz J,

1
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Inserting the asymptotic expansion (1.32) in the above equation leads to

Lo 1, L 2 I 1, 1 2
0 _E/O (Ul t+evy + EO(E ) | dYlo=a,+s0 — E/O vy +ev; + EO(E ) | dYlo=a,

1 21462 1 1+
4+ = (vg + evd + (9(52)) dz|,—1 — —/ (vg + evs + 0(62)) dx|y—o.
6$ T 63: T

Collecting the lowest order terms and using (1.39), that is, v3 = 0 at y € {0, 1}, gives

Tty Tt
0= %/0 vldy‘m:zl—o—ém - %/0 vldy|z:r1~

Using the definition of averaged velocity (1.41) in the above equation and letting 6z — 0,

one obtains
0,0(x) =0, for 0 <z <1, (1.43)

which demonstrate that the Darcy-scale velocity is divergence-free.
Hence the Darcy-scale model equations for single-phase flow are given by (1.42) and

(1.43).

1.3.3 Upscaling using homogenization

In this section, we upscale a single-phase flow model ((1.29)-(1.31)) but considering a
complex, perforated domain. In doing so, we use the homogenization technique. We refer
to [12,52,84] for an introduction to homogenization methods. This framework is further

detailed in Chapter 3 for a two-phase flow model coupled with transport.

1.3.3.1 Geometric settings

Here the geometry is more complex than the thin strip. Let €2 be domain of the porous
medium with outer boundary 92. The domain 2 consists of a finite repetition of cells,

Y € (0,1)%. Figure 1.9 shows the geometry of the periodic, perforated medium.
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Y2
Figure 1.9: A schematic representation of perforated porous medium.

Let x = (x1,23) € (0, L)? be the Darcy-scale variable for some positive number L,
which contains only the large scale information. As in Section (1.3.2.1), we assume that

€ = % is the scale separation parameter, where [ is much smaller than L. Then the

pore-scale variable y = (y1,92) € (0,1)* is defined by y = *. Note that x and y play
different roles in this model compared to the thin strip model. In the case of the thin-strip
model, € is defined by the ratio between the horizontal and vertical length scales, whereas
for the periodical, perforated medium ¢ is defined by the ratio between the size of the
local cell Y and the size of the Darcy-scale domain 2.

We denote X = ¥ and y = ¥ as dimensionless variables. The consequence is that
%X = (#1,42) € (0,1)? and ¥ = (91, 92) € (0,1)%. By an abuse of notation, we suppress
the hats from the non-dimensional variables from now on.

In the dimensionless settings, to define the pore-scale domain, we let each unit cell Y’

consist of a grain space G, surrounded by the pore space P and the boundary between

them T'g, such that
Y=PUgGuUIlyg. (1.44)
Then the Darcy-scale (porous medium) domain is mathematically described by
Q= Uiz {e(i+Y)}, (1.45)
where Z, is a set of multi indices. The pore space is defined by

0% = Uiez {e(i+ P)}, (1.46)
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and the inner boundary between the grain and pore is

Feg = Uieze{ﬁ(iﬁ-rg)}. (1.47)

To derive the Darcy-scale model, we start with the dimensionless Stokes equations at the

pore scale,

EuAve = Vpt, in Q5%, (1.48)
V-ve=0, in Q%, (1.49)
v =0, on I'g. (1.50)

1.3.3.2 The Darcy-scale model equations

We start here by writing the two-scale expansion for p¢ and v as

. X X
pe(x) = p°(x, =) + el (x, =) + O(e?),
; ; (1.51)
ve(x) = v(x, =) +evi(x, =) + O(e?),
€ €
where p3, v3 are Y-periodic functions. In other words, for j =0,1,2,--- and e®,i = 1,2

being the unit vectors in the x;-directions, one has pi(x,y) = pI(x,y + €),vi(x,y) =
vI(x,y +e'). Note that the variable x is doubled here. We consider the slow variable x,
accounting for changes at the Darcy scale, and y = *, reflecting rapid oscillations at the
pore scale (the fast variable). The gradient and Laplacian operators need to be rewritten

as

1 1 1
V:V,ﬁgvy, A:Ax+g(vx~vy+vy~vx)+€—2Ay. (1.52)
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Using these expansions in (1.48)-(1.50) implies

pAGVY + ep [(V - Vy + Vg - Vi) V0 + Apv!]
1

— EVypo + (Vp® + Vyp') + € (Vip' + Vyp?) + O(e?), in 0%,
1.53)

1 (
0= Evy-vo+ (Vi VP +Vy v + € (Vi v+ Vy - v?) + O(*), in Qp,
0=v"+evl +0(?), on I'g.
We equate the terms of the same order of magnitude. The ¢! term in the first equation

gives
Vyp’ =0, fory € P, (1.54)

implying that p¥ is y-independent, hence p°(x,y) = p%(x).
The € terms in the first and the last equation in (1.53) and the ¢! term in the

middle equation lead to

pAyv? = (Vep” + Vyp'), in P,
Vy - vl =0, in P,
(1.55)
vl =0, on I'g,
p! and v° are Y-periodic.
We have
2
Vap? (%) = > €50, p°(x). (1.56)
j=1

By considering the linearity of the problem (1.55), we assume that p* and v" can be

written as a linear combination of some functions II; and x; with 8xjp0(x) as weights.
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Namely,
V(,¥) = = 32 0030, (), (157)
2
pl(X’ y) = ZH:] (XaY)a'Eij(X)' (158)
j=1

Inserting these expressions into (1.55), we can construct the so-called cell problems (j =

1,2)

—Ayx;(y) = €5 + Vylly(y), inP,
\% X(y)zoa il’lP,
v (1.59)
X3 (y) =0, on ng
I1;, x; are Y-periodic .
Since |Y| = 1, we define the average velocity as
v(x) = / vO(x,y)dy, for all x € Q. (1.60)
P
The €-order terms give
Vx . VO(Xa y) + Vy * Vi (X7 Y) = 07 (161)

for all y € P. Integrating the above with respect to y, applying the Gauss theorem, and
using the periodicity of vi(x,y) and the boundary condition vi(x,y) = 0 on I'g, one
gets

Vy - ¥(x) = 0, (1.62)

for all x € Q.
Integrating (1.57) with respect to y over P and using the average velocity (1.60), for

all x € 2, we obtain Darcy's law

V= —vapo, in Q, (1.63)
o’
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where the permeability tensor I has the components

Ksj :‘/7)X§(Y)dyv (1.64)

for i,j = {1,2}. The elements of the effective matrix KC(x) are obtained using the
solutions of the cell problems (1.59). One can prove that K is symmetric and positive

definite.

1.4 A brief description of the numerical schemes

We discuss briefly the numerical schemes used in this thesis to approximate the solution of
the Darcy-scale models. We observe that these models are systems of coupled, non-linear
partial differential equations and ordinary differential equations.

Since the upscaled models that will be derived in Chapter 2 are one-dimensional in
space, we use finite differences for the spatial discretization [104]. The upscaled model
that will be derived in Chapter 3 is a two-dimensional, two-scale, coupled non-linear system
of partial differential equations, which we discretize in space by the mixed finite element
method (MFEM) (see [10,25,32]). For the time discretization in Chapters 2 and 3, we
consider both explicit and implicit schemes. To handle the non-linearities in the resulting
coupled system of equations after discretization, we use linearization schemes, namely
Newton's method (see [23,43,92,139]) and the L-scheme (see [107,136]) in Chapters 2
and 3.

1.4.1 Spatial discretization

In the following, we present the main concepts of the finite difference and mixed finite
element methods. To introduce the finite difference method, we consider a simple partial

differential equation
0?u(x)
Ox?

=f for0<z<1, (1.65)

where f is given. We consider homogeneous Dirichlet boundary conditions, u(0) = u(1) =

0. For some given N € N, we choose Ax = % as the fixed spatial-step size, and let
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x; = jAz be the mesh points and j € {0,..., N}. The unknowns u; approximate

w(zj),j €{0,...,N} (1.66)

Using a central finite difference approximation in (1.65) and letting f; = f(x;), one

obtains
Uj—1 — 2 U + Ujt1 .
J Ax; I = f;, forj=1,...,N —1, (1.67)
which is an algebraic system of linear equations in the unknowns u;,j =1,...,N — 1.

Clearly ugp = uy = 0 due to the boundary conditions. With this one needs to solve the

system

AU=F (1.68)
where F' = (f1,..., fv—1)T € RW=1 and A € RW=D>x(N=1) is 3 matrix with entries
ajj = —5e3,0jj-1 = Gj_1,; = 5=z, and the unknown vector U = (uy,...,un—1)7 €
RW-1),

The mixed finite element method (MFEM) is a commonly used mass-conserving dis-
cretization technique (see [32]). Given a two-dimensional bounded domain Q2 C R? with

boundary 02, we consider the elliptic problem

-V - (KVu) = f, in Q,
(1.69)
u =0, on 01,

where u is the unknown function, f is a given function and C is a positive definite matrix.
In many flow problems, the variable of interest is not only w but also the flux —KVu.

Hence, we consider a second, vector-valued unknown,

v = —KVu. (1.70)
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Then using (1.70), problem (1.69) is decomposed into the first-order system of equations

v=—-KVu, in Q,
V.-v=f in Q, (1.71)

u =0, on 092,

which is the so-called mixed formulation of (1.69).
Before presenting the discretization, we introduce the functional spaces. Let L?(Q)
be the Hilbert space of square-integrable real-valued functions with the usual norm. With

this, we consider the space
H(div,Q) = {q € [L*()])*: V-q € L*(Q)}. (1.72)

Multiplying the first two equations of (1.71) by the test functions q € H(div,{2) and
w € L?(Q) respectively, integrating over the domain € and using integration by parts, we

obtain the weak mixed formulation of (1.71).
Problem WM: Find u € L*(Q) and v € H(div, ) satisfying

/IC_l(V-q) dx—/uV-qu:O, for all q € H(div, ),
Q Q

/wV-vdx:/fw dx, for all w e L*().
Q Q

Let T}, be a triangular partition of ) with elements T such that Q = |J 7, where no
vertex of any triangle lies in the interior of an edge of another triangle. ﬂgizhan admissible
triangulation (see [29, 30]).

We proceed now with the spatial discretization of Problem WM. We approximate the
solutions v and u of (1.71) by functions in finite-dimensional subspaces. To this aim,

we use the lowest-order Raviart-Thomas space Q) := RTy(T}) for approximating the

vectorial unknown v (see [146]) and for the scalar unknown we use the discrete subspace
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of piecewise constant functions Wp, := Py(T},) ,

Qn={aqn € Hdiv,Q) : qu|r =a +bx for all T € Ty, a € R?,b € R}, (173
1.73

Wy, =A{wy, € L? () : wy, is constant on each element T' € T}, }.

Note that here we choose the most popular Raviart-Thomas space but one can also
use Brezzi-Douglas-Marini or Brezzi-Douglas-Fortin-Marini spaces, we refer to [25,32] for

more details. Now we write the discrete weak mixed formulation of (1.71).
Problem DM: Find u, € W), and vj, € @), satisfying

K=Y(vp -qp) dx — / upV - qp dx =0, for all qp € Qp,

Th Th

/ wpV - vy, dx = / fwp dx, for all w, € Wy,
T T

We denote nEdge; and nElemy, as the total number of edges and elements in the trian-
gulation T,. Let qn1,-- -, Qnneage, and Wh 1, -, WhaElen, form the basis functions of
the finite dimensional subspaces @)y, and W}, respectively. Now, each unknown and test

function of Problem DM can be written as linear combination of the basis functions such

that
nEdge,, nElemy,
Vi = E [Vh]xGh x and  up = E [un|xWh k-
k=1 k=1

The degrees of freedom [vy]x are defined as fluxes across element edges and [uy]y are

defined as element values. Denote A, B and C the matrices with elements

Ak,z = ’C_l(qh,k : Qh,e) dx,
Th
By := / whx V- dp e dX, (1.74)
Th
C&::: fuuhgdx.

Ty
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The discretization of Problem DM then yields to a linear system of the form

1.4.2 Time discretization

Time discretization is discussed for the differential equation

ljli: = f(u,t), for t >0, (1.75)
where f : R¥*1 — R? is a Lipschitz continuous function and u : R — RZ. In practice,
f comes from spatial discretization of a partial differential equations and w is the space
discrete solution vector. Let u(0) = ug be the initial condition. For some given N; € N,
we choose At = le as the fixed time-step size. We denote " = n/At the mesh points in

time. Then, replacing the first-order derivative using forward finite discretization in time,

(1.75) becomes
u(t + At) — u(t)
_— t). 1.76
= ) (1.76)
This suggest an explicit method to approximate u(t). For n € N, let 4™ be the approxi-
mation of the exact solution w(t™) and let f* = f(u",t™). Then for all n > 0, one finds

n

u™ as,

u =u" 4 fPTAL (1.77)

This approach, known as the forward Euler method, is fast, but it has only conditional
stability [45]. More precisely, if the time-step size is not small enough, the solution will
be oscillatory or diverge [7,8]. However, the main advantage of the forward Euler method
is the possibility to advance the system at each time step, without the need to solve a
system of equations where all the degrees of freedom are involved. An alternative to the

forward Euler method is the backward Euler method. Then we can approximate u™ as

u" =u""t 4+ frAt, for n > 0. (1.78)
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Compared to forward Euler method, this method allows stable time steps under less strict
conditions on the time-step size At (see e.g., in [8]). However, since f™* = f(u",t"),
at each time step, one needs to solve a nonlinear system of equations, which makes the
method costly and difficult to parallelize. In general, no direct methods are available for
this system, so one needs to consider iterative ones. For details on time discretization

methods, we refer to [7,8,45].

1.4.3 Iterative solvers

As seen before, when using the backward Euler method, one needs to solve at each time
step, a nonlinear algebraic system of equations. More precisely, for a fixed n and assuming
u™~! known, (1.78) becomes

G"(u™) =0, (1.79)
where G™ : RY — R? is defined as G™(u) = u — Atf"(t",u) — u"~! for u™ € R?. For
i > 0 and given an initial guess u(, the Newton method represents the following iterations

ul = ul ; — VG (ul )" G™(ul,), fori >0, (1.80)

K2

where VG™ is the Jacobian of G™. Newton's method converges quadratically but only if
the initial guess u{} is close enough to the solution. With ugfl as a natural initial guess,
this induces severe restrictions on At. Moreover, one needs to compute VG at every
iteration, which is very expensive. We have used Newton's method in Chapter 2, where
the non-linear systems are smaller, since the models are one-dimensional.

An alternative to the Newton's method is the L-scheme. Given ug, for ¢ > 0, the
iterations are

ul =ul' ; — LG (ul ), (1.81)

? K3

where L is a constant, diagonal matrix. The L-scheme is a simple, fixed-point iteration
method. It only converges linearly for certain £, and the convergence is then uncon-
ditional, for any initial guess but this scheme is robust with respect to the mesh size.
Moreover, one does not have to compute the Jacobian, and therefore the computations

are faster than for the Newton scheme. In Chapter 3, we use the L-scheme as the mod-
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els are two-dimensional and the systems are larger. In the context of two-phase flow

and transport problems, the robustness and convergence of the L-scheme are analyzed

in [88, ,143].

1.5 Objectives

The aim of this thesis is to derive upscaled models for two-phase/unsaturated flow and
surfactant transport in porous media taking into account the evolving fluid-fluid interface

at the pore scale. The main objectives of this research are:

1. Upscaling of pore-scale models for a sharp-interface model problem for two-
phase/unsaturated flow and surfactant transport in a simple domain with evolving

fluid-fluid interfaces at the pore scale.

2. Upscaling of pore-scale models for a diffuse-interface model problem for two-phase
flow and surfactant transport in a complex domain with evolving fluid-fluid interfaces

at the pore scale.

To achieve this goal we start with the pore-scale modelling of two-phase/unsaturated
flow and surfactant transport in porous media. We will use a thin strip and a periodically
perforated domain (Chapters 2 and 3) to represent the pore-scale geometry of the porous
medium. In particular, we account for the moving interfaces at the pore scale, and for
the presence of variable surface tension effects due to soluble surfactant. This gives rise
to a free-boundary problem at the pore-scale. To handle the free-boundary, we use a
sharp-interface approach for the simple geometry of a thin-strip in Chapter 2. For a more
general domain in Chapter 3 we use a diffuse-interface approach that allows us to work
in fixed domains.

We apply formal upscaling methods to derive Darcy-scale models from the pore-scale
ones. In particular, we apply transversal averaging and periodic homogenization as upscal-
ing techniques. The resulting effective (upscaled) models are given by non-standard Darcy-
type equations including physical effects due to evolving fluid-fluid interface. Whereas
traditionally two-phase flow models at the Darcy scale needs additional constitutive re-

lationships (e.g., p. — S- and k, — S-relationship) to close the system. In Chapter 2,
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we obtain models where the phase pressure difference depends on the Laplacian of the
saturation. In Chapter 3, we derive a two-scale model where phase-field evolution appears
through the pore-scale cell problems. The effective parameters appearing in the two-scale
model are obtained by solving the derived pore-scale cell problems. Additionally, we show
that the variations in the surface tension cannot be neglected since they have a significant
impact on Darcy-scale properties like the effective flow velocity and phase pressures.
The upscaled models are validated numerically. Additionally, in Chapter 3, we propose

a numerical scheme to solve the complete two-scale model.

1.6 OQutline of the thesis

The thesis is structured in four main chapters. In the introductory chapter, we have given
the mathematical and upscaling background of our work. The scientific part of the thesis

is described in Chapter 2 and Chapter 3 and is summarized as follows:

Chapter 2. Thin strip homogenization of two-phase flow problems. We consider a prob-
lem which includes a pore-scale model for two-phase flow in a two-dimensional (2D)
thin strip. The pore-scale model describes flow of two immiscible and incompress-
ible fluid phases (e.g., wetting and non-wetting) in the thin strip. Additionally, a
solute is transported in the wetting fluid. The wetting fluid is attached to the pore
walls. At the pore scale, the flow is modelled by the Navies-Stokes equation, and a
convection-diffusion equation describes the solute transport. The evolving fluid-fluid
interface is modelled as a freely moving sharp interface. It depends on the flow of
both fluids and on the surface tension. Moreover, the surface tension may depend
on the concentration of the solute. We compute simple transversal averages over
the thin strip and derive different upscaled models in various pore-scale regimes de-
pending on the dimensionless parameters. The upscaled models at the Darcy scale
describe the averaged behaviour of the system and include pore-scale information
through effective parameters. Numerical solutions of the upscaled equations (1D)
are computed using a finite difference scheme. We use the commercial software
COMSOL (see [1]) to compute the direct numerical simulation of the pore-scale

model and then we average transversally the 2D solutions to compare the results
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with the upscaled solutions. Numerical examples show that the upscaled models are
a good approximation of the transversal average of the solution to the pore-scale

models, as the ratio of the width and the length of the pore approaches zero.

Chapter 3. Periodic homogenization of two-phase flow problems. Here we start with a
pore-scale model for two-phase flow accounting for variable surface tension effects.
A periodically perforated medium is considered as a representation of the porous
medium. A surfactant is dissolved in one of the fluid phases, and its concentration
at the interface separating these two fluids gives rise to changes in the surface
tension. At the scale of pores, we assume that the flow is governed by the Navier-
Stokes equations, while for the phase separation, a Cahn-Hilliard phase-field model
is adopted. Using formal homogenization, we derive a two-scale phase-field model
describing the averaged behaviour of the system at the Darcy scale. The effective
quantities are found through the corresponding local (cell) problems at the pore
scale. For this two-scale phase-field model, we formulate a numerical scheme and
present numerical results highlighting the influence of the solute-dependent surface

tension.

In Chapter 4 we include a detailed discussion of the originality, impact and open

questions related with this thesis.






Chapter

Thin strip homogenization of

two-phase flow problems

This chapter is based on the following publication [162]:

"S. Sharmin, C. Bringedal, I.S. Pop, On upscaling pore-scale models for two-phase
flow with evolving interfaces, Advances in Water Resources, 142 (2020), p.103646,
https://doi.org/10.1016/j.advwatres.2020.103646."

2.1 Introduction

Here the starting point is pore-scale models for two-phase and unsaturated flow through a
thin strip. The fluids are assumed incompressible and immiscible. For each fluid phase, the
flow is governed by the Navier-Stokes model, defined in the corresponding sub-domain,
and with fluid-specific parameters. The models also take into account the possibility
that one fluid is transporting a soluble surfactant or solute, which has an impact on the
surface tension coefficient. The fluid-fluid interface moves depending on the (unknown)
fluid velocities, and, if applicable, on the concentration of the solute at this interface. As
discussed in Section 1.1.1.1, this gives rise to a free-boundary problem at the pore scale.
Hence, the model equations are defined in time-dependent a-priori unknown pore-scale

sub-domains corresponding to the space filled by each of the two fluids. One significant
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challenge can be identified in this context: the free boundary at the pore scale.

To deal with the free boundary, we consider a sharp-interface approach, in which
jump conditions ensuring conservation of the involved quantities are used at the evolving
fluid-fluid interface, as well as kinematic conditions to model its evolution. For simplicity,
we considered here a thin strip (see Figure 2.1) as a representative of the local pore
geometry. Although this is a very simple geometry, upscaling thin-strip models in other
contexts (e.g. biofilm growth [176] and mineral precipitation [179]) has shown that the
upscaled models have the same structure as commonly accepted Darcy-scale models in
general porous media (see [178] and [158]). The advantage of using a single pore is that
analytical expressions for the upscaled quantities are obtained. Inside the thin strip we
assume that the two fluids have a layered structure. Hence, the location of the interface
separating the two fluid phases can also uniquely describe the thickness of the wetting
phase and hence the saturation. Such a fluid distribution is the same as the core-annular
flow in [133] and the thin-film flow in [118]. In [133], upscaled models for core-annular
flow and other fluid distributions are derived, but under steady-state conditions. Here
we explicitly account for the evolving fluid-fluid interface by treating the width of the
wetting phase as a variable. For more complicated situations, one can use e.g. a level-set
approach [128] to track the location of the interface. Alternatively, a diffuse-interface
approach can be considered, using e.g. the phase-field model in [2]. For more realistic
situations, in Chapter 3 we assume periodically perforated domain and use a phase-field
approach to avoid discontinuities and working in time-dependent domains.

In any of these approaches, the pore-scale models can be used for deriving the upscaled,
Darcy-scale counterparts, which are more suited for numerical simulations. We recall that
in practical applications, the main interest is in the system's behavior at the Darcy scale,
not necessarily in the detailed, pore-scale behavior. Therefore, we use formal upscaling
methods for deriving Darcy-scale models, approximating the averaged, Darcy-scale be-
havior of the system. For the simplified domain considered here, we apply asymptotic
expansion techniques and transversal averaging to derive the upscaled models.

This chapter is build on [115, 118], where mathematically rigorous upscaling results
are obtained for two-phase flow in a single pore. Compared to [115,118], here we consider

different regimes with respect to the capillary number, and also include solute effects in
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the surface tension dependency. We also mention that, although not considering the flow
in a porous medium, in [31] a similar approach is used for deriving the shallow-water
equations.

This chapter is organized as follows. In Section 2.2 the mathematical models at
the pore scale are introduced, based on Section 1.2.1. With ¢ being a small parameter
representing the ratio of the pore width and length, in Section 2.3 the pore-scale models are
non-dimensionalized and their dependence on ¢ is formulated. In Section 2.4 asymptotic
expansion methods are applied to the pore-scale models and for various scaling regimes
and the corresponding upscaled models are derived. In this sense, the cases in which the
Marangoni effects do play a role at the Darcy scale are evidenced. Also, cases where the
two upscaled fluid pressures are equal, or the capillary pressure depends on the saturation
in a non-standard way are evidenced, resembling the models in [54, 55, , ]. The
results are summarized and discussed more closely in Section 2.5. Section 2.6 provides
some numerical examples that confirm the validity of the approach. Specifically, the
numerical solutions to the original pore-scale models are computed for different situations,
and then their transversal averages are compared to the solutions of the upscaled models.
These results support that, as e approaches zero, the upscaled models are describing
well the averaged behaviour of the considered pore-scale models. Finally, in Section 2.7
the different upscaled models are compared, highlighting the upscaled behaviour of the

considered physical phenomena.

2.2 Mathematical model

A pore-scale model is considered for two-phase or unsaturated flow through a porous
medium. For simplicity, we consider a single pore only. The pore is long and thin,
specifically a thin strip. The pore is filled by two incompressible and immiscible fluids,
having constant densities and viscosities. From the two fluids, one is wetting and the
other non-wetting. The wetting phase is attached to the pore wall. The wetting layer
has a thickness that changes with time and varies with the location of the wall. The two
fluids are separated by a sharp interface with zero thickness which changes with time.

The movement is not known a-priori, hence the fluid-fluid interface is a moving boundary.
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Its movement is determined by the surface tension and by the flow of the two fluids.
The pore-scale models also consider the possibility of one fluid transporting a (soluble)
surfactant species. The surface tension is a function of the solute concentration, resulting

in a tangential stress at the moving interface, the so called Marangoni stress.

2.2.1 Geometric settings

We start by describing the geometry of the two-phase thin-strip model. The width and
length of the thin strip are respectively 21 and L with L > [. For simplicity, we assume
a symmetric case with respect to (w.r.t.) the z-axis. The lower half of the strip is shown
in 2.1.

(0,0) (L,0)

(0,-1) (L,—1)

Figure 2.1: Schematic representation of the lower half of a single pore.

Let ¢ > 0 be the time variable. The wetting fluid occupies a layer along the (lower)
pore wall, having thickness d. Note that d depends on the z-coordinate and the time,
d = d(z,t), and that is not known a-priori. We assume that 0 < d(z,t) < I. The
pore space {)p consists of two domains. The domains occupied by the non-wetting fluid

(fluid-1) and the wetting (fluid-11) fluid are denoted by

Quy(t) = {(z,y) eR*0 <z < L,—l+d(z,t) <y <0},

Qun@) ={(z,y) eER*|0 <z < L,~l <y < —l+d(z,t)}
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Observe that Qp = Q1) (t) UQ 1) (t) is a fixed domain. The fluid-fluid interface and the

fluid-solid interface, are respectively

T(t):={(z,y) eR}0< 2 < Ly=—1+d(z,t)},

Ig:={(z,y) eR*)|0<x < L,y=—I}.

Since y = d(x, t) gives the location of the fluid-fluid interface I'(¢), the unit normal vector

at I'(t) pointing into fluid-1 and the unit tangent vector are

n = (=8,d, 1) /\/1+ (9,d)2, and t := (1,0,d)" /\/1 + (9,d)2.

Given a point (2, —1 4 d(x,t)) on T'(t), its normal velocity is

Uy 1= Opd /1 + (0d)2. (2.1)

The curvature of T'(¢) is given by

Voni= o, [ ——2L ),
14 (0,d)?

Sections 2.2.2-2.2.4 is based on the discussions of Section 1.2.1. In the Sections 2.2.2-
2.2.4, we start with formulating the relevant models at the pore scale and later we present

the corresponding non-dimensional models in Sections 2.3.1-2.3.3.

2.2.2 Pore-scale model for the two-phase flow with solute-
dependent surface tension
In this section, we consider pore-scale model for the two-phase flow with solute-dependent

surface tension. Recall that the sub-domain occupied by fluid « is time dependent,

Q(a)(t), and that the freely moving fluid-fluid interface is denoted I'(Z), and considering



50 CHAPTER 2. THIN STRIP HOMOGENIZATION OF TWO-PHASE FLOW PROBLEMS

the discussion in Sections 1.2.1.2 and 1.2.1.4, one has

P()0V(a) + P(0) (V(a) - V) Via) = =VD(a) + 1)V V(a), I Qay(t) (@ =1,11),

(22)
V Ve =0, in Qo (1) (o= 1,11),
(23)
dc+ V- (=DVe+vpe) =0, inQp)(t), (2.4)
vy = V(11); at (1), (2.5)
V(i) - N = Uy, at(t) (a=1,11),
(2.6)
((Try = Tan) +n) -n=7(c) (V-n), at T(t), (2.7)
((Try = Tan) m) -t =~ 9(0), atT(t), (2.8)
(=DVe+v(e) -n=u,c, atT (¢), (2.9)
Vi =0, at Tg, (2.10)
(=DVe+v(pe) -n=0, atT'g. (2.11)

To complete the model above, appropriate initial conditions, inflow and outflow boundary
conditions can be added. Here we do not account for boundary layers. In this case,
the upscaling procedure is independent of the choice of initial and external boundary
conditions, and therefore these will not be specified here. We refer to [154] for a detailed
explanation of the role of boundary conditions depending on the different formulations

which gives rise to boundary layers in the solid-fluid interface.

2.2.3 Pore-scale model for the two-phase flow with constant sur-

face tension

In this case, the pore-scale model is simpler as in Section 2.2.2. However, the surface ten-

sion is considered constant. Hence (2.4), (2.9) and (2.11) become superfluous. Recalling
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the remark in 1.2.1.2, while y(¢) =« in (2.7) and (2.8), these reduce to

((Twy=Tap) -m) n =7 (V-m), atT'(t),

((T(l) — T(H)) -n) -t=0, at ().

The remaining equations are the same as in Section 2.2.2.

2.2.4 Pore-scale model for the unsaturated flow with constant sur-

face tension

A further simplification is to assume the case of pore-scale unsaturated flow model with
constant surface tension introduced in Section 1.2.1.3. This pore-scale model can be
interpreted as a thin-film flow with an open surface where a liquid is attached to the wall
of the pore and the middle domain is occupied by air. We assume the solute is absent in
fluid-11. In this case, (2.4), (2.9) and (2.11) are excessive. Moreover, the model equations
in Section 2.2.2 are further simplified by giving up the equations for & = I, and keeping
only the Navier-Stokes equations in Q;y)(t). At I'(t), (2.6) is valid for o = I1, and (2.7)
and (2.8) shorten to

(T(r-m) -n=—y (V-n), at (),

2.3 The non-dimensional model equations

Here we present the non-dimensional models for two-phase/unsaturated flow. To this aim,
we use reference quantities and rescale the dimensional ones as specified in Table 2.1. In
particular, pi(r1) and p(rgy are taken as reference viscosity, respectively density. Table 2.1
introduces two length scales, L and [. In a general porous medium, L would reflect the
length scale of the entire medium, where [ is the one of a pore. As we let a single pore
represent the porous medium, we use the length and the width of the pore as described in
Section 2.2.1. In the same spirit, here we define the non-dimensional number € := % >0,

and assume that € is small. Observe now that the x and y coordinates are scaled differently,
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so that they become both of order 1, O(1). Based on this, the derivatives change into

2=L2Z, a% =clL a%' The non-dimensional gradient is V := (9;, 29;) due to the

different scaling in  and y-direction.

Table 2.1: Reference and non-dimensional quantities

Variables Reference values Non-dimensional variables
time trey = t/tres
space Tref = L, &=uz/L
yref:l ﬂ:y/lzy/(EL)
depth of the wetting fluid d*=d/l=d/(e L)
velocities Uref = L/trey OEI) = V(1)/Vref
Vi = Vun/vrer
densities Pref = P(IT) by = pay/pan = 1/N
pan =1
— L* Pref A€ —
pressures Pres = 777 Blyy = D(1y/Pres
, ﬁfn) :p(ll)/pref
. . . .. _ ! py-ef _ A~ _ _
kinematic viscosities Href = T vrer B By = M([)/M([[) = 1/M
frry =1
surface tension Vref A(&) = v(e)/Yref
4 =/Yrer = 1, if v is constant
diffusion coefficient Dyer = L?/trer D=D/D,.;
molar concentration Cref & =c/crey
capillary number Ca = (lref Vref) [Yref

Some assumptions are made in Table 2.1 by choosing the scaling for fiyef, Dyes
and prer. The capillary effects are accounted for by the capillary number, Ca =
(Href Vref) /res, which is ratio of the capillary and viscous forces. The ratio of the
time scales for the diffusion and the convective transport, referred to as the Péclet num-
ber, Pe = % is chosen moderate w.r.t e. For simplicity, the Péclet number is
taken equal to 1. In [33, 34,98, , , , , , , , 179] the case of mod-
erate Péclet number (when diffusion dominates or is in balance with the transport) and
in [35,95, , ] the case of high Péclet number (when the convective transport dom-
inates the diffusion) are considered. Additionally, the scaling of the p,.; and p,cs are

U

chosen such that the Reynolds number, Re = W is moderate, namely equal to
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1, and the Euler number, Bu = —2zet 7 is equal to €~ 2. These choices ensure laminar

Vies Pref

flow and that the pressure drop dominates the flow, which are needed to ensure validity
of Darcy’s law on the macro scale.

Note that the dimensionless parameters M, N appearing in Table 2.1,

M := prny /iy, N = pan/pays

may also depend on €. In this respect, here we restrict to the case N = 1, while M is
assumed first O(1), and later the limit M — oo is considered to show that the two-phase
model reduces to the unsaturated, single-phase one.

In the non-dimensional setting, the pore space occupied by the two fluids is

Q) () = {(2,9) eR*0 < & < 1,—-14d°(2,1) < § <0}, (2.12)

QL) ={(@9) R0 <& <1,-1 << —1+d(&,7)} (2.13)
The fluid-fluid and fluid-solid interfaces become

D) = {(2,9) e R0 < & < 1,9 = —1 + d(&,8)},
~1}.

A

Ig:={(%,9) eR?0<z<1,j

The normal and tangent unit vectors are, respectively
(—6 a@de, 1)

. (1,6 3@6?6)
n = ———— and t¢:= ——~—

Lt (e 0ud)’ 1t (e 0ud)

The normal velocity becomes
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The non-dimensional stress tensors are

€2

e A€ & a€ 2. e \T
) = ~0in 1+ 37 {(V90) + (V90) "}

Tfn) = —ﬁfu) I+¢ {(@‘A"EH)) + (@‘A’EH))T} :

2.3.1 Non-dimensional model for the two-phase flow with solute-
dependent surface tension
Substituting the non-dimensional variables into the pore-scale model in Section 2.2.2,

for every £ > 0 the non-dimensional model equations for the two-phase flow model with

solute-dependent surface tension become

2
2 ~€ ~€ - AR > e € &2ne _ - HE n
€ (8£V([) + (V(I) . V) V(I)) + Vp(I) — MV V(I) = O, mn Q(I)(t), (214)
& (095 + (Yiun - V) ¥ian) + VB — VG, =0, in Q). (215)
V ¥,y =0, inQf, () (a=11I),
(2.16)
965 — ¥ - ([W (&) — ogmaE) =0, in Q@) (2.17)
The boundary conditions at the fluid-fluid interface are
Ve =V, at T°(f), (2.18)
Ve, 0 =05, at T(f) (a=1,1I), (2.19)
(-f)%ﬁ + vgmée) R = 6 0F, at T (7)., (2.20)
A A 62 PN A A A
(Tt =T -8) 8= g 3 @) (V-8) e (). 21
A€ € 62 fe XTa(n€ € (7
((T(,) T(H)> i ) = - (t VAE)),  at T (f). (2.22)
At the fluid-solid interface, the boundary conditions are
¥ =0, at I'g, (2.23)

(—f)%e +95é ) R =0, at I'g. (2.24)
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At §j = 0 we apply symmetry conditions for all variables.

2.3.2 Non-dimensional model for the two-phase flow with constant

surface tension

Similar to Section 2.2.3, we consider here the case without solute and with ~ being

constant. With ~y,.y =+, one gets 4 = 1 and (2.21), hence (2.22) become

2

((T(I) - Tgn)) n) e = &@ e at T (f) , (2.25)
(T — Ty ) -8°) & =0, at T (1) . (2.26)

Further, (2.17), (2.20) and (2.24) are not needed anymore and the remaining equations

are the same as in the above section.

2.3.3 Non-dimensional model for unsaturated flow with constant

surface tension

Continuing as in Section 2.2.4, assuming that fluid-1 does not influence the flow of fluid-II
and in the absence of solute, one ends up with (2.15), (2.16), (2.19) (for a = IT), (2.23)

and

(T -8°) -0 = =V -8, at T (1) , (2.27)

(T -0) & =0, at T (f) . (2.28)

2.4 Asymptotic expansion

We use an asymptotic expansion w.r.t. € to derive transversally averaged upscaled (effec-
tive) models at the Darcy scale. Since in this section only the non-dimensional variables
are used, for the ease of presentation the hats are suppressed. We assume that all the

variables are smooth. Then we use the homogenization ansatz, namely that all variables
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can be expanded regularly w.r.t. ¢,

(.’E,y,t) = p(a (.'L' Y, ) + EP%Q)(%yat) + 0(62) (Oé = IaII)7
V(a, k)(x y,t) = v(a k)(x y,t) + ev(layk)(x,yj) +0(?) (a=I,11,k=1,2), (2.20)
c“(z,y,t) = C(x,y, 1) + e’ (z,y,1) + O(e?),

d(z,t) = d°(z,t) + ed(z,t) + O(?).

where p{a)(:c,y,t),v{aﬁk)(x,y,t),cj(x,y,t),dj(x,t) are functions describing the O(¢’)
order approximation (for j = 0,1,2,---) of the corresponding variables. We will now
insert these expansions in the model equations and equate terms of the same order in ¢
to find the transversally averaged equations. We do this for different regimes, and end up

with different upscaled models.

2.4.1 Two-phase flow with solute-dependent surface tension

We start with the model for two-phase flow with solute-dependent surface tension (2.14)-
(2.24). At this point we assume that M is O(1) w.r.t. e.

2.4.1.1 Mass conservation

To derive an effective equation for the mass conservation, we follow the ideas in [
]. Substituting the asymptotic expansion (2.29) in the mass conservation equation

(2.16) and restricting the writing up to the O(€®) terms gives
1
= Otz + (00fay +Oyvlany ) +O(0) =0, in Q) (1), (2.30)

To show that ”?a,z) = 01in Qf,(t), we use (2.29) in the kinematic conditions (2.19) and

obtain

U2y T € (U(laﬁz) — V(p1) Oud” — 6td0) +O(e?) = 0, at T(t). (2.31)
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The lowest order terms in (2.30) - (2.31) give
ayv?ayz) =0, in Q{,(t), and v?aa) =0, at I'“(¢),
while (2.23) and the symmetry condition at y = 0 lead to
Uln2y = 0, in QF, (B). (2.32)

To upscale the mass balance for the fluids, we consider a thin segment of the pore space,

as sketched in Figure 2.2.

(?170) (z1 + 62,0)
A7)

(z1,—1) (21 + oz, —1)

Figure 2.2: Thin section of the pore space

Let Yy == {(z,y)|z1 < 2 < 21 4 dx, —1 4 d° < y < 0} be the region in this segment

that is occupied by fluid-l. By integrating (2.16) over Y(y), one obtains

Y

In the above equation, we apply the theorem of Gauss and divide all terms by dx, then
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using (2.19) and the asymptotic expansions (2.29) to get

1 0 0 1 0 0 T1+0T L
ran d T=x x - e d r=x1 + ran d =
oz /1+d0 V(1) Y]o=a1+3 ox /1+d0 U(r,1) yl ox /xl V(1,2) z|y=o

1 1+

~ 5 9,d° dz + O(e) = 0.

Z1

Using the symmetry condition at y = 0 and equating the lowest order terms in the above

gives

— T =z, | Y — — oyd” dx = 0.
oz /—1+d0 <”(1,1)| 146 U(I,1)| 1> Y oz /E1 t €z

Defining the total flux of fluid-1 as

0
W (@,1) = /1+d0 vlr (@, y,t) dy, (2.33)

and letting dz — 0, one obtains
8366?[71) —0,d° =0, forall0 <z < landt > 0. (2.34)

Similarly using the fluid-Il region Y{; ) := {(z,y)|z1 < z < 1 + 0z, -1 <y < =1 +d},

for

—1+d°
W (@:t) = /1 v (2, y,t) dy, (2.35)
one obtains
826?][)1) +0,d°=0, forall0 <z < 1andt> 0. (2.36)

Remark. Recalling that the fluids are incompressible, observe that, since d° is the thick-
ness of the wetting phase layer in the half-pore, it can be regarded as the saturation of
the wetting fluid. In this sense (2.34) and (2.36) are the effective mass balance equations

for the two fluid phases.
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2.4.1.2 Solute transport

To upscale the solute transport, which is needed when considering the Marangoni effect,

one uses the asymptotic expansion (2.29) in (2.17) to get

9,0 — (817 1(%) -D <5‘m, 18y> (co +ect + 6202)

1 .
+ <ax, eay) (rry 02y + evlrr) (0 +ect) + O) = 0, iy (1),
(2.37)
First, we show that ¢” and ¢! do not depend on y. The ¢~2 order term in (2.37) is leading

to
Byy® = 0, in Q) (8).
From the ¢! order term in the boundary conditions (2.20) and (2.24), one obtains
9, =0, at T¢(t) and I'g.
This implies that c® does not depend on y,
& =cl(x,t), in Q).

In a similar fashion, using this, (2.32), the ¢! order term in (2.37) and €” order term in

(2.20), (2.24), one obtains
ct = ct(x,t), in Q).

The non-dimensional equation describing the solute concentration (2.17) can be written

as

1 € 1 € € € € € €
50, (D 9,¢) =~ 9, (v(m) ¢ ) — O+ 0, (D Do — i1y © ) —0.

We integrate the above equation w.r.t. y from y = —1 to y = —1 + d°. Applying the

Leibniz rule in the last two terms and taking into account that d¢ depends on z and ¢,
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one gets

1 1 y=—1+d" —14d°
LQDayc6 — 6”?11,2)06} — 0 / cfdy | + 0ud c|y=—14a-

y:—l —1

—14d€
+ 0, (/ (Daxcf _ Uf]lq)cf) dy) — 0, d" (D@xce _ UEHJ)CE> -

-1

We insert the asymptotic expansion (2.29) in the above equation, recalling that ¢ and
¢! do not depend on y and that 6y02 =0 and ”(111,2) =0aty=—1, since U?H,Q) =0in

Qf;1(t), one obtains

—1+d°
(DayCQ - U(lu,z)co) ly=—1+d0 = O (co/ ! dy) +0rd” |y _14a0
1

—1+4d° —1+d°
(o ([ 1) o] )
=0t (D0, — oy 1)) v + O() =0

Using (2.35) and the € order terms from the boundary condition (2.20) at y = —1 + d°,

one obtains the effective equation for the solute transport
O (* d°) + 0, (co @(()1171)) —0,(D d® 9,c°) =0, forall0 <z < 1landt > 0. (2.38)

2.4.1.3 Momentum conservation

We apply the asymptotic expansion (2.29) in the horizontal and vertical component of

the momentum equation for fluid-1l (2.15). Recalling that U?H.z) =0, in Q) (t), for all

t > 0 one has
_ayyU?U,n + 89519(()11) - any”(ln,m + e@pr]) +0(?) =0, (2.39)
1
. 3yp(()H) + 5@;1’%11) te 5@;17%11) —€ 8yyU(IH,z) +0(e%) =0. (2.40)

Restricting to €' order term in (2.40), for all 0 <z < 1 and t > 0, one gets

p(()u) = p(()n) (z,1).
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For all ¢t > 0, the dominant terms in (2.39) give

ayy”?n,n = azp?u)v in QEII) (). (2.41)

Integrating the above equation in y and taking into account that p((JH) is independent of

1y, we obtain

87;”?11,1) = aa:p(()n) y+ Ai(z,t), in Q) (1), (2.42)

where Aj(z,t) is an integrating constant that will be fixed using boundary condition for
”?[1,1)- We now assume that the surface tension v = (c°) depends smoothly on the

solute concentration. Using (2.29) and expanding ~y(c¢) around c° gives

() =7 () +ect v () + O(€).
We apply the asymptotic expansion (2.29) in the boundary condition (2.22). Using the
above equation and recalling that v?a 5y = 0 at I'*(t) and that ¥ is independent of y, we

get

1/1 1 1
- (Mayv?l,l) - 3yv?u,1)) + (May”(lf,l) - 5@1”(111,1)) te <May”(21171) - a1/”(211,1>>

1 1
te <Mal‘v(11,2) - 81.1;(11172)) +260,d’ (Mayv(ll,m - ay”(lnp))

1 2 (1
— 2¢0,d° (M(')wv?m) — GIU?HJ)) —€ (&Cdo) (MayU?1,1) - ay”?u,l))

1 0y , ¢ 1100 ) 2\ _ €
+ o0 + Caaz(c V() + O(e2) = 0, at T<(¢).

(2.43)
At this point, the upscaling depends on the capillary number Ca. We will discuss the cases
with Ca = € Ca, for 0 < 8 < 3, where Ca = O(1). We start by assuming Ca = O(1)

thus 8 = 0. From (2.43), one gets the tangential stress boundary condition

1 €
(%U?IIJ) = M (r“)yv?I’l), at I (t) (244)
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Using the above in (2.42) leads to

1

M a.7;”?1,1)|y:71+d° = (-1+d" 8ocp((JU) + Ai(z, 1), in Qi (t). (2.45)

Applying the asymptotic expansion (2.29) into (2.14) and using (2.32), for all ¢ > 0 one

has

1 € . e
i ayyv?l,l) + 8zp?1) U 8yyv(11’1) +e€ azpb) +0(?) =0, in Q(I)(t), (2.46)

1 € . e
< D1y + Oypir) + € Dyplp) — Vi Byyvis o)+ O(2) =0, in Q) (1), (2.47)

The lowest order term in (2.47) gives

p?I) = p?I) (z,t), forall0 < z < 1. (2.48)
For all ¢t > 0, the dominating terms in (2.46) satisfy

ayyu?lvl) =M axp?”, in Qp (). (2.49)

We integrate the above equation w.r.t. y. We use (2.48) and the symmetry condition

8yv(()1,1)(x,y,t) =0 at y = 0, which leads to
81,11?[)1) =M &Cp?l) Y, in Q) (1) (2.50)

We determine A;(z,t) from (2.45), by using (2.50) at y = —1+d°, one gets for all ¢ > 0

ayv?ILl) = awp?n) y+(~1+d°) (amp(()f) - 8117?11))» in Qf; ) (t). (2.51)
The lowest order terms in (2.23) imply that ”?11,1) = 0 at y = —1. Hence, integrating

the above equation in y, one obtains

0 ag;p?n)(yQ—l) 0 0 0 O
Uy T T g +(-1+d) (&cp(]) - 3zp(11)) (y+1), inQfp(t). (2.52)
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Integrating the above in y from y = —1 + d° to y = —1 and using (2.35), yields

(1 —d°%) (%)

5 8Ip(()l), forall0 <z <landt>0.)

. (d0)3
v(()II,l)(xvt) -3 azp(()n) -

(2.53)

To derive an effective equation for the velocity of fluid-1, we integrate (2.50) twice w.r.t.
y. To determine the integration constants we use the continuity of the velocity at the
fluid-fluid interface. The lowest order terms in (2.18) imply v?“) = U?HJ) and hence

M (1—d°)?

1— dO dO 2
ﬁ(()Ll) — 3 4 dO (1 o d0)2 an(()I) o ( ) ( )

5 Oupliry,  (2.54)

forall0 <z <1landt>0.

2.4.1.4 Effect of Ca

We recall that the boundary conditions coming from the normal (2.21) and the tangential
(2.22) components of the jump in the normal stress depends on the capillary number, Ca.
To complete the upscaled model representing the effective behaviour for two-phase flow,
we still have to find a relationship between the pressure difference of the fluids (capillary

pressure) and the saturation in the porous medium. To this aim, we rewrite (2.21) as

- ;2 (pfl) *pfu)) + % (37;”?1,2) -M 3@/”?11,2)) - (ade)z <pf1) *PEH))
+20,d° (0,01.1) = M 0y0y1.5)) = 2 € O (D0 2 — M 9y ) (2.55)

€ 83jxd€
4 € v(c)

= Té(t).
o + O(€%) = 0, at [°(t)

Whenever Ca = O(1) thus 8 = 0, applying the asymptotic expansion (2.29) in the above

equation and recalling (2.32) gives
p?I) - p(()H) =0, forall0 <z <landt>0. (2.56)

This means that in the upscaled model the pressures in both phases are equal. Since

p?l) = p?H) in the pressure relation (2.56), for simplicity, we set p = p?a) and the
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effective velocities (2.53) and (2.54) become, for all 0 <z <1 andt >0

(d%)* (3 — d°)

6?11,1) =% 91, (2.57)
MA-d"? d°(1—-d% (2-d°
Ty =— ( ( 3 ) L 2L 2) ( )) Oup”. (2.58)

Thus, the upscaled model with Ca = O(1) is represented by the mass conservation
equations (2.34), (2.36), the effective velocities (2.57), (2.58) and the solute transport
(2.38). This can be expressed in terms of three primary variables, the saturation of the
wetting fluid d°, the pressure p® (recall that the two fluid pressures are equal) and the
concentration c?. Specifically, for all 0 < 2 < 1 and ¢ > 0 one has

@f+amﬁﬁﬂlgfﬁ%cﬁﬂd?@d%)%ﬁ}Q

(d%)? (3 —d°)

@f—@[ c

3mp0} =0, (2.59)

(d%)* (3 — d°)

Oy (co do) + 0y |:CO < 6 ) Bmpo] — 0.(D d® Bmco) =0.

This means that the surface tension 7y plays no role in the effective equations, and therefore
the Marangoni effect is lost.

For regimes where Ca = O(e”) Ca with 3 > 0, the Marangoni effect will play a role
in the upscaled models. For example, if Ca = ¢ Ca with Ca = O(1), from (2.43), one
gets the Marangoni stress boundary condition,

Oyviryy  Ouy )
ay“?n,n = ]\(4 ) 4 Ci(a , at T'°(1). (2.60)

Using this instead of (2.44) and repeating the same steps in Section 2.4.1.3, one gets for

O<z<landt >0,

_ M@0 —d®?  d°(1—d°) (2—dY) (1—d%d°
v?1,1) = < 3 + 5 ) 0.p° + = 07(c”),
(2.61)
d°)2 (3 — d° )2
@(()11,1) - % 896]90 + ( ) az7(00)~ (262)

2 Ca
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The upscaled model consists of the mass conservation equations (2.34), (2.36), effective
velocities (2.61), (2.62) and the solute transport (2.38). The model can be expressed in
terms of three primary variables, the water saturation d°, the pressure p° (recalling that
the two fluid pressures are equal) and the concentration ¢”. Specifically, for 0 < z < 1

and t > 0 one has

dyd® + 0, [(M(l ; @) + 0= d(;) 2= do)) 9pp° — “_Cd:)do aﬂ(co)} =0,
0yd® — 0, [(Wg’_do)) Oup” — ;dg &w(co)} =0,
8 (¢ d°) + 9, {co (W) aIpO} — 0,(D d° 9,%) = 0.

(2.63)
Assuming Ca = ¢ Ca, with 3 = 2 or 3, will lead to different Marangoni stress conditions
than (2.60), involving the unknowns ¢!, ¢? etc. In this case one needs to find an effective

solute transport equation involving ¢!, c? etc. This is beyond the scope of this work.

2.4.2 Two-phase flow with constant surface tension

Now, we consider the pore-scale model in Section 2.3.2. We begin with the assumption
that M = O(1). We recall that for a constant surface tension, the dynamic boundary
conditions are now (2.25), (2.26).

2.4.2.1 Mass conservation

The derivation of the mass conservation equation in this section is identical to the one
in Section 2.4.1.1. The mass conservation equation for the two-phase flow model with

constant surface tension are hence (2.34) and (2.36).

2.4.2.2 Momentum conservation

To derive the effective velocities for fluid-l1 and fluid-l1l we can follow the same steps
discussed in Section 2.4.1.3. Since the surface tension =y is constant, we use the continuity
in the tangential component of the normal stress (2.26). It is worth to mention that the

capillary number Ca is absent in the tangential stress boundary condition. Applying
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asymptotic expansion (2.29) in the boundary condition (2.26), we get

1

1 1 .
(3700t = 0t ) + (570t — duttin ) + 00 = 0.t (o)

The lowest order terms imply
0 1 0 €
Oyv(rr 1y = Vi 9yv(r 1), at T(¢),

which is same as (2.44). Further as in Section 2.4.1.3, one obtains the same effective

velocities, (2.53) and (2.54).

2.4.2.3 Effect of Ca

Assuming Ca = ¢’ Ca with 8 < 3 and applying asymptotic expansion (2.29) in (2.55)
(recalling that here y(cf) = 1), the lowest order term implies the same pressure relation as
in (2.56). The upscaled model for two-phase flow with constant surface tension, large or
moderate capillary number can be represented by the mass conservation equations (2.34),
(2.36), by the effective velocities (2.58), (2.57) and the pressure relation (2.56). This can
be expressed in terms of two primary variables, the water saturation d° and the pressure
p° (recall that the two fluid pressures are equal). Specifically, for 0 < 2 < 1 and t > 0

one has

ot 40, [(MUZ 0 LO=D =y ]

(2.64)

dO 2 _ dO
If the capillary number is Ca = €3 Ca, applying (2.29) in (2.55), we obtain
Oy pd®
p?]) _p?II) = % : (2.65)

In this case, the upscaled model for the two-phase flow with constant surface tension is
given by the mass conservation equations (2.34), (2.36), the effective velocities (2.54),

(2.53) and the capillary pressure relationship (2.65).
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2.4.2.4 Effect of large viscosity ratio between the fluids

By now we assumed M = O(1), here we consider M = ¢~ M, where M = O(1), which
means that the viscosity of fluid-1 is much smaller than that of fluid-1l. We upscale the
equations in Section 2.4.2 and show that the first order terms will only include the fluid-II
flow whereas the fluid-I flow component is vanishing when M — co. Hence the two-phase
flow model reduces to the unsaturated flow model in Section 2.4.3. In this respect we first
show that the pressure becomes constant (and is set to 0) for fluid-1. Now, considering

M = e ' M with M = O(1) in (2.46) and (2.47), for all t > 0 one has

€ . .
wp{ry + € Oxp(r) - Wi Dyyv{r1) + O(e) =0, in Q) (¢), (2.66)
1 ' .
< 01y + Oyp(p) + O(€) = 0, in Q) (t). (2.67)

The lowest order terms in (2.66) and (2.67) give
&Cp?l) =0, and 8yp(()1) =0, in Qf (t).

Hence p?I) is constant in space. We assume it constant in time as well and set this value

to 0, implying
p(r =0, in Q1)

Considering the surface tension constant in (2.43) and M = ¢! M, where M = O(1),

give

19,00, 1 — a0 Lo O(e) =0, at T<(t
cvvary ~ OyUary T 7% T (€) =0, at T(t).

The e~ ! order term in the above equation gives

Byvirr 1y =0, at T(t). (2.68)

To find the effective velocity for fluid-1l we use (2.68) instead of (2.44) when integrating

(2.41) in y. Recalling that ~ is constant and p?l) is zero for fluid-I, we follow the same
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steps as in Section 2.4.1.3, which results in

2
y 1 e
U?Im) = 3:,:;0(()1) (2 +(1-d%y+ <2 — d0>> » InQ (1) (2.69)

Integrating (2.69) and using (2.35) gives the Darcy law

dO 3
6(()1[71) = —% 8zp?n), forall0 <z <landt>0. (2.70)
To find the pressure equation for fluid-Il, we take M = ¢! M in Section 2.4.1.4 and we

use the fact that the pressure for fluid-1 is zero. Then the capillary pressure relation in

(2.56) (for § < 3) changes into
Pl =0, forall0 <z < landt > 0. (2.71)

Remark. Since p?H) = 0 in (2.71), the same holds for 7?11,1) in (2.70) and therefore
the saturation is constant in space and time. This is a trivial situation corresponding to

steady state.
Similarly, if 5 =3, (2.65) becomes

O d”
Plrn) = forall0<w<landt>0. (2.72)

Note that fluid-l plays no role in the upscaled equations, which now reduce to the equa-
tions for fluid-1I. Specially, the upscaled model consists of the mass conservation equation
(2.36), the effective velocity (2.70) and the pressure equation (2.71) (for 5 < 3), respec-
tively by (2.72) (for 8 = 3). Hence, in the limit when M — oo, only the flow of one phase
is accounted for the lowest order and the upscaled model for two-phase flow reduces to

the upscaled model for the unsaturated flow, as derived in Section 2.4.3.

2.4.3 Unsaturated flow with constant surface tension

We here now turn our attention to the model in Section 2.3.3.
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2.4.3.1 Mass conservation

The derivation of the mass conservation equation in this section is identical to the one
in Section 2.4.1.1. The mass conservation equation for the unsaturated flow model with

constant surface tension is the same as (2.36).

2.4.3.2 Momentum conservation

We apply the asymptotic expansion (2.29) in the boundary condition (2.28) and recall
that v?lm) =0 at I'“(¢), instead of (2.43), the boundary condition for unsaturated flow
at I'“(t) reduces to

1
7 8@;”?}1,1) - 81/”(111,1) +O(e) = 0. (2.73)

The ¢! order gives
Byvirray =0, at T<(t),

which is same as in (2.68). To find the effective velocity for fluid-1l, we follow then the
same steps as in Section 2.4.2.4, which results in (2.70), the same effective law for fluid-1|

as in Section 2.4.2.4.

2.4.3.3 Effects of Ca

In the unsaturated flow case, we disregard fluid-l in (2.55), which leads to

1 € 2 € € € € € € €
—aPun T Byv{rray = (02d) p(rp) + 2 0pd® Dyv(yp 1) — 2 € Dyd Dy
€ a:rmde
- % +O() =0, at T<(t).
Applying (2.29) in the above equation and recalling U?H,l) = 0 at I'’(¢), we find the same
capillary pressure relations as in Section 2.4.2.4. In particular, for 3 < 3, we get (2.71)
and in this case the upscaled model is trivial (see Section 2.4.2.4). The case Ca= €3 Ca

is more interesting as it gives the pressure relation (2.72). The upscaled model in this

case is then represented by (2.34), (2.70) and (2.72).
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2.5 Summary and discussion of upscaled models

We recall that in the upscaled models the width of the wetting fluid (fluid-11) d® can
be seen as its saturation and therefore the saturation of the non-wetting fluid (fluid-1) is
(1 —d°). The effective equations on the Darcy scale are now summarized and discussed
in the sections below. These models are obtained in the limit situation when ¢ — 0.
Practically, one has € small but not zero. Therefore the upscaled models should be seen

as an approximation of the pore-scale models, having a much simpler structure.

Table 2.2: Summary of the upscaled models obtained for different values of 3 in the

capillary number Ca = ¢° Ca.

B Marangoni effect p(()l) —p?n)

0 not present constant
1 present constant
2 - constant
3 - curvature dependent

Assuming Ca = ¢” Ca, we have considered several regimes identified by the value of 3,
and derived different upscaled models. Table 2.2 is summarizing these results. Marangoni
effects are not visible for 8 = 0 but for 5 = 1 the Marangoni effects are relevant. For
B = 2,3 the analysis need further investigated and we leave this as an open questions for
the future research. For 3 < 3 the phase pressures are equal but for 5 = 3 the difference

of the phase pressures depends on the second order derivative of the saturation.
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2.56.1 Two-phase flow with solute-dependent surface tension

If Ca = O(1), then for all 0 < < 1 and ¢ > 0, the upscaled model for the pore-scale
model (2.14)-(2.24) becomes

0d® = 0,0y 1),
8td0 = — 81@?1171),

M1 —-d%? d°(1—-d° (2—d°
S ( (1L=d)® | d®(1=d) ( >)axpo7

. (d%)% (3 —d°)
U?Il,l) =T 021",

01 (" d) = =0, (" 51 ) + 0D d 01”).

If Ca = e Ca, then for all 0 < 2 < 1 and t > 0, the upscaled counterpart of the pore-scale

model in Section 2.2.2 becomes

0d® = 0,0y 1),

Od® = —0.0011 1y,

- M1 —d®  d(1—d° (2 d° (1= dO) d°
0 d)?B-d , o (@) 0

W a) 9,7 (0),
U(11,1) 6 P+ 9Ca v(c”)

0y (0 d°) = -0, (CO @?H_J)) +8,(D d° 9,cY).

The upscaled models in (2.74) and (2.75) have a common structure. They include the
mass balance for both fluid phases and the Darcy laws for the two fluid velocities. Finally,
the last equation gives the mass balance for the solute.

One can recognize the effective velocities in (2.74) and (2.75) as Darcy-type laws
for the two fluid phases. Since d°, respectively (1 — d°) are the saturation of the two
fluids, the factors multiplying the pressure gradients in these equations can be viewed as
relative permeabilities of the two fluids. Compared to the effective velocities in (2.74),
the influence of the surface tension gradient, namely the Marangoni effect, is visible in
the effective velocities in (2.75).

The upscaled models in (2.74) and (2.75) are valid for the regimes where the capillary
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number is either moderate or large, which corresponds to very small surface tension.
Hence the two phase pressures are equal, or, equivalently the capillary pressure is zero, as

commonly assumed in petroleum reservoir simulation models [13].

2.5.2 Two-phase flow with constant surface tension

If solute is not present in the fluid-1l phase, the surface tension coefficient is constant. In
this case the mass balance for solute is left out. Also, no Marangoni effect is encountered,
which simplifies the models. Specifically, assuming Ca = €¢® Ca for Ca = O(1) and

B < 3, the upscaled counterpart of the pore-scale model in Section 2.2.3 is

0yd® = 0,0y 1),

Od® = —0,0(11 1y,

_ M(1—d%3 d°(1—dO (2—d° (2.76)
0 _ 0

Uy =~ ( 3 + ) Oup’

. (d°)* (3%

”?11,1) =TT 6 3up°,

forall 0 <z <1 andt > 0. Here the upscaled model is valid in the flow regimes where
the capillary number is moderate or large, which again implies that the pressures for the
two fluid phases are the same. Assuming, Ca = €3 Ca with Ca = O(1), the upscaled

model becomes

3td0 - 8IE?I,1)a

(9td0 - — 8;35?11’1),

_ M (1-d%?° (1—=d") (d°)?

0 _ 0 0\2 0 0

Uy = |T gt (A=A Gapny = 5 by, (2.77)
_ (%) (1—=d") (d°)?

Uiy = = 3 Oup{ir) = 9 0wl

0 0 —
Py —Pun = &

forall 0 <z < 1 and t > 0. One can recognize the effective velocities in (2.76) and
(2.77) as Darcy-type laws for the two fluid phases. Note that the effective velocities

are depending on both pressure gradients from the two fluid phase. A similar case as
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considered here was also upscaled in [133]. As [133] considered steady-state flow, the
phase pressure difference there is different from what we obtained here.

Observe that compared to traditional two-phase flow models, in which the capillary
pressure is a function of the saturation, here this involves the second-order derivative of
the saturation. Here we emphasize the differences between the regimes 5 <3 and § =3
in the capillary pressure relation in (2.76) and (2.77). In the former, the pressures for
both fluids are equal, which is similar to saying that the capillary pressure is zero. In
the later case, one gets a model in which the commonly used pressure-saturation relation
is replaced by a differential equation. Such a model is also derived in [115] and [118]
by homogenization techniques. Also, if the upscaled model derived here is reduced to a
system of two equations, the capillary pressure relation in (2.77) would lead to a fourth
order derivative term which is similar to the ones accounting for surface tension effects,
as proposed in [85] for the case of a thin fluid film flowing down a plane, and in [54,55]
for unsaturated, one-phase flow. However, when compared to [54,55], here a nonlinear,
algebraic function of the saturation is absent in the equation for the capillary pressure.
This is due to the simple setting adopted here. On the other hand, as in [115, 118]
the models are derived by upscaling, whereas in [54, 55] they are formulated directly as
upscaled models. One can explain the different results in the two (/3-depending) regimes
by observing that -y is the reciprocal of Ca. Hence, in the first regime «y is much smaller
than in the second one. As in the Young-Laplace equation, the pressure difference is
proportional to v. Whenever this is small, in the upscaled limit one obtains that the two

pressure are equal.

2.5.3 Unsaturated flow with constant surface tension

Continuing in the same spirit as before, for the unsaturated case with constant surface
tension in Section 2.2.4, the upscaled models are simplified. More precisely, assuming
Ca = ¢’ Ca with Ca = O(1), for 3 < 3 the upscaled fluid-l pressure becomes zero (as
the one for fluid-1) and therefore the flow is vanishing as well. In this case, the saturation

becomes constant in both space and time, which is actually steady state. In this case the
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upscaled model is trivial. For 5 = 3, the upscaled model becomes

0pd® + 0,011 1y = 0,

0 ()’ o

Uiy Ty 9up(r1) = 0, (2.78)
o Oud

Pin = TG

forall 0 < x <1 and ¢t > 0. This can be expressed in terms of one primary variable, the

water saturation d°. Specifically, for all 0 < 2 < 1 and ¢ > 0, one has

0\3 0
0pd® 4 0, ((d) Oszad ) =0, (2.79)

3 Ca

This equation resembles the thin-film lubrication approximation [127].

Similar to (2.77), the upscaled model in (2.78) is a non-standard model in the sense
that the capillary pressure relation is given by the second derivative of the effective sat-
uration. Also, for a large viscosity ratio, the pore-scale model for the two-phase flow in

Section 2.3.2 reduces to the upscaled models in (2.78).

Remark. The Marangoni effect is only visible for the upscaled model (2.75). For (2.74),
the Marangoni effect is lost and one immediately sees that (2.75) is equivalent to (2.74)
for a constant surface tension. Additionally (2.75) is equivalent to (2.76) for a constant
concentration and surface tension. Hence, for the numerical validation in Section 2.6,
we will only consider the three upscaled models (2.75), (2.77) and (2.78), as these three

models represent the different effective behaviours we have considered.

2.6 Model validation

In this section the upscaled models are validated by numerical experiments. Specifically,
the full solutions (e.g. pfa),vfayce,de) of the two-dimensional pore-scale models, com-
puted for pores having different width/length ratios (e.g. ¢ = 0.5,0.3,0.1,0.01), and for
different capillary numbers (Ca = ¢® Ca with Ca = O(1), for 3 = 1,3), are averaged
in the transversal direction and compared to the approximate upscaled solutions (e.g.

p?a),v? &, d%).

)’
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To compute the full solutions of the pore-scale models, we use COMSOL Multiphysics
[1]. For the simulations of the upscaled models, we use a simple finite difference scheme on
an equidistant mesh, implemented in MATLAB. First and second order central differences
are used for the space discretization. For the time discretization, an explicit method with
fixed time-step size is used to avoid the stability issues. In particular, due to the time-
explicit approach in (2.75), we have restrictions on the total simulation time. While for
(2.77) and (2.78), an implicit method with fixed time-step size is used to avoid the issues
with stability when simulating for longer time. We use harmonic averages for the relative
permeabilities in the effective flow equations. For the advective flux in (2.75) we use an
upwind approximation. We employ Newton’s method for solving the resulting non-linear
system of equations.

We specify the pore geometry as in (2.12) and (2.13). For (2.12), we define the inflow

and outflow boundaries as

L i (1) = {(z,9) € R?|z = 0, =14 d°(0,t) < y < 0},

Ur ouny () i= {(z,y) € R?|lz = 1, =14 d°(1,1) <y < 0}
For (2.13), the inflow and outflow boundaries are given by

(rimy () = {(z,y) €ER%|z =0, -1 <y < —1+d(0,1)},

Ffll,out)(t) = {(xﬂy) € R2|(£ =1,-1< y < -1+ de(l,t))}
In the following, all the presented numerical results are non-dimensional.

2.6.1 Two-phase flow with solute-dependent surface tension

Here we consider a numerical example of the pore-scale model in Section 2.3.1 where
the regime is Ca = ¢ Ca with Ca = 1. At the fluid-fluid interface, the surface tension
coefficient is chosen as (1.9) with a = 1 and b = 1, to include the Marangoni effect. The

diffusion coefficient is chosen as D = 1 and the viscosity ratio as M = 1. The initial
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conditions are

d(z,t =0) =05, at I'(t = 0), c“(z,y,t =0) =0.25, in Q{7 (t =0),
Vi) (z,y,t=0)=0, in Qo) (t=0), pfa)(z,y,t =0)=0, in QEQ)(t =0).
The inflow and outflow boundary conditions are
Play = 0.023 at I, ;,)(t), and p(,) = 0 at I'{, ;.4 (1),

(a,im)

c“=1at I'{;;,;,)(t), and ¢ = 0.25 at T'7 ,,,(2).

Compatible initial and boundary conditions are chosen by recalling the capillary pressure
relation (2.56). To solve the upscaled model (2.75), the same initial and boundary con-
ditions are chosen. We use homogeneous Neumann boundary conditions for d° at © =0

and z = 1. The models are solved for a total time of ¢ = 0.1.
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0.5000
0.4990 0.2
0 0.5 1 0 0.2 0.4 0.6 0.8 1
X x

Figure 2.3: Comparison of the saturation (left) and the concentration (right) of the
upscaled model with the transversally averaged solutions of the pore-scale model for

different € at t = 0.1.



2.6. MODEL VALIDATION 77

0.1
0.1 e =050
¢ =0.30
—¢¢c = 0.10
0.1 —H-¢ = 0.01
—— Upscaled
0.0
0.0
= 0.0
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X €T

Figure 2.4: Comparison of the pressures of the wetting (left) and the non-wetting fluid
(right) of the upscaled model with the transversally averaged solutions of the pore-scale

model for different € at ¢t = 0.1.
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Figure 2.5: Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right)
of the upscaled model with transversally averaged solutions of the pore-scale model for

different € at t = 0.1.

In Figure 2.3-Figure 2.5, we have plotted the upscaled solutions of (2.75) together
with the transversally averaged pore-scale solutions in Section 2.3.1 for four different e.
For decreasing ¢, the averaged pore-scale solutions are closer to the upscaled ones, which
we also observe in Figure 2.6. Note that we can not decide any convergence order for the
L?-errors in Figure 2.6. The numerical errors are influencing the results, especially for the
COMSOL simulations, which are difficult to estimate. Moreover, we observe only weakly
decreasing L2-error from ¢ = 0.1 to € = 0.01, likely due to numerical errors dominating.

To analyze the order of convergence, one can use the concept of two-scale convergence
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(see [5]), which is beyond the scope of this thesis.
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Figure 2.6: The L2—norm of the difference between the upscaled quantities and the
corresponding transversally averaged solutions of the pore-scale model for different € at

t=0.1.

2.6.2 Two-phase flow with constant surface tension

Here we consider a numerical example of the pore-scale model in Section 2.3.2 where the
regime is Ca = ¢ Ca with Ca = 1. The viscosity ratio is chosen as M = 1. The initial

conditions are

Ploy(@, 9,1 =0) =0, in Q,y(t =0),v{y(z,y,t =0) =0, in O, (¢t =0),

d(z,t = 0) = 0.5 — 1.2 + 1.22%, at T(t = 0).
The inflow and outflow boundary conditions are

piry = 0.023, at I'l; ;) (¢), and p{y = 0 at T'(; .4 (1),

Pl = —2.377, at T'{;; ;) (), and p{;p) = —2.4, at D77 5, (2).

To avoid a non-smooth behaviour of the fluids, the values chosen above ensure that
the initial and the boundary conditions are compatible. Moreover, the capillary pressure

relation (2.65) is also satisfied for t = 0. To solve the upscaled model (2.77), the same
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initial and boundary conditions are chosen. We use homogeneous Neumann boundary

conditions for d° at x = 0 and z = 1. The models are solved for a total time of t = 1.
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Figure 2.7: Comparison of the saturation of the wetting fluid of the upscaled model with

transversally averaged solutions of the pore-scale model for different € at t = 1.
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Figure 2.8: Comparison of the pressures of the wetting (left) and the non-wetting fluid
(right) of the upscaled model with transversally averaged solutions of the pore-scale model

for different € at t = 1.
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Figure 2.9: Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right)

of the upscaled model with transversally averaged solutions of the pore-scale model for

different € at ¢t = 1.

In Figure 2.7 - Figure 2.9, we have plotted the upscaled solutions of (2.77) together

with the averaged pore-scale solutions in Section 2.3.2 for various € at ¢ = 1. For

decreasing ¢, the averaged pore-scale solutions are closer to the upscaled solutions, which

we also see in Figure 2.10. Here we can not also decide any convergence order for the

L?-errors in Figure 2.10, but the errors are generally decreasing for decreasing €.
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Figure 2.10: L2—norm of the difference between the upscaled quantities and the corre-

sponding transversally averaged solutions of the pore-scale model for different € at t = 1.
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2.6.3 Unsaturated flow with constant surface tension

The numerical computations of the pore-scale model in Section 2.3.3 are considered for

the regime in Ca = €3 Ca with Ca = O(1). The initial conditions are

d(z,t=0)=05at I'(t = 0), v{;p(z,y,t=0)=0

and pfn)(x,y,t =0)=0in QEH)(t =0).
The inflow and outflow boundary conditions are

The initial conditions and the boundary conditions are same as for the pore-scale model.
We use homogeneous Neumann boundary conditions for d® at z = 0 and = = 1. The

models are solved for a total time of ¢ = 1.
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Figure 2.11: Comparison of the saturation of the wetting fluid of the upscaled model
with the transversally averaged solutions of the pore-scale model for different € at time

t=1.
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Figure 2.12: Comparison of the pressure (left) and the flux (right) of the wetting fluid
of the upscaled model with the transversally averaged solutions of the pore-scale model

for different € at time ¢ = 1.

In Figure 2.11 and Figure 2.12, we have plotted the upscaled solutions of (2.78)
together with the averaged pore-scale solutions in Section 2.3.3 for various € at ¢t = 1.
For decreasing €, the averaged pore-scale solutions are closer to the upscaled solutions,

which we also see in Figure 2.13. As before, we can not deduce an order of convergence.
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Figure 2.13: L2—norm of the difference between the upscaled quantities and the corre-

sponding transversally averaged solutions of the pore-scale model for different € at ¢t = 1.
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2.7 Model comparison

In Section 2.5, we have summarized all the upscaled models derived for different capillary
regimes. The goal of this section is to numerically compare the upscaled models valid
in the same capillary regime. The upscaled model (2.75) includes the Marangoni effect
which reduces to the upscaled model (2.76) of the two-phase flow model when the surface
tension is constant or when the concentration of the solute is equally distributed. On the
other hand when M — oo the upscaled model (2.77) of the two-phase flow reduces to
the unsaturated flow upscaled model (2.78). For this comparison we solve (2.77) for

increasing values of M and then compare with (2.78).

2.7.1 Comparison of Marangoni flow and two-phase flow

Here we compare between the upscaled models in (2.75) and (2.76) where the regime is

Ca = ¢ Ca with Ca = 1. The initial conditions are, for 0 < x < 1,

d’(z,0) = 0.5, °(z,0) = 0.50,

Gon(@,0) =0, pao(e,0) = p°(z,0) = 0.
The inflow and outflow boundary conditions for the pressures are
Pa,0(0,t) = 0.023, and pao(1,t) = 0.

Depending on the inflow boundary conditions for the concentration, we have tested three
different cases to observe the Marangoni flow. Here the outflow boundary condition is set

to the same value as the initial concentration. The three different cases are

case(i): (0,t) = 0.25, and ¢°(1,t) = 0.50,
case(ii): (0,t) = 0.50, and ¢°(1,t) = 0.50,
case(iii): 2(0,t) = 1.00, and c°(1,t) = 0.50.

At the fluid-fluid interface, the surface tension coefficient is chosen as (1.9) with a = 1

and b = 1 to include the Marangoni effect. The diffusion coefficient is chosen as D = 1



84 CHAPTER 2. THIN STRIP HOMOGENIZATION OF TWO-PHASE FLOW PROBLEMS

and the viscosity ratio as M = 1. The models are solved for a total time of ¢t = 0.1.
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Figure 2.14: Comparison of the concentration of the upscaled model (2.75) for the

Marangoni flow for different test cases at t = 0.1.
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Figure 2.15: Comparison of the fluxes of the non-wetting (left) and the wetting fluid
(right) of the upscaled model (2.75) for the Marangoni flow for different test cases at

t=0.1.
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Figure 2.16: Comparison of the pressure (left) and the saturation (right) of the upscaled

model (2.75) for the Marangoni flow for different test cases at ¢t = 0.1.

We see in Figure 2.14 that case(ii) corresponds to a constant concentration and thus
9,v(c®) = 0. We want to emphasize that this is equivalent to the case of solving the
upscaled model (2.76) for the two-phase flow with constant surface tension. This case
will hence not include Marangoni effect. Due to the difference in inlet and outlet pressure,
both fluid velocities are small but positive through the domain, accompanied by a linear
pressure drop and a constant saturation as seen in Figure 2.15 and Figure 2.16.

For case(i) we see in Figure 2.14 that this corresponds to 9,c” > 0, which implies
9:7v(c®) < 0. Oppositely, case(iii) corresponds to 9,7v(c?) > 0. The effect on the fluid
velocities, pressures and saturations in Figure 2.15 and Figure 2.16 is evident. For case(i)
we see how the negative surface tension gradient along the strip results in overall negative
velocities of both fluids through the strip. This is as expected from the Darcy-type laws
in (2.75), and can be interpreted as the flow going towards the lower concentration of
solute and hence towards the region of larger surface tension. In particular we see how
the pressure distribution through the strip adjusts and hence is a convex function in
case(i). Also, the saturation becomes slightly decreased near the inlet, which is due to
the difference in response of the two fluid velocities. The opposite behaviour is seen for
case(iii). Here the negative solute concentration gradient, corresponding to a positive
surface tension gradient, gives an increased flow in the positive direction through the
strip. The pressure becomes concave, while the saturation near the inlet is seen to
increase slightly due to the difference in fluid velocity.

This simple test case shows how the Marangoni effect can alter the flow and mass
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transfer through a pore due to processes at the fluid-fluid interface. We see how the flow
is adjusted to be towards the region of larger surface tension, as is expected for Marangoni

flow.

2.7.2 Comparison of two-phase flow and unsaturated flow

Here we compare between the upscaled models in (2.77) and (2.78) where the regime is
Ca = €3 Ca with Ca = 1. The viscosity ratio is chosen as M = 1,M = 10, M = 100
and M = 1000 in (2.77) and compared to (2.78) which corresponds to letting M — oo.

The initial conditions are, for 0 < x < 1
d°(2,0) = 0.5 — 1.2 + 1.2 2%, g4 (2,0) = 0, pa,o(z,0) =0.
The inflow and outflow boundary conditions are

p(r(0,t) = 0.023, and p{}(1,t) =0,

Pliry(0.t) = ~2.377, and ply ) (1,1) = ~2.4,

The models are solved for a total time of ¢t = 1.
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Figure 2.17: Comparison of the saturation of the wetting fluid of the upscaled models

att = 1.
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Figure 2.18: Comparison of the pressure (left) and the flux (right) of the wetting fluid

of the upscaled models at ¢t = 1.
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Figure 2.19: L?—norm of the difference between the wetting phase quantities
(dO’U,p?}[IJ),E?}(IJ,l)) in the unsaturated flow model and the corresponding ones for the
two-phase flow (dO7M,p?}JIV§,6?}J}471)), for different values of M at ¢t = 1.

Figure 2.17 and Figure 2.18 show that the upscaled wetting phase quantities in the
two-phase flow model are approaching the corresponding one in the unsaturated flow
model as the viscosity ratio is increasing. In Figure 2.19, we present the L?—norm of the
difference between the wetting phase quantities in the unsaturated flow model and the
corresponding ones for the two-phase flow, for different values of M at ¢t = 1. Observe

that the differences become smaller for larger viscosity ratios. We see that the behaviour
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of the wetting fluid is well approximated by the simpler unsaturated-flow model already for
M = 10. But the differences are not decreasing from M = 10 to M = 1000, most likely
caused by numerical errors starting to dominate. Hence, if the velocity and saturation of
the wetting fluid is of main interest, one could use the unsaturated-flow model instead of

the two-phase flow model already for relatively moderate viscosity ratios.

2.8 Conclusion

We consider the flow of two immiscible and incompressible phases, respectively the un-
saturated flow in a thin strip representing a porous medium. We account for the possible
dependence of the surface tension on the solute transported by the wetting fluid. For the
two-phase flow the starting point is the model at the pore scale, where the two fluids are
separated by an interface having an a-priori unknown location but depending on the fluid
velocities. The flow is described by the Navier-Stokes equations and the solute transport
by the advection-diffusion equation. At the interface separating the two fluids, relevant
interface conditions are imposed. In particular, the difference in the normal stress tensors
depend on the surface tension, which may change depending on the solute concentration.
Considering a simplified situation, namely a thin strip representing a single pore, we have
derived upscaled one-dimensional models describing the averaged behaviour of the system
for different capillary regimes. We have validated our theoretical results with numerical
experiments and we then compared the behaviour of the upscaled models. In doing so,
different situations are considered, in which the capillary number and the viscosity ratio
have a certain behaviour w.r.t. the ratio of the pore width and length. In particular, we
see that the solute-dependent surface tension (the Marangoni effect) is relevant for the
upscaled models only if the capillary number is small enough. In the case when the vis-
cosity ratio becomes large, the two-phase flow model reduces to the unsaturated model.
One main conclusion is that for small capillary numbers instead of capillary pressure -
saturation curve, we obtain capillary pressure - saturation dependency involving the sec-
ond order derivative of the saturation, as also proposed in [54, 55, , ]. Based on
the numerical results, we emphasize that the presence of solute-dependent surface tension

can strongly influence the flow.
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Although considering a simple geometry, combining asymptotic expansions with var-
ious scaling of the non-dimensional parameters show which processes are important at
the larger scale and which can be neglected. The upscaling procedure also shows how
the capillary pressure depends on the saturation when the capillary pressure should be
accounted for. Allowing for other types of fluid displacement, such as a fluid-fluid-solid

contact point, and more general geometries open for also other types of upscaled models.






Chapter

Periodic homogenization of

two-phase flow problems

This chapter is based on the following two publications [17,161]:

= "S. Sharmin, M. Bastidas, C. Bringedal, |.S. Pop, Upscaling a Navier-Stokes-Cahn-
Hilliard model for two-phase porous-media flow with solute-dependent surface ten-
sion effects, Applicable Analysis, 101 (2022),pp. 1-23, https://doi.org/10.
1080/00036811.2022.2052858."

= "M. Bastidas, S. Sharmin, C. Bringedal, |.S. Pop, A numerical scheme for two-
scale phase-field models in porous media, Book of Extended Abstracts of the 6th
ECCOMAS Young Investigators Conference, Universitat Politécnica de Valéncia,
Spain, https://doi.org/10.4995/YIC2021.2021.12571.

3.1 Introduction

In this chapter, we consider the flow of two immiscible fluid phases in a porous medium, in
which surfactant-dependent surface-tension effects are taken into account. More specifi-
cally, at the pore scale, the surface tension depends on the concentration of the surfactant,

which is soluble in one of the fluid phases. At the pore scale, one encounters an interface

91
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separating the two fluids transported by the flow. The fluid-fluid interfaces appear as free
boundaries at the pore scale.

In contrast to the sharp-interface approach used in Chapter 2, we consider here a
diffuse-interface approach to handle the free-boundary problem. In the phase-field ap-
proach, one works with a mixture of both fluids. We briefly discussed the challenges and
necessity of this approach for modeling more realistic situations in Section 1.1.1.1.

The starting point is a Cahn-Hiliard [47] approximation of the phase separation to-
gether with the Navier-Stokes equations for the flow of the two fluids. Such models have
been considered in [2,51,69]. Alternatively, in [19,57,154] the pore-scale flow is described
by the Stokes model. We prefer to use the Navier-Stokes equation for capturing fully
the physics of the two-phase fluid flow at the pore scale. We highlight that a thermo-
dynamically consistent phase-field model for two-phase flow was first derived in [2], and
later, two-phase flow models with surfactants were considered in [69]. Our model builds
upon the model B derived in [69], where two-phase flow with variable surface tension
is considered and the phase-field approach within a free energy framework is used to
model the phase separation. We consider the instantaneous adsorption regime in [69],
and simplify the model by assuming that the surfactant is only present in one of the fluid
phases. Concerning numerical methods for similar type of models as discussed here, we
refer to [189], where energy-stable schemes are proposed for a Cahn-Hiliard model for
two-phase flow and surfactant transport, and to [66, ], where energy-stable methods
based on discontinuous Galerkin discretization are analyzed.

To handle the complexity of the pore-scale domain, we consider a periodically perfo-
rated domain. We recall that in practical applications, the main interest is in the system
behavior at the Darcy scale, not necessarily in the complex, pore-scale behavior. We em-
ploy here formal homogenization techniques for the derivation of the two-scale two-phase
flow model, accounting for the surface-tension effects. More precisely, we use formal
asymptotic expansion methods and assume local periodicity at the pore scale. In the
resulting two-scale model, the effective (Darcy-scale) parameters required at the Darcy
scale are determined by solving pore-scale cell problems, which, in their turn, depend
on the Darcy-scale quantities. For similar results, we refer to [19,42,57,113] where no

surfactant is present in the model, and to [154], where a solute transport component is
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included in the model, but without affecting the surface tension.

This chapter is organized as follows. In Section 3.2, we present the Cahn-Hillard-
Navier-Stokes two-phase flow model with solute-dependent surface tension and give the
sharp-interface limit of the phase-field model. In Section 3.3, we derive the upscaled model
from the non-dimensional pore-scale phase-field model using the asymptotic expansion
method. In Section 3.4, we present the numerical scheme for solving the two-scale model
and then solve this model for some test cases in Section 3.5. Finally, in Section 3.6, we

draw our conclusions and give some remarks for future research.

3.2 The pore-scale model

Here we discuss the pore-scale model for the two-phase flow in a porous medium. The
fluids are assumed incompressible and immiscible. For each fluid phase, the flow is gov-
erned by the Navier-Stokes model, defined in the corresponding sub-domain, and with
fluid-specific parameters. As mentioned before, to overcome the difficulties related to the
free boundaries, we use the phase-field approximation developed in [69]. The evolution of
the phase field is given by the Cahn-Hilliard equation.

In what follows, we let 2p be the domain which can be occupied by the two fluids

and denote its boundary by 0Qp.

3.2.1 The sharp-interface model

In the sharp-interface model, one has two different fluid phases, indexed by i(i = 1, 2).
We let p®), u™®), v(®) p(3) (i = 1,2) stand for the (constant) mass density, (constant)
viscosity, velocity and pressure of fluid i. Moreover, these quantities are defined in the
time-dependent subdomains Qg) (t), which correspond to the parts of Qp occupied by

fluid i. More precisely, the flow equations for fluid i read

o, <p<i>v<i>) v (p(i)vm ® v<i>) _Vv. <_p<i>1 i 2M<i>g(v<i>)) —0, (3.1a)

v.vi® =0, (3.1b)
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fort >0 and x € Qg,i)(t). Here £(vV)) := 1 ((Vv(i)) + (Vv(i))T) is the symmetric
stress tensor and I is the identity matrix.

For the surfactant concentration ¢, soluble only in fluid 1, we have
e+ V- (ve) = V- (DVe), in QR (1), fort >0, (3.1¢)

where D > 0 denotes the diffusion coefficient.

The fluid-fluid interface I'(¢) is a free boundary, whose evolution is determined by
the fluid velocities and the solute-dependent surface tension 7(c). Several adsorption
isotherms are proposed in [69], stating the relationship between surface tension and the
surface concentration of the solute. To relate the volume and surface concentrations, we
follow the ideas in [69] and define the isotherm in terms of the product Sc, where  is a
length and ¢ a volume concentration. In this way, B¢ is to be understood as the surface
concentration. We assume that ~v(c) is linearly decreasing, namely the Henry isotherm
(see [60])

~(¢e) =~ — Bfe. (3.1d)

Here ~q is the surface tension of a clean interface and B is the sensitivity of the surface

tension to the surfactant. For any ¢ > 0, at I'(¢), one has

[V@)} —0, (3.1e)
v .n=q,, (3.1f)
[T+ 20 £ = y(e)rn = Ve (), (3.1¢)
(—DVC + V(l)C) ‘n=uv,cC (3.1h)

Here [.] stands for the jump of the quantities from Qg)(t) to Qg)(t), K is the mean
curvature of I'(¢) and v, its normal velocity. Moreover, Viv(c) := Vvy(¢) —n (n - V7(¢))
is the tangential stress gradient, where n is the unit normal vector on I'(¢) pointing into
) (1) from Q2 (1).

Note that the jump condition in (3.1g) has two components. In the direction normal

to I'(¢), the jump in the normal stress equals to y(c)k. In the tangential direction, the
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normal stress is given by the tangential component of Vv(c), multiplied by (—1). In case
of a constant surface tension, the tangential component vanishes. Finally since no solute

is present in fluid 2, (3.1h) expreses the conservation of solute across I'(¢).

3.2.2 The phase-field model

In the phase-field model, the interface separating the two immiscible fluids is approximated
by a diffuse interface. We consider the time interval [0,00), and let Q@ = (0,00) x Qp.
A phase indicator ¢ : Q — R accounts for the presence of the two fluids, taking values
either close to 1 in points occupied mainly by fluid 1 or close to -1 in points occupied
mainly by fluid 2. Following [2,69] the energy of the fluid-fluid interface is approximated

by the Ginzburg-Landau energy functional

1 A
e1ee(6.96) = € (1P(0) + 319F ). (52)
where A > 0 is the thickness of the diffuse interfacial region, C = % is a calibration
constant, while P : R — R is the double-well potential defined as
1 22
P() = (1- 62 (33)

3.2.2.1 The Cahn-Hilliard equations
To describe the evolution of the phase field, we use the Cahn-Hilliard equation, written
in mixed form as two coupled second order equations. First,

06+ V- (vo) =m A Ay, n Q, (3.42)

where v is the velocity of the mixture and ¢ is the potential. The Cahn-Hilliard mobility
m > 0 is assumed here constant. Alternative choices for m are discussed in [2], leading
to various sharp-interface models in the limit A — 0. Second, following Model B in [69],

which corresponds to instantaneous adsorption, and using (3.1d), one obtains

U=V (ENEVE) + THOP @)+ PO, Q. (34D
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where I : R — R is defined as

16) = 5(1 +9). (340)

As shown in [69], when A — 0, the phase field ¢ approaches the sign graph and therefore
I(¢) approaches the characteristic function of fluid 1. Note the last term in (3.4b), which
is added to include the effect of the varying surface tension.

We assume homogeneous Neumann boundary conditions for the phase field ¢, as well

as for the chemical potential ¢
V¢ -n=0, and Vi -n =0, on 9Qp, fort > 0, (3.4d)

where n is the unit normal to 9Qp pointing out of Qp. The first boundary condition
corresponds to a 90° contact angle, and the second is needed for conserving the mass of
the phase field.

The Cahn-Hilliard equations (3.4a), (3.4b) are completed by the initial condition

¢(07 ) = ¢init> in QP7 (346)

where ¢t 1 Qp — R is a given function approximating the initial distribution of the two
fluids in Qp.

3.2.2.2 The flow equations

Since the mixture velocity is volume averaged, and since we assume there is no excess

volume after mixing, v is divergence free (see [2]),

V.-v=0,inQ. (3.4f)

Here, the density and viscosity of the mixture are defined as p(¢) = M +

2).(1— [CONE] (). (1
P (2<i>)7 () = L (2+¢>)+u (2¢).
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The momentum conservation law is a modified Navier-Stokes equation

Ot (p(®)V) + V- (p(@)v @ V) = V - (=pL 4 2u(@)E(v) + v ® p'($)A m V) (ag)
Ag

= V- (7(¢) (€trec(¢, VO)I = CAVH @ V) , in Q,

where p is a rescaled pressure. Here the flux term (v ® p'(¢)X m V1)) ensures ther-
modynamic consistency (see [2] and [69] for details) and the last two terms in (3.4g)
account for the surface tension between the fluids. While such effects can be included in
various ways (see [89]), here we adopt the approach in [69], based on the energy term
efree (@, V)1 appearing in (3.4g). For convenience, from now on we use the following

equivalent formulation of the momentum equation (3.4g)

O (p()V) + V- (p(@)v @ V) = V - (=pL + 2u(¢)E(V) + v @ p'(¢)A m V)

- (510P©) - V- @070 Vo + (1962 + $P0)) Va0,
(3.4h)
The solute transport model reads
0 (I(p)e) + V- (I(¢)ve) =V - (D I(¢)Ve), in Q. (3.4i)

Note that as ¢ approaches -1, I(¢) vanishes, which is in line with the assumption that
the solute is only present in fluid 1.

We assume that the velocity and solute flux are zero on the boundary
v=0 and I(¢)Vec-n=0 on 90p, for t>0. (3.4))
Furthermore, the initial velocity and concentration are assumed to be known, v|;—p = Vinit
and Clt:O = Cinit in Qp.

Remark. Employing matched asymptotic expansions, in [69] it is shown that in the limit
A — 0, the phase-field model discussed above reduces to the sharp-interface model in

Section 3.2.1.
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3.3 Upscaling the pore-scale model to the Darcy scale

As stated in the introduction, we assume that, at the pore scale, the porous medium 2
consists of small but many periodically distributed impermeable grains, surrounded by a
void space (the pore space). We are interested in the averaged behavior of the system,
observed at the larger (Darcy) scale. At the same time, smaller (pore) scale information
should not be disregarded. The pore scale and the Darcy scale are assumed well separated.
With ¢ and L being the characteristic lengths of the pore scale and of the Darcy scale,
we use € = % < 1 as the scale separation parameter.

To define the pore-scale domain, we write Y = [0,¢]¢, (d = 2,3) as the union of the

grain G, its boundary G and the surrounding pore space P,
Y=PUGuUOIG.
The entire porous medium occupies the domain
Q= Upew, {fw+Y},

where W C Z% is a set of multi-indices. We assume that Wy, is such that Q is a
connected set.

The phase-field model is defined in the entire pore space,
Q’Ep = UwEWQ {Ew + P} )

which is also assumed to be connected.
The boundary of Q% consists of the outer part, Jf2, and the inner part, which is the

union of the grain boundaries,
I's = Upew, {fw+ 0G}.

Note that the grains are not part of {)%,. We refer to Figure 3.1 for a sketch of the domain.
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T

Figure 3.1: Schematic representation of the porous medium ). The figure in the middle
presents periodically repeating grains (coloured gray) surrounded by void space (the pores)
occupied by two immiscible fluids (blue and red). A surfactant soluble in fluid 1 is present

(white particles). The right figure is a typical representation of a pore.

3.3.1 Non-dimensional model equations

For deriving the Darcy-scale model, we first bring the pore-scale model to a dimension-
less form. To do so, we use the reference values and the non-dimensional quantities in

Table 3.1, and the non-dimensional numbers

Fu = pref2 . Re= pref’Urefxref’ Ca — ,urefvref7
prefvref Mref Yref (3 5)
Pec _ UrefLref A — mwref A, — Yref '

3 ¢ ) P .
D Uref Lref ¢ref
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Table 3.1: Reference values and non-dimensional quantities

Variables and parameters Reference values Units Non-dimensional quantities
Time tref [s] = t/te
Space (Darcy scale) Tref = L [m] X =x/%ref
Space (pore scale) Yref = £ m]  §=¥/Yref
Velocity Uref = Tref/tref  [2] V= V/Uref
Pressure Dref [ni(iz] D = D/Dref
Molar concentration Cref [1;11—‘3,1] ¢ = ¢/Cref
Density Pref [%] P = p/pref
Viscosity Phref (8] fo= o/ piref
Surface tension Yref [%] 4(€) = Y(cref €)/ref
Diffuse interface thickness Aref = Yref = £ [m] \= A/ Yref
Bret =thet =L  [m] B =PB/yer
Free energy Chree ref = 7 [L]  Cfree = Efree Tref
Cahn-Hilliard chemical potential et [nfiz] 1[) = U/ Uref
Diffusion coefficient D [%]
Cahn-Hilliard mobility m 2]

Observe that the diffuse interface parameters A and 3 are assumed to have the order
of the pore-scale length £. This corresponds to A, 8 being of order O(¢), as defined in
Table 3.1. Here 5\,3 < 1, but these factors are independent of €. Using the reference
values and non-dimensional quantities from Table 3.1, and the non-dimensional numbers
in (3.5), we obtain the dimensionless model (3.6). In the non-dimensional settings, we

denote the pore space by X € Q;D and the inner boundary by ffg Hence, one obtains
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A A

04 (p(0)9) + ¥+ (p(0)9 0 9) = ¥+ (~Bu T+ L2 (0)E(9))
9 (A (090 90) + o (5HOP0) - T (cchie¥o) ) To
1 eCA - C N

Re Ca <2|V¢|2 + S\P(@) VA4(é), (3.6a)
V- ¥ =0, (3.6b)
O1(8)0) + ¥ - (10)¥) = 5V - (1(0)9¢). (3.60)
0;0 4+ V - (Vo) = eApAAY, (3.6d)
b= A, (fﬁ(é)P’(qﬁ) + Glﬁﬁ(é)l’(qﬁ) -V (eCWé)w)) : (3.6¢)

v =0, (3.6f)
I(¢)Vé-n =0, (3.6g)
Vé-n=0, (3.6h)
Vi -n = 0. (3.6i)

For the ease of presentation, since from now on only the non-dimensional quantities are

considered, the hat is ommited in all notations.

3.3.2 Derivation of the two-scale model

We derive the upscaled counterpart of the phase-field model in Section 3.2.2. To do so,
we employ formal asymptotic expansions w.r.t. €. More precisely, we assume that all

variables can be expanded regularly in terms of €. For example, for ¢ one has

o(t.%) = do(t %, 7) + ebi (1%, =) + O(), (37)
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where the functions ¢; are Y-periodic w.r.t. the last argument. In other words, for
j=1,...,d and with e; being the unit vector in the j-th direction, one has ¢;(t,x,y +
ej) = ¢i(t,x,y). Similar expansions are used for p,v,c. Note that the spatial variable
x is doubled into the slow one, x, accounting for the changes at the Darcy scale, and
the fast variable y = *, where the rapid oscillations occur. With this the j-th spatial

derivative 9,, becomes 9,, + 19, and
1
V=V, + Vs (3.8)

Observe that, unlike [113], we do not consider an additional fast time scale, and do not
disregard the O(e€) terms in the expansion of the phase field and of the velocity. At this

point, we assume the following scaling of the dimensionless numbers (3.5),

Eu=¢2Eu, Re=Re, Ca=Ca,
L e o (3.9)
Pec = Pec, Aqg = A¢, Aw = eAw,

Euler number Eu and of the Reynolds number Re, we make sure that we are in the
regime where Darcy's law is applicable, which corresponds to a laminar flow driven by
the pressure gradient. The scaling of the capillary number Ca is chosen moderate w.r.t.
€. This choice results in equal pressures in both phases. Further, the Péclet number Pe.
is of order 1, which corresponds to the time scales of solute transport by advection and
diffusion being of the same order. For simplicity, here Ca = Pe. = 1. The scaling of A,
and Ay is needed for the phase-field interface dynamics to be active at the pore scale.
For the ease of presentation, the dependency of ¢,x and y will in the following only

be written whenever needed. Also, recall that all model variables are Y-periodic.

3.3.2.1 The flow equations

Inserting the asymptotic expansions in the reformulated momentum and mass conservation

equations (3.6a) and (3.6b), and in the no-slip boundary condition (3.6f), and applying
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(3.8), one obtains for all t > 0

1 — 1 — 11
~ 5 EuVypo — B (Vapo + Vypr) + =V - (20(60)& (vo))

Re
11 C ,
+ e X'V(CO)P (¢0) = CAVy - (v(c0)Vyoo) | Vydo
A 1
+¢ (G190l + 1Pl6n)) V(e ) + O ) =0 in 0P,
(3.10a)
%Vy~v0+vx'vo+vy'v1+0(e):O, inQxP,
(3.10b)
vo +evy +0(e?) =0, on 2 x 0G.
(3.10c)

Here &, is the counterpart of &, but involving derivatives in the fast variable y. Since

Y| =1, for all t > 0 and x € Q we define the averaged velocity as
Wt = [ voltxy) dy. (311)
The lowest order term in (3.10b) provides
Vy - vo=0, (3.12)
for all y € P. Next, the e%-order terms give
Vx - vo+Vy- vy =0, (3.13)

for all y € P. Integrating the above w.r.t y, applying the Gauss theorem, and using the

periodicity of vi and the boundary condition v; = 0 on 9G, one gets

V-V =0, (3.14)
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for all t > 0 and x € Q. Equating the dominating O(e~3) term in (3.10a) gives
VypO = 07

for all y € P, so py = po(t,x). Further, in section 3.3.2.3 we also show that ¢y = ¢o(t, x)
is independent of y, and therefore, the last O(e~2) terms in (3.10a) are vanishing. Hence,

the O(e~2) terms in (3.10a) yield

_ 1 _
EuVyp — ﬁvy “(2u(¢0)Ey (Vo)) = —EuVxpo

C
7(co) <)\Pl(¢o) - CAAyéf’o) Vyo,
(3.15)
forallt >0, x € Q and y € P. Observe that (3.15) and (3.12) form a Stokes system in

L
ReCa

terms of the unknowns p; and vy, depending on pg, ¢¢ and ¢y. This dependence can be

made more precise through the cell problems, defined for all x € Q and ¢ > 0,

— 1 .
Eu (e + VyII;) = —ﬁvy - (21(¢0)Ey (W), inP,
Vy - -wj; =0, in P,
(3.16)
wj =0, on 0G,
II;, w; are Y-periodic and / IL; dy = 0,
P
forj=1,...,d, and
— 1
BuVy Tl = —==Vy - (2(60)8, (wo))
+1(CP’(¢)—C/\A¢>)V¢ inP
%@ B\ 0 y ¥0 y¥0, )
Vy - wo =0, in P, (3.17)
wo =0, on 0G,
Iy, wg are Y-periodic and / IIy dy = 0.
P
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By linearity, having solved the cell problems above, one immediately gets vy and p; as

functions of pg, cg and, implicitly, of ¢q

d
VO(t7 X, Y) = - Z Wj (ta X, Y) 81‘ij (t’ X) — Wo (ta X, Y) 7(00 (tv X))’ (318)
j=1
d
P1 (tv X, Y) = ﬁl (tz X) + Z Hj (tv X, Y) aijO(tv X) + HO (tz X, y)’y(Co(t, X)) (319)
j=1

Here 51 = p1(¢,x) is an arbitrary function not depending on y. Integrating (3.18) w.r.t.

y over P and using (3.11) yields
v = —KVxpo — M~v(cp), (3.20)

for all x € Q2 and t > 0. The elements of the effective matrix [C(¢,x) and the components
of the effective vector M(t, x) are obtained using the solutions of the cell problems (3.16)

and (3.17),
]Civj = / Wi,j dy and Mi = / Wi 0 dy, with l,J = ]., PN ,d, (321)
P P
where w; ,, is the i-th component of w, (a € {0,...,d}).

3.3.2.2 The Cahn-Hilliard equations

By Taylor expansions about ¢g and ¢y, we can write

P(¢) = P(¢o) + edrP'(¢0) + O(¢?), 7(c) = v(co) + ec1y'(co) + O(e?).  (3:22)
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Using this and the homogenization ansatz (3.7) in equation (3.6d), (3.6e), (3.6h) and
(3.6i), one gets for all ¢ > 0

O(e) =<V - (Vo) = T ANyt + Bido + Vi (Vo)

— A\ (V- (Vytho) + Vy - (Vxtho) + Aythr) mQxP,  (323a)
O(e) =tho — v(co)Ay (CPIA(%) 41 '(g(’) - CAquSo) , inQxP,  (3.23b)
O(e) %qubo ‘n+ Voo -n+ Vygr - n, onQx9G,  (3.23¢)
O(e) %Vywo ‘n+ Vxt - n+ Vgt - n, on Qx8G.  (3.23d)

Since |Y| = 1, the porosity of the medium is defined as
o = |P|. (3.24)
We also define
- 1
(b(f,,X) = 6/ ¢0(t>X>Y) dy (325)
P
Since ¢ approaches 1 inside fluid 1, we use (3.4c) to define the fluid 1 saturation as

1
5= 5/7)I(¢o)dy:

for all t > 0 and x € Q. Equating the lowest order terms in (3.23a)-(3.23d), and using

(1+9), (3.26)

DN | =

(3.26), one gets the local cell problem for the phase field and the potential,

Vy - (Vogo) = AgAAytho, in P,

o = (o) Ay (CP’)(\%) n I’(ﬁ%) B C)\Ay(bO) .

Vy¢o -n =0, on 0§, (3.27)
Vytho -n =0, on 9G,

.o are Y-periodic, and é /7, dody =251,
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for all ¢ > 0 and x € Q, where v is defined in (3.18). Observe that in the above equations
only spatial derivatives w.r.t. y are present. The constraint é fP ¢o dy = 2 5 — 1 follows
from (3.26) and ensures the uniqueness of a solution.

The €%-order terms in (3.23a) equate to

at¢0 + vx : (VO¢O) = A7¢)‘ {Vx : (Vyiﬁo) + vy ' (wao) + Aywl} ) (3'28)

forallt >0, x € Q and y € P. Integrating the above equation over P w.r.t y and using

the periodicity of ¥y and 1y yields
3t/ ¢o dy + V- / (Vogo) dy =0, (3:29)
P P
for all t > 0 and x € Q. Using (3.26), this becomes
lo g0
DO + 5V 90 =0, (3.30)
for all t > 0 and x € €, where v is the ¢-dependent velocity given by
vO(t,x) == / vo(t,X,¥)o(t, x,y) dy. (3.31)
P
Using (3.18) in the above equation, one finds
v? = —K? Vyipo — M? ~(cp), (3.32)

for all + > 0 and x € ), where the elements of the effective matrix K?(t,x) and the

components of the effective vector M?(t,x) are defined by
ICij = /PWiJ ¢o dy and Mf = /PWi’O ¢ody, fori,j=1,...,d. (3.33)

Again, w; and wy are the solutions of the cell problems (3.16) and (3.17).
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3.3.2.3 Solute conservation equation

Using the homogenization ansatz in (3.6¢) and (3.6g) provides

11 1 11
- :szecvy - (I(¢0)Vyco) + EVV (I(¢o)voco) — < Po. Vx - (I(¢0)Vyco)
1
— E%Vy . (I((bo) (VXCO + Vycl) + ¢1;Vy00) + at(1(¢0)00> + Vi - (I(qf)o)VoC())
+Vy - (I(%) (voc1 + vico) + ¢1;V000>
_ P]é Vy . (I(d)()) (Vx01 + VyCQ) + ¢1% (cho + Vycl))
_ Ple Vi - (I(d)o) (cho + Vycl) + ¢1;vy80> + O(G) =0, in O x P,
(3.34a)
%H%)Vyco ‘n+I(do) (Vxco + Vycr) -n+el(¢o) (Vxer + Vycz) -m
+e¢1%vyc0-n+(9(62) =0, on {2 x 0G.
(3.34b)

The lowest order term from the above equations gives, for all ¢ > 0 and x € (),

Vy - (I(¢0)Vyco) =0, inP, and
I(¢0)Vyco-n =0, ondg.

Using the Y-periodicity of ¢y, one immediately gets that ¢ = ¢o(t,x) is independent of

y. Further, the ¢~ !-order terms in (3.34a) equate to

1 1
—Vy - (I(¢0)Vyc1) = ——
B vy (@) Vyer) = — 5=

Vy . (I(¢0)Vx00) + ¢o (Vy . (I(d)o)Vo)) s (335)
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forallt > 0, x € Q and y € P. This, together with the boundary condition (3.34b),

allows obtaining c¢1 in terms of ¢q, co and vg, by solving the cell problems
Vy + [1(¢0) (Vyx; +e5)] =0, in P,
I(¢o) (Vyx; +e€;) n=0, on 9g, (3.36)

X; is Y-periodic and / x; dy =0,
P
forj=1,...,d, and

Vy - [1(¢0)Vyxol = Vy - (I(¢0)vo), inP,
I(¢0)VyXxo -n=0, on 0§, (3.37)
Xo is Y-periodic and /PXO dy = 0.
With (3.36) and (3.37), one has for all t >0, x € Q and y € P
d
al(t,x,y) =al(tx) + ZXj (t,x,¥) Oz;c0(t, %) + Xxo(t, %, y)co(t, %), (3.38)

=1

where & = & (t,x) is arbitrary. Finally, the e’-order terms in (3.34a) equate to

Vi - (I(¢0) (Vxco + Vyer))

¢ (I(¢po)co) + Vx - (I(do)voco) — Pl

C

Pivy (1) (Vxe1 + Vyez))
ec

=—Vy- <I(¢O) (voc1 + vico) + qbl;voco) +

1

+
Pe,

Vy - (¢1; (Vxeo + Vycl)) ,

(3.39)
forallt > 0,x € Qandy € P. Integrating the above w.r.t y over P, using the definitions
of the averaged velocity and ¢-dependent velocity in (3.11) and (3.31), together with the

periodicity, one gets the macroscopic law for the solute conservation

1 1
® 0y (S co) + 5V - (co (V+¥9)) = 5=Vx- (BVxco + Hey), (3.40)
€c
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for all ¢ > 0 and x € Q. Here the elements of the effective matrix B(¢,x) and the

components of the effective vector H(¢,x) are determined by

Bi,; Z/PI(%) (035 + By, x3) dy, Hi =/pf(¢o)8yi><o dy, (3.41)

fori,j =1,...,d, and where x; and xo solve the cell problems (3.36) and (3.37).

3.3.3 Summary of upscaled model

To simplify the notation, from here we give up the indices 0 in vg, ¢¢, Yo, pg, and c¢g. With
this, the Darcy-type laws in (3.20) and (3.32) for the velocities, and the mass conservation

laws for the two fluids and for the solute in (3.14), (3.30), and (3.40) can be written as

v=—-KVp—M~(e), (3.42a)
V-v=0, (3.42b)
® 9,5 + %v v? =0, (3.42¢)
v = —K? Vp — M? 5(c), (3.42d)
<I>8t(Sc)+%V~(c(\7+\7¢)) :Piecv-(z%chrHc), (3.42¢)

defined for all > 0 and x € . The Darcy-scale unknowns are v(t,x), S(t,x), v*(t,x),
p(t,x), and c¢(t,x). This system is completed with boundary conditions on 912, and
the initial solute concentration cinis. Moreover, an initial (pore-scale) phase field ¢yt is
prescribed at each Darcy-scale point, yielding an initial saturation Siy satisfying (3.26).
The effective parameters K, K¢, M, M?, B and H are obtained by solving cell problems,
as given in Table 3.2
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Table 3.2: Parameters for the upscaled model (3.42).

Effective parameters ‘ Cell problems
Kis=Jpwi;dy, Eu(ej + VyITj) = —2=Vy - (2u(¢)Ey(wy)) . in P,
K{j = [pwis o dy. Vy wjy=0,inP,
w; =0, on 0G,
ITj, w; are Y-periodic and [, II; dy = 0,
forj=1,...4d.
Mi = f,P Wi,O d}’7 HVyHO = —%Vy . (2u(¢)gy(W0))
== (§P'(¢) = CAAy¢) Vyo, in P,
M?{ = [, wig ¢ dy. Vy-wo =0, in P,
wg = 0, on 0G,

Iy, wo are Y-periodic and [}, IIy dy = 0.
I(¢) (Vyx; +e€5) -n=0,on g,

Xj is Y-periodic and [}, x; dy =0,
forj=1,...4d.

H; = f'p I(¢)ain0 dy. Vy - [I(QZ))VyXO] =Vy - (I(¢O)V) ,in P,
I(¢)Vyxo-n =0, on 0G,

Xo is Y-periodic and [, xo dy = 0.

To calculate the effective quantities, one needs the phase field ¢(¢,x,y). This is

obtained by solving for all £ > 0 and x € §2 the problem

Vy - (Vo) = Ay Ay, in P,
— crP’ I
v =Aypy(c) (>\(¢) + ? - CAAy(b) , in P,
(3.43)
Vy¢ - n=0,Vyp - n=0 on 0G,
1
¢ and 1 are Y-periodic and 3 / pdy =285—1.
P
Here v is nothing but the pore-scale velocity vq in (3.18), namely
d
v(t,x,y) ==Y w;i(t,x,y) 0n,p(t,x) — Wo(t,x,y) v(c(t, X)). (3.44)

=1
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Remark. Inspired by the definition of the fluid 1 saturation S in (3.26), and since
5(V+9?) =5 [rvo(l+ ¢) dy and § (Vv —v?) = § [, vo(1 — ¢) dy, one can iden-
tify the quantities corresponding to fluid i and reformulate the Darcy-scale equations

accordingly. More precisely, we consider the (Darcy-scale) fluid-specific quantities

s _g v Lgyge), w2 KK e M+ MY
b 2 ) 2 b 2 b

SO —1_5 v =1g_w) e _ (K=K ey (M—-M?)
’ 2 ’ 2 5

Then, for all t > 0 and x € Q, the Darcy-scale equations (3.42a)-(3.42d) become

v = k) vp - M@ 4(e), (3.45a)

39,5 + v -v( =, (3.45b)

Note that (3.45a) is an enriched Darcy law, where the last term accounts for the surfactant
effects, caused by a variable surface tension. Additionally, K(*) is the relative permeability
of fluid % multiplied by the absolute permeability of the medium, and M(? s connected to
the effective variable surface-tension effect of the fluid phases. Finally, since v\V) +v(2) =
v, (3.42b) implies that the total flow is divergence free. Moreover, even if the surface
tension is constant, (3.45a) is still an enriched Darcy law because K(*) and M%) both
depend on ¢, which is determined from (3.43).

Observe that (3.45a) and (3.45b) are similar to the standard effective model for two-
phase flow when assuming a zero capillary pressure, respectively that the phase pressures
are equal. In simplified geometries, such models are derived by transversal averaging,
but assuming that the capillary number is moderate compared to €, namely O(1) (see
[108,162]). Additionally, a nonlinear fourth order parabolic equation is obtained in [115]
for constant surface tension with capillary pressure, whereas in [117], the Buckley-Leverett
equations are derived in the absence of surface tension.

Models disregarding the capillary pressure effects are quite popular in the numerical
simulation of two-phase porous-media flows. Compared to these, even if the presence
of a soluble surfactant is disregarded, one aspect is much different in the Darcy-scale

model derived here. Commonly used models build on a relationship between the relative
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permeability of a fluid phase and its saturation. Here, no such relationship is assumed,
as the permeability is obtained from the pore scale, by solving the corresponding cell

problems.

3.4 A semi-explicit numerical scheme

For solving the two-scale model summarized in Section 3.3.3, we consider a simple, multi-
scale numerical scheme. In this scheme, the solution of the pore-scale problems (3.16),
(3.17), (3.36) and (3.37), and the solution of the Darcy-scale problem (3.42) are explicit,
while the solution of the phase-field problem is implicit (3.43). Given N € N, we define
the time step At := T/N and let t™ = nAt. The time-discrete functions are denoted by

¢n = ¢(tn;'a')a V= V(tnv') and 7’;” = nj(tn’.)7

where v € {IC¢’,IC,M¢,M,B,H,p,\7,\7¢,S,c}, and n; € {Hj,wj,xj} with j =
0,1,...d. We denote the given initial data c?, ¢" and SY, where S° satisfies (3.26).

At each time step n > 0, the following steps are carried out.

Step 1. For each x € Q, compute the solution of the time-discrete counterpart of (3.16)
and (3.17), i.e. obtain (II}, w}) with j =0,1,...d.

Step 2. Compute the time-discrete effective parameters %", K", M®" and M".

Step 3. Compute the solution of the time-discrete counterpart of (3.42a) and (3.42b).

Specifically, obtain p™ and v" by solving

‘—,TL — _’C’I’van _ M717(Cn>7
(3.46)
V.9 =0

Step 4. Use the explicit, time-discrete counterpart of (3.42c) and (3.42d) to compute

VO = O~ MO (),

S+ = gn - %v v,

(3.47)
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Step 5. For each x € , compute the pore-scale velocity v as in (3.18). Solve the

time-discrete counterpart of (3.36) and (3.37), i.e. obtain x> with j =0,1,...d.
Step 6. Compute the second set of time-discrete effective parameters B” and H".

Step 7. Compute the solution of the time-discrete counterpart of (3.42¢). Specifically,

obtain "1 by solving the following time-discrete problem

At
29

At
Pe. ®

Sn+lcn+1 — Sncn 4

;H”)C"

V- (B"VC"+1) — 5
ec
(3.48)

V- |(vr v —

Step 8. For each x € ), compute ¢"*1, the solution of (3.43) at t = ¢"+1,

Remark. Observe that the problem (3.43) is nonlinear. For solving it, we have adopted a
linear iterative approach. More precisely, at each Darcy-scale mesh point x € () and time
t", with L > 0 large enough and letting i € N be the iteration index, assuming ¢" =1

known and Y -periodic, one solves the system

vy . (vn¢n+1,i) — A7¢)\Ay,¢n+1,i7 in 7),
) - /( n+1,i—1 1( n+1,i—1
wn+1,z _ A¢7(Cn+1) (CP ((rb ) + I (¢ )
A g
+ £(¢n+1,i _ ¢n+1,i—1) _ CAAy(bn+1’i) , in P,
Vy(b”-H’i -n=0, vyw”-‘rl’i ‘n =0, on 9G,

&Y and " are Y -periodic and é /79 Pt dy =287 1.

(3.49)
The velocity v™ is given in (3.44), computed for t = t". As a starting guess we choose
the phase field at the previous time, ¢"t1:° = ¢™. However, the numerical experiments

show that the iterations are convergent regardless of the initial guess.
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Pore scale
" — Solve pore-scale ) Solve pore-scale Solve the
Initial conditions -
&, 6" (and S°) problems (3.16) —~  problems (3.36) —>  phase-field
! e and (3.17) ) and (3.37) problem (3.43)
Compute £, n n
K™ M and M" [Compute B" and H ]

Y
=9 die [PEE LSolve the Darcy—scale}_

scale problems —
(3.422) - (3.42d) problem (3.42¢)

Darcy scale

Figure 3.2: The two-scale scheme.

The two-scale scheme is presented in Figure 3.2. Observe that the time stepping in
(3.47) is explicit. Note that the explicit spirit of the the scheme relies on its multi-scale
nature. In this sense, the computation of a suitable time-step size or a CFL-condition
implies further analysis but is beyond the scope of this thesis. For the spatial discretization,
we consider T g7, a Darcy-scale triangular partition of the domain Q2. An element T' € T
has diameter Hy. For each Darcy-scale element T, the effective quantities are computed
by solving the cell problems defined in a pore-scale domain P. The triangular partition ¥},
of P consists of elements T}, of diameter hr,. Welet H := mmax Hpand h := %?g%(h hr,.
The numerical solutions of the pore- and Darcy-scale problems (3.17), (3.37), (3.43),
(3.46) and (3.48) are computed using the lowest order Raviart-Thomas elements (see [14]).
For the pore-scale problems (3.16) and (3.36) we use the Crouzeix—Raviart elements
(see [25, Section 8.6.2]).

To compute the evolution of the phase field accurately and, implicitly, of the effective
parameters, one needs a fine pore-scale mesh for each cell problem. This mesh needs to
be fine enough to resolve the diffuse interface zone of the phase-field. More details on

the mesh construction can be found in [15,16,17].
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3.5 Numerical results

In this section, we present two numerical experiments, carried out in the 2D case. We
consider the (Darcy-scale) domain = (0,1)x (0, ) and take T = 1 as final time. In both
tests, a zero initial concentration is considered, ¢ = 0, while the initial phase field ¢° does
not change with the vertical Darcy-scale variable x5 (see below). Therefore, the saturation
SY, obtained from (3.26), depends only on the horizontal variable, S°(x) = f(z1). The
function f is within the range [0.66, 0.86] (see Figure 3.3).

Every pore-scale domain Y has a centered inner grain G = (0.4,0.6) x (0.4,0.6). This
gives a constant porosity, ® = 0.96. For each x € 2, the initial phase field ¢°(x,-)
is radially symmetric up to not being defined on G. Its value changes from -1 (fluid 2,
around G) to 1 (fluid 1, the outer part of P) in a thin, diffuse region around a circle. The
radius of it changes in the z;-direction but not in the xs-direction.

Homogeneous Neumann boundary conditions are imposed for ¢ and p at the upper
and lower boundaries of 2. The same applies for ¢ at the right boundary. The pressure
and concentration are prescribed at the left boundary, p = p;, = 2 and ¢ = ¢;,. In
the two tests, the only varying data is c¢;,. At the right boundary, a lower pressure is
imposed, p = Pyt = 0, causing a horizontal flow to the right. Therefore, the left and

right boundaries are called in- and outflow boundaries. This is sketched in Figure 3.3.

Initial saturation
c VC ‘n = O .
in v _ 0.8 AN
s _ cn=0 : s
S 2 VP ‘n = 0 Q\‘\
.
~,
g D ™~
in out < 0.75 N
- e AN
N\,
s\‘
L ———» \ ’ \ ’ \ N,
/ \ / . / . 0.7 N
7 T S T S,
\\
N\,
0.2 0.4 0.6 0.8

Figure 3.3: A sketch of the Darcy-scale boundary conditions and of the initial phase field

at various locations (left), and the corresponding initial saturation (right).
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We use the following non-dimensional parameters
AN=002 m=1 =09, f=Ca=Bu=Ro=De,=A,=A,=1,

and the given constant C = % To illustrate the effect of the solute-dependent surface

tension, we let y(c) = —(100c + 1), and consider the following situations.

Test case 1. First we let ¢ = ¢;;, = 0. Then, the concentration remains 0 during the

whole simulation.

Test case 2. With ¢ = ¢;;, = 1, the concentration is increasing in time for every x, but

remains decreasing in the x,-direction for any ¢.

For the numerical simulation we use At = 0.04, thus we carry out 25 time steps. For
the spatial discretization we construct a uniform Darcy-scale (coarse) mesh with mesh
diameter H = 0.1767. At the pore scale we consider a uniform (fine) mesh with mesh
diameter h = 0.0283.

In both test cases, the Darcy-scale solution components do not change with the vertical
variable z5. Therefore, these solutions are presented as a 1D projection/cut in the x;-
direction. Also, to illustrate the evolution in time of various Darcy-scale quantities, we
choose x,ef = (0.9167,0.2917) as a reference Darcy-scale point. The behaviour in other
points is similar. Also, to compare the results obtained in the two test cases, we present
the evolution in time of the difference in the variables, calculated at x,s. E.g. for the
saturation S we compute

5S(t7 chf) = S(t, Xref S(tv Xref

) | (TestCase2) ) | (TestCasel)’

for t € [0,1], and similarly for other Darcy-scale variables, or effective matrix components

and vector elements.
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Figure 3.4: The concentration c(¢,-) at five time steps for test case 1 (left-top) and test

case 2 (left-bottom). The evolution of ¢(-, X.f) for test case 2 (right).

The left plots in Figure 3.4 present the numerical approximation of the concentration
c for the two test cases. Observe that, as expected, ¢ remains 0 everywhere in the first
test case. The right plot in Figure 3.4 shows the evolution of the concentration at the

Darcy-scale reference point x,ef for the second test case.

Test case 1
e : r Test case 1
ﬁ 0.7 -0
0.8
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0.2 0.4
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Figure 3.5: The saturation S(t,-) at five time steps, for the test case 1 (left). The
evolution of S(-,Xyf) for the test case 1 (right-top) and of the difference 05(-, Xref)

between the two test cases (right-bottom).

The left plot in Figure 3.5 shows the numerical approximation of the saturation S for

the test case 1. The saturation increases with time, but remains decreasing in the x;-



3.5. NUMERICAL RESULTS 119

direction. The evolution in time of S(+, X;¢f) is presented in the upper right plot. The lower
right plot shows the difference in the saturations between the two test cases. Note that
the saturation S is lower in the second test case as it increases less with time compared
to the first test case. This is indirectly caused by the difference in the surface tension,

leading to, as we will see below, a difference in the ¢-weighted Darcy-scale velocity v¥.

0.1 T T,GSt case 1, ; Test case 1
SHSs -% -£=0.20 [ [ [ o
\‘\\%g\ -3 -t=040(|  _ 0.085 o®®
011} S8 -Q =060, 19 PO ad
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SS®s L -0 =100 = - : :
.o S 3y 0.2 0.4 0.6 0.8 1
® 0.17F SN
N \\‘\\\\ 0 %107 Difference )
NRNA 74N R
0.09} ‘g\\ . R4
\\\\ ts) <>'<>
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Figure 3.6: The horizontal component of the (Darcy-scale) velocity v®(t,-), computed
at five time steps, for the test case 1 (left). The evolution of ¥¢(-, ) for the test case

1 (right-top) and of the difference 0v% (-, X,f) between the two test cases (right-bottom).

Due to the setup, the horizontal component of the Darcy-scale velocity v will remain
constant over the domain. However, the velocity v% can still vary, and, as follows from
(3.42c), this causes changes in the saturation. Moreover, this change becomes more nat-
ural when considering (3.45), in which the phase velocity depends on the (here, constant)
¥ and the variable ¥?. We note that the vertical component of ¥ is zero, hence only the
horizontal component is shown in Figure 3.6. As we see from the left plot in Figure 3.6,
the horizontal component has a negative derivative with respect to x; throughout the
domain, yielding an increasing saturation. However, from the difference shown in the
lower right plot of Figure 3.6, the horizontal component of v is higher in the test case
2 than in the test case 1. Hence, its derivative, though negative, is closer to 0, yielding a
smaller increase in the saturation. Note that the reference point x,ef is at the right part
of the domain, and that saturation and velocity changes in points further left are less than

in Xpef.
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Figure 3.7: The first component of K?(t,-), computed at five time steps, for test case

1 (left). The evolution of Kf’1(~,xref) for the test case 1 (right-top) and of the difference
6IC‘1¢’)1(-, Xyef) between the two test cases, at Xf (right-bottom).

(3.42d), which are influencing v¢

Figure 3.7 and Figure 3.8 are displaying the evolution of the effective parameters from
7.

The left plot in Figure 3.7 displays Kfl, while the
time evolution of Mf is shown in Figure 3.8. Comparing the sizes, and accounting for the
fact that the horizontal pressure drop is around —2, and «(c) is in the range [—101, —1],
it becomes clear that the horizontal pressure drop and the evolution of ICfl dominate
the changes in \7‘{’ in both test cases considered here. Observe that, similarly to v{, K7,

¢ o
increases with time in the right part of the domain, and stronger for the test case 2,
causing a decreased divergence of v?.

%107 Test case 1
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Figure 3.8: The evolution of the first element of M®(-, x,ef) for the two test cases.
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Figure 3.9: The evolution of the pore-scale phase field in the test case 1 (left) and the
difference of the phase field ¢ between the two test cases (right) corresponding to the

Darcy-scale location x,ef at time ¢t = 1.

The changes of K% is depending on how the pore-scale phase-field evolves, which
again depends on the surface tension. In Figure 3.9 we display the pore-scale phase
field obtained at the final time ¢ = 1, at the reference point X,er. The left plot in
Figure 3.9 shows the numerical approximation of the phase field ¢(1,X,cf,y) and the
pore-scale velocity v(1,X.cf,y) (with y € P), obtained in the first test case. Note that
the pore-scale flow field is oriented mainly towards right. This immediately implies that
the Darcy-scale velocity v has the same orientation. The difference in the phase fields
between the two test cases is displayed in the right plot. This difference is calculated for

t =1 and at Xyf, using

6p(1, Xrer, y) = O(1, Xref, y) | (TestCase2) P(1, Xref, ¥) | (TestCasel)”

As follows from the right plot, the phase-field profile in the second case corresponds to

fluid 2 being shifted slightly to the left compared to the test case 1.

3.6 Conclusion

We have derived a two-scale model for the two-phase flow in a porous medium. The model
takes into account the variations in the surface tension, caused by a surfactant soluble
in one fluid phase. The starting point is the pore-scale model proposed in [69]. This

is a Navier-Stokes-Cahn-Hilliard model for the flow, coupled with an advection-diffusion
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equation for solute concentration. In this way, the free boundaries separating the two fluid
phases at the pore scale are approximated by thin diffuse interface regions, which allows
formulating the problem in a fixed domain.

Using formal homogenization methods, we have derived a two-scale model consisting
of mass conservation laws for the two phases and for the solute concentration, and of
Darcy-type laws for the effective velocities. The latter include terms accounting for the
concentration-dependent surface tension. These Darcy-scale laws involve effective param-
eters, which are obtained by solving local cell problems. These cell problems depend on
the evolution of the phase field at the pore scale.

We have proposed a numerical algorithm building on the explicit Euler time discretiza-
tion and on the lowest order Raviart-Thomas approximation in space. The explicit scheme
requires solving seven pore-scale cell problems, defined for each Darcy-scale point. Note
that the choice of At is empirical due to the complex multi-scale nature of the two-scale
problem. These cell problems depend on Darcy-scale variables concentration, pressure
and saturation. At the same time, for solving the Darcy-scale equations, one requires ac-
curate calculations of the effective parameters, based on pore-scale quantities. These cell
problems are generally small and parallelizable, allowing for efficient numerical strategies.
In particular, for the phase-field cell problem, which is nonlinear and elliptic, we propose a
simple, linear iterative scheme having a robust convergence, regardless of the initial guess.

Two test cases are presented, where the surface tension either remains constant, or
where the changes in the concentration induce a varying surface tension. The fluids
have different viscosities, but the viscosity ratio is small. The profiles of the Darcy-scale
quantities display a similar behaviour in time and space in both test cases. Though
small, differences in the results can be observed. In particular, the surfactant leads to
decreased values of the saturation, as it affects the effective quantities, which depend on
the pore-scale phase-field distribution.

Open issues are related to mesh refinement strategies at both the pore scale and the
Darcy scale, as mentioned in [17]. Furthermore, adaptive strategies allowing to identify
Darcy-scale points where the effective parameters need to be recalculated, and those
where these values can be copied from points with a similar behaviour, could also improve

the efficiency of the algorithm. Finally, implicit or semi-implicit higher-order numerical
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schemes for the two-scale model derived here need to be developed, as well as the rigorous

analysis of the model and of the numerical approximation.






Chapter

Conclusions and outlook

This thesis addresses two-phase/unsaturated flow and surfactant transport in porous me-
dia. In particular, we focus on upscaling pore-scale models with evolving fluid-fluid inter-
faces and accounting for variations in the surface tension. To fulfill this purpose, we first
apply transversal averaging for a simple geometry. The main contribution is the deriva-
tions of non-standard Darcy-scale models, which includes local pore-scale effects instead
of traditionally postulated constitutive relationships (p. — S- and k, — S-relationship).
Whereas for a more general domain, we apply periodic homogenization and derive a two-
scale phase-field model involving effective parameters. These parameters are obtained by
solving the derived pore-scale cell problems. In this way, this thesis contributes to the
advancement of the research area of upscaling and modeling two-phase flow and transport
trough porous media.

In the second chapter of the thesis, we consider two-phase/unsaturated flow at the
pore scale, defined in a thin strip, and use a sharp-interface approach to model the
evolution of the free boundary. By assuming that the ratio between the width and the
length of the strip approaches 0, we use formal asymptotic expansion methods and average
in the transversal direction to derive one-dimensional Darcy-scale models. The resulting
averaged models involve Darcy-type laws for the flow, with a concentration-dependent
surface tension effect (Marangoni effect) and a capillary pressure-saturation dependency

involving the second-order derivative of the saturation.
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These formal results are validated by numerical experiments. When the ratio of the
width and the length of the pore approaches zero, we present numerical examples which
show that the upscaled models are a good approximation of the transversal average of
the solution to the pore-scale models. Comparing the Darcy-scale solutions with the
transversal averaged pore-scale solutions shows that the Darcy-scale solutions are good
approximations of the averaged transversal pore-scale solutions as the strip becomes longer
and thinner. We numerically compare the upscaled models valid in the same capillary
regime and show that the Marangoni effect influences the overall flow. Additionally, we
find that one can use the unsaturated Darcy-scale model instead of the two-phase flow
model when the viscosity ratio becomes large (or small).

Since the geometry largely influences the averaged/upscaled quantities and their be-
havior, in the third chapter of the thesis, we consider a more general domain, namely a
periodically perforated domain. We use a phase-field model for two-phase flow and surfac-
tant transport. We derive a two-scale phase-field model for the two-phase flow in a porous
medium using periodic homogenization theory. The resulting two-scale model includes
extended Darcy-type laws for the effective velocities, accounting for the concentration-
dependent surface tension. The effective parameters represent quantities like relative
permeability, which can be approximated by solving so-called local cell problems. These
cell problems depend on the evolution of the phase field at the pore scale.

We propose a numerical algorithm to solve the two-scale phase-field model. We present
numerical results highlighting the influence of the solute-dependent surface tension. We
present simulations where the surface tension is either constant or variable. The results
with varying surface tension show that, although small, there are visible differences that
can be observed for the Darcy-scale variables (e.g., saturation, velocity) when compared
to the constant surface tension case. In particular, the surfactant leads to a decreased
saturation, affecting the effective quantities, which depend on the pore-scale phase-field

distribution.
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Outlook

There are still many open issues and challenges for upscaling two-phase flow and transport
problems with evolving interfaces at the pore scale, which can be considered further. For
the thin-strip models in Chapter 2, we assume that the two fluids have a layered structure
and the free boundary is along the symmetry axis. An alternative to the layered structure
is that the interface is transversal to the pore, so that fluid-fluid contact points are
encountered at the pore walls. Then, one needs to consider contact angle conditions
(static, dynamic, hysteretic) and, possibly, slip models. In [108], upscaling of two-phase
flow with dynamic contact angle is addressed. However, both in [108] and here the
influence of roughness has been neglected. That is, there is no roughness to the pore
wall. Adding roughness of the pore wall is natural as in real porous materials the pore
walls do have such a structure. For example, upscaling of single-phase flow with wall
roughness is done in [96] and slip models are derived. However, adding roughness similar
as in [96] for the case of two-phase flow is not straightforward due to interactions with
contact line behavior.

When two fluids are moving through a porous medium, the phase pressure difference
(capillary pressure) at the fluid-fluid interface within the pores generally changes with
time. Additionally, the capillary pressure at the fluid-fluid interface depends on the surface
tension. At the Darcy scale, capillary pressure is usually assumed to depend on the phase
saturation and alters the overall flow distribution. As a consequence, capillary pressure
plays an important role when modeling two-phase flow and transport trough porous media.
Although considering a simple geometry, the upscaling procedure in Chapter 2 shows that
the capillary pressure is not only a function of the saturation but also of its Laplacian. In
this respect, the upscaled model derived from the phase-field model in Chapter 3 needs to
be further analyzed for flow regimes with non-zero capillary pressure, as this may reveal
further effects due to the evolving fluid-fluid interface.

In Chapters 2 and 3, we consider transport of a soluble surfactant and assume that the
Péclet number (the ratio of the time scales for the diffusion and the convective transport)
is of order 1. The upscaling procedure can be further investigated for different transport

regimes (e.g., high Péclet number), which perhaps leads to the involvement of a dispersion
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term (e.g., Taylor dispersion, see [95]) in the upscaled model. Taylor dispersion leads to
an increase of the effective diffusivity. Dispersion models are important when considering
solute transport and high velocities.

The derivation of the Darcy-scale models are based on formal upscaling methods start-
ing from the Navier-Stokes equations at the pore scale. Since the Darcy-scale solutions
are approximations of the local pore-scale solutions, one may analyze the errors involved
in the upscaling process by doing a rigorous analysis. However, the mathematical analysis
of the Navier—Stokes equations for two fluids separated by a free boundary is an open
research question which makes this rigorous analysis very difficult.

In Chapter 3, we propose a semi-explicit numerical scheme to solve the two-scale
phase-field model. By considering the fully coupled nature of the two-scale problem, it
would be better to consider implicit or semi-implicit schemes, combined with appropri-
ate linearization approaches to simulate using longer time steps and hence improve the
numerical robustness of the scheme. Moreover, to handle the multi-scale interactions
between the sub-problems, one may consider an adaptive two-scale iterative strategy as

in [15] which can improve the efficiency of the simulations.
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