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Abstract: We consider the �ow of two immiscible �uid phases in a porous medium. At the

scale of pores, the two �uid phases are separated by interfaces that are transported by the

�ow. Furthermore, the surface tension at such interfaces depends on the concentration of a

surfactant dissolved in one of the �uids. Here we discuss a two-scale model for two-phase

porous-media �ow, in which concentration-dependent surface tension e�ects are incorporated.

The model is obtained by employing formal homogenization methods and relies on the phase-

�eld approach, in which thin, di�use interface regions approximate the interfaces. We propose

a two-scale numerical scheme and present numerical results revealing the in�uence of various

quantities on the averaged behaviour of the system.

1 INTRODUCTION

Porous media are complex domains involving many alternating solid grains surrounded
by void spaces (the pores). These form hierarchically organized structures in which various
processes take place at di�erent scales. Prominent examples in this sense are the �uid
�ow through the pores of the medium, the transport of chemically reactive substances, or
mechanical deformation. In situations like the ones mentioned here, there are processes
taking place at the scale of pores (from now on called the micro scale), whereas the main
interest is in the averaged behavior of the system at a larger scale (the laboratory or even
the �eld scale, from now on called the macro scale).

Two-phase �ow in porous media are encountered in several real-life situations of practical
relevance. Prominent examples in this sense are geological CO2 sequestration or oil recovery.
Here we consider the �ow of two immiscible �uid phases in a porous medium. At the
micro scale, one encounters an interface separating the two �uids transported by the �ow.
Furthermore, we assume that the surface tension may change depending on the concentration
of a surfactant dissolved in one of the �uid phases. Since the location of the interface
is not known a-priori but depends on the (unknown) �uid velocities and the surfactant
concentration, the resulting mathematical model involves free boundaries at the micro scale.
Hence, the model equations are de�ned in time-dependent a-priori unknown micro-scale
domains.

Two signi�cant challenges can be identi�ed in this context: the free boundaries at the
micro scale and the complex structure of the micro-scale domain. To deal with the for-
mer, we consider a phase-�eld approach, in which the evolving interfaces are approximated
by narrow di�use-interface regions, which allows de�ning all model components on the en-
tire micro-scale domain. For the latter, we recall that in practical applications, the main
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interest is in the system's behavior at the macro scale, not necessarily in the complex, micro-
scale behavior. Therefore, we apply formal homogenization techniques to derive a two-scale
phase-�eld model, approximating the averaged, macro-scale behavior of the system. In the
resulting two-scale model, the e�ective (macro-scale) parameters required at the macro scale
are determined by solving micro-scale cell problems, which, in their turn, depend on the
macro-scale quantities.

Similar situations are considered in [10, 11], where macro-scale models are derived for
two-phase porous-media �ow, accounting for the evolving interfaces at the micro scale. Such
results are extended in [8], where dynamic and hysteretic contact angles are incorporated in
the micro-scale model before deriving macro-scale ones. Closest to the present contribution
is the case involving a concentration-dependent surface tension studied in [14]. However, all
these results are obtained for sharp-interface micro-scale models.

Phase-�eld models for two-phase porous-media �ow, including the derivation of macro-
scale models are discussed in [1, 4, 6, 7, 9, 12]. More precisely, in [1, 7] phase-�eld pore-scale
models are discussed, and the convergence to the corresponding sharp-interface model is
proved when passing the di�use-interface parameter to zero. A macro-scale model is derived
in [9] under certain scaling assumptions, but without accounting for variable surface-tension
e�ects. A macro-scale phase-�eld model for compressible �uids is derived in [12]. Here we
consider a two-scale phase-�eld model derived by formal homogenization techniques [13].
The model includes variable surface-tension e�ects, depending on the concentration of a
surfactant dissolved in one of the �uid phases. We propose an explicit numerical scheme,
accounting for the coupling between the two scales.

The paper is organized as follows. In Section 2, the two-scale model is presented, and
the interaction between the scales is highlighted. Then, in Section 3, an explicit numerical
scheme is proposed for the numerical solution of the two-scale model. Finally, in Section 4,
a numerical example is presented, for which the necessity of using adaptive meshes at the
micro scale is discussed, and the in�uence of the macro-scale quantities on the micro-scale
results is studied.

2 THE TWO-SCALE MODEL

At the macro scale, the porous medium is a bounded domain Ω ⊂ R2, having Lipschitz-
continuous boundary ∂Ω. Let T ∈ (0,∞) be the �nal time. To each macro-scale point
x ∈ Ω, one micro-scale cell Y = [0, 1]2 is associated. The micro-scale cell is divided into
two sub-domains: the inner grain G surrounded by the pore space P . We denote by ∂G the
boundary of G and by n the unit normal to ∂G pointing into G. One has Y = G∪ P ∪ ∂G,
and we assume that the pore space P is �lled by two �uids, �Fluid 1� and �Fluid 2�. A sketch
of the two-scale domain is shown in Figure 1.

Following the phase-�eld approach, the (micro-scale) sharp interface separating the two
�uids is replaced by a narrow, di�use interface. Consequently, the two �uids are identi�ed
at the micro scale through the phase �eld φ, ranging from 1 (corresponding to Fluid 1) to
−1 (for Fluid 2). At the micro scale, this allows de�ning the velocity, pressure, and solute
concentration for the mixture over the entire pore space P , without separating between the
�uid phases. The corresponding macro-scale quantities are v̄, v̄φ, p and c. Also, S stands
for the macro-scale saturation of Fluid 1. We consider the following macro-scale model for
x ∈ Ω and t ∈ (0, T ]

(Pp)

{
v̄ = −K∇p−Mγ(c),

∇ · v̄ = 0,
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Figure 1: The porous medium: the macro-scale domain Ω (left) and the micro-scale
domain Y (right) corresponding to a point x ∈ Ω.

(PS)

v̄φ = −Kφ ∇p−Mφ γ(c),

Φ ∂tS +
1

2
∇ · v̄φ = 0,

(Pc) Φ ∂t(Sc) +
1

2
∇ · (c(v̄ + v̄φ)) =

1

Pec
∇ · (B∇c+ Hc).

Initial and boundary conditions complete the model. Here Pec is the non-dimensional Péclet
number and Φ denotes the medium porosity. The de�nition of the e�ective parameters Kφ,
K, Mφ, M, B, H depend on the micro-scale structure and on the evolution of the micro-
scale phase �eld φ, as explained below. Note that v̄ is the velocity of the mixture of the two
�uids, while v̄φ accounts for the phase distribution. Hence

1
2
(v̄+ v̄φ) re�ects the macro-scale

velocity of Fluid 1.
At each micro-scale cell Y , the phase �eld φ and the potential ψ are computed by solving

the following micro-scale cell problem

(Pφ)



∇ · (vφ) = Aφλ∆ψ, in P,

ψ =
Aψγ(c)

λ

(
CP ′(φ) + I ′(φ)− Cλ2∆φ

)
, in P,

∇φ · n = 0, on ∂G,

∇ψ · n = 0, on ∂G,

φ, ψ are Y -periodic,

1

Φ

∫
P

φ dy = (2S − 1) .

Observe that t enters in (Pφ) as a parameter, through the macro-scale saturation S and
concentration c. Here Aφ,Aψ are non-dimensional quantities and γ(c) is the concentration-
dependent surface tension, which introduces a coupling with the macro scale. The micro-
scale velocity v is de�ned below and its average is by construction v̄. Moreover, we choose
P (φ) = 1

4
(1− φ2)2 as the double-well type potential and I(φ) = 1

2
(1 + φ) as a characteristic

function which is 1 in Fluid 1 and 0 in Fluid 2. The parameter λ is the di�use interface
thickness and C = 3

2
√
2
is a calibration constant.

The components of the e�ective matrices K and Kφ, appearing in the Darcy-type laws in
(Pp) and in the evolution equation for the saturation (PS), are found through

K
s,r =

∫
P

(w
r
)
s
dy and (Kφ)

s,r =

∫
P

(w
r
)
s
φ dy, for r, s = 1, 2. (1)
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Here (w
r
)
s
are the components of w

r
= ((w

r
)1, (wr

)2)
t, where (w

r
,Π

r
) solve the following

Stokes-type cell problems

(Pr

K)



Eu (e
r

+∇Π
r
) = − 1

Re
∇ · (2µ(φ)ε(w

r
)) , in P,

∇ ·w
r

= 0, in P,

w
r

= 0, on ∂G,

Π
r
,w

r
are Y -periodic and

∫
P

Π
r
dy = 0.

Here ε(w
r
) = 1

2

(
(∇w

r
) + (∇w

r
)T
)
is the symmetric stress tensor and e

r
is the unit basis

vector. The Euler and Reynolds numbers are denoted by Eu and Re, respectively. Moreover,

µ(φ) = µ2·(1+φ)
2

+ µ1·(1−φ)
2

is the viscosity of the mixture of the two �uids and µi with i = 1, 2
correspond to the viscosity of Fluid i. As before, t enters in (Pr

K) as a parameter through φ.
Additionally, the components of the e�ective vectors M and Mφ, appearing in the Darcy-

type law (Pp) and in the evolution equation for the saturation (PS), are found through

M
s

=

∫
P

(w0)s dy and (Mφ)
s

=

∫
P

(w0)sφ dy, for r, s = 1, 2. (2)

As before, (w0)s are the components of w0 = ((w0)1, (w0)2)
t, where (w0,Π0) solve the

following modi�ed Stokes-type cell problem

(PM)



Eu∇Π0 = − 1

Re
∇ · (2µ(φ)ε(w0)) +

C
Re Ca

(
1

λ
P ′(φ)− λ∆φ

)
∇φ, in P,

∇ ·w0 = 0, in P,

w0 = 0, on ∂G,

Π0,w0 are Y -periodic and

∫
P

Π0 dy = 0,

with Ca being the capillary number. Observe that (PM) is introduced to deal with the
concentration-dependent surface tension.

The micro-scale cell velocities w
r
and w0 are also involved in the calculation of the micro-

scale velocity v, i.e.

v = −
2∑

r=1

w
r
∂xrp−w0γ(c). (3)

Notice that the macro-scale velocities v̄ and v̄φ in (Pp) are related with the micro scale
trough v and φ as follows

v̄ =

∫
P

v dy and v̄φ =

∫
P

vφ dy.

The components of the e�ective matrix B and the e�ective vector H, appearing in the
macro-scale equation for the solute concentration (Pc), are

B
s,r =

∫
P

I(φ) (δ
s,r + ∂ysχr

) dy, H
s

=

∫
P

I(φ)∂ysχ0 dy, for r, s = 1, 2. (4)
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Here, χ
r
and χ0 solve the following micro-scale cell problems

(Pr

B)


∇ · [I(φ) (∇χ

r
+ e

r
)] = 0, in P,

I(φ) (∇χ
r

+ e
r
) · n = 0, on ∂G,

χ
r
is Y -periodic and

∫
P

χ
r
dy = 0.

(PH)


∇ · [I(φ)∇χ0] = ∇ · (I(φ)v) , in P,

I(φ)∇χ0 · n = 0, on ∂G,

χ0 is Y -periodic and

∫
P

χ0 dy = 0.

3 THE NUMERICAL SCHEME

We propose an explicit numerical scheme for solving the two-scale model for the two-
phase �ow porous-media problem presented in Section 2. With N ∈ N, we let ∆t = T/N
be the time step size and de�ne tn = n∆t. The time-discrete solutions are denoted by
φn := φ(·, ·, tn) and νn := ν(·, tn) where ν ∈ {Kφ,K,Mφ,M,B,H, p, v̄, v̄φ, S, c}. For n ≥ 0,
assume Sn, cn and φn given. The time stepping reads:

• For each x ∈ Ω, compute the solution of the time-discrete micro-scale cell problems
corresponding to (Pr

K) and (PM).

• Compute the �rst set of time-discrete e�ective parameters Knφ, Kn, Mn
φ and Mn.

• Compute the macro-scale solution pn and v̄n by solving the time-discrete macro-scale
problems corresponding to (Pp).

• Compute the macro-scale solution v̄nφ and S
n+1 by solving the time-discrete macro-scale

problems corresponding to (PS).

• For each x ∈ Ω, compute the micro-scale velocity vn and the solution of the time-
discrete micro-scale cell problems corresponding to (Pr

B) and (PH).

• Compute the second set of time-discrete e�ective parameters Bn and Hn.

• Compute the macro-scale solution cn+1 by solving the time discrete problem corre-
sponding to (Pc).

• For each x ∈ Ω, compute the solution of the time-discrete phase-�eld problem corre-
sponding to (Pφ) to obtain φn+1.

The explicit scheme is sketched in Figure 2. We highlight that the two-scale problem
itself is fully coupled, and an iterative structure could be considered here. We refer to [2, 5]
for similar approaches using iterations to handle the multi-scale interaction between the
sub-problems.

Clearly, for the numerical simulations the explicit time stepping needs to be completed
by the spatial discretization. More precisely, let TH be a triangular partition of the macro-
scale domain Ω with elements T of diameter HT and H := max

T∈TH
HT . For computing the
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Micro scale

Macro scale

Micro scale

Micro scale

Macro scale

Solve (Pr

K) and (PM)
Compute

Knφ, Kn, Mn
φ and Mn

Initial conditions

c0, φ0 and S0

Solve (Pp) and (PS) → (pn, v̄n) and (v̄nφ, S
n+1)

Solve (Pr

B) and (PH) Compute Bn and Hn

Solve (Pc) → (cn+1)

Solve (Pφ) → (φn+1)

N
ex
t
ti
m
e
st
ep

Figure 2: The explicit two-scale scheme.

micro-scale quantities, a micro-scale domain Y is assigned to each macro-scale element T .
On each micro-scale domain Y we de�ne another triangular partition Th with elements Tµ of
diameter hTµ and h := max

Tµ∈Th
hTµ . Finally, we use the mixed �nite element method to calculate

the numerical solution at both scales. For an e�ective computation we use adaptive mesh
re�nement on the micro scale (see [2, 3]).

4 NUMERICAL RESULTS

In this section, we present a micro-scale numerical experiment that highlights the relation
between the macro-scale quantities and the micro-scale solutions. We restrict our imple-
mentations to the 2D case and all parameters remain non-dimensional. Here the micro-scale
domain contains a centered square grain with side lengths 0.2 and we choose

Pec = Eu = Re = Ca = Aφ = Aψ = 1 and λ = 0.08.

4.1 THE PHASE-FIELD AND THE MICRO-SCALE MESH

Figure 3 shows the initial phase �eld φ, corresponding to a saturation S0 = 0.639, and
the Laplacian of the initial phase �eld ∆φ, which is needed for computing the potential ψ in
(Pφ). The Laplacian is calculated numerically, and this calculation requires the construction
of a very �ne mesh around the transition zone to achieve su�cient accuracy. Close to the
di�use interface, the resolution of the micro-scale mesh Th is taken h � λ to capture the
di�use transition zone and the variation in its derivatives. Following the ideas in [2], we re�ne
the micro-scale mesh only close to the di�use transition zone, making the computation of
the phase �eld and the e�ective parameters accurate and e�cient.
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Figure 3: Phase-�eld initial condition (left) and the numerical calculation of the Laplacian
of the phase �eld (right).

In Figure 3 we use an initially uniform mesh with 800 elements. Then, the mesh is
re�ned around the transition zone such that the length of the smallest edge in the mesh is
min
Tµ∈Th

hTµ = 1.25E-2 < λ and the length of the largest edge (located far from the transition

zone) is max
Tµ∈Th

hTµ = 7.071E-2.

4.2 FIRST SET OF MICRO-SCALE PROBLEMS

Given the phase-�eld initial condition in Figure 3, we solve the micro-scale problems (Pr

K)
and (PM) over the re�ned mesh. Figure 4 shows the scalar solutions Π1, Π2 and Π0 of the
problems (Pr

K) and (PM) in the simple case when the two �uids have the same viscosity, i.e.
µ1 = 1 and µ2 = 1.

Figure 4: The solution of the �rst set of micro-scale problems (Pr

K) (left and middle) and
(PM) (right).

Notice that for Π0, the location of the changes in the solution coincides with the phase-
�eld transition zone. This supports the requirement of a mesh re�nement strategy to improve
the accuracy and e�ciency of further computations.

4.3 THE EFFECTIVE PARAMETERS

We show below the behavior of the e�ective parameters Kφ, K, Mφ and M, depending on
the saturation. Figure 5 displays the results for the e�ective tensors Kφ and K. We consider
two cases: a simple case where the two �uids have same viscosity, i.e. µ1 = µ2 = 1, and a
more complex case where the viscosities are µ1 = 0.1 and µ2 = 1.

The symmetry of the phase �eld at the micro scale implies that the e�ective tensors are
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isotropic. The non-diagonal components of Kφ and K can be neglected, and in Figure 5 we
only show the �rst component of the e�ective tensors.

Figure 5: Dependence of the e�ective parameters Kφ and K on the macro-scale saturation.

Notice that when µ1 = µ2 = 1, the changes on the saturation do not a�ect the permeability
K. This is expected since the two �uids �ow like one. In contrast, Figure 5 re�ects that the
changes in the saturation have an important e�ect if the two �uids have di�erent viscosities.

Commonly used two-phase porous-media �ow models are relying on saturation-dependent
quantities like relative permeability and capillary pressure. The situation here is similar,
but capillary pressure is absent due to the assumed scaling of the capillary number [13].
Moreover, here K is not separated into absolute and relative permeability, and it re�ects
how the velocity of the mixture of the two �uids relate to the pressure gradient.

Figure 6: Dependence of the e�ective parameters Mφ and M on the macro-scale saturation.

In Figure 6 we denote by (Mφ)1 and M1 the �rst component of the e�ective vectors Mφ

and M. Notice that for these macro-scale vectors, both components are equal due to the
symmetry of the phase �eld. Moreover, Figure 6 shows that the variations in the e�ective
parameters Mφ and M are more relevant in the case of a large viscosity ratio.

5 SUMMARY AND OUTLOOK

We have considered a two-scale model for two-phase �ow in a porous medium. The model
describes the behavior of the mixture of two �uids and a surfactant dissolved into one of
them. Here, the surface tension depends on the concentration of the solute. This model
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is the homogenized counterpart of a pore-scale phase-�eld model. For these phase-�eld
formulations, a di�use region approximates the moving interfaces separating the two �uids.

Based on the Euler explicit time stepping and the lowest order mixed �nite element spatial
discretization, we have proposed a two-scale numerical scheme. The scheme requires solving
several micro-scale cell problems for each macro-scale point, depending on the macro-scale
concentration and saturation. The solution of these micro-scale cell problems is used to
determine the macro-scale parameters needed to compute the macro-scale model unknowns
(velocity, pressure, saturation and concentration). For each micro-scale cell problem, the
spatial mesh is re�ned or coarsened adaptively, improving the e�ciency of the scheme.

We have presented numerical simulation results in two di�erent situations, when the �uids
have the same viscosities or when the viscosity ratio is large. Based on these results, we show
the dependence of the macro-scale parameters depending on the saturation.

In the following research steps, we will analyze the possibility to compute the macro-scale
parameters adaptively based on an active-passive node strategy. Furthermore, implicit or
semi-implicit schemes will be considered, coupled with appropriate linearization approaches.
Also, di�erent regimes will be analyzed, possibly leading to models involving a capillary
pressure.

ACKNOWLEDGEMENTS

This research is supported by the Research Foundation - Flanders (FWO) through the
Odysseus programme (Project G0G1316N) and by the German Research Foundation (DFG)
through the SFB 1313, Project Number 327154368.

REFERENCES

[1] H. Abels, H. Garcke, and G. Grün. Thermodynamically consistent, frame indi�er-
ent di�use interface models for incompressible two-phase �ows with di�erent densities.
Mathematical Models and Methods in Applied Sciences, 22(03):1150013, 40, 2012.

[2] M. Bastidas, C. Bringedal, and I. S. Pop. A two-scale iterative scheme for a phase-
�eld model for precipitation and dissolution in porous media. Applied Mathematics and

Computation, 396:125933, 2021.

[3] M. Bastidas, C. Bringedal, I. S. Pop, and F. A. Radu. Numerical homogenization of
non-linear parabolic problems on adaptive meshes. Journal of Computational Physics,
425:109903, 2020.

[4] �. Ba¬as and H. S. Mahato. Homogenization of evolutionary Stokes-Cahn-Hilliard
equations for two-phase porous media �ow. Asymptotic Analysis, 105(1-2):77�95, 2017.

[5] M. K. Brun, T. Wick, I. Berre, J. M. Nordbotten, and F. A. Radu. An iterative
staggered scheme for phase �eld brittle fracture propagation with stabilizing parameters.
Computer Methods in Applied Mechanics and Engineering, 361:112752, 2020.

[6] O. R. A. Dunbar, K. F. Lam, and B. Stinner. Phase �eld modelling of surfactants in
multi-phase �ow. Interfaces and Free Boundaries, 21(4):495�547, 2019.

[7] H. Garcke, K. F. Lam, and B. Stinner. Di�use interface modelling of soluble surfactants
in two-phase �ow. Communications in Mathematical Sciences, 12(8):1475�1522, 2014.



10

[8] S. B. Lunowa, C. Bringedal, and I. S. Pop. On an averaged model for immiscible two-
phase �ow with surface tension and dynamic contact angle in a thin strip. Studies in

Applied Mathematics, 1:43, 2021.

[9] S. Metzger and P. Knabner. Homogenization of two-phase �ow in porous media from
pore to Darcy scale: a phase-�eld approach. Multiscale Modeling & Simulation. A SIAM

Interdisciplinary Journal, 19(1):320�343, 2021.

[10] A. Mikelic and L. Paoli. On the derivation of the Buckley-Leverett model from the two
�uid Navier-Stokes equations in a thin domain. Computational Geosciences, 4(1):99�
101, 2000.

[11] D. Picchi and I. Battiato. The impact of pore-scale �ow regimes on upscaling of im-
miscible two-phase �ow in porous media. Water resources research, 54(9):6683�6707,
2018.

[12] C. Rohde and L. von Wol�. Homogenization of Nonlocal Navier�Stokes�Korteweg Equa-
tions for Compressible Liquid-Vapor Flow in Porous Media. SIAM Journal on Mathe-

matical Analysis, 52(6):6155�6179, 2020.

[13] S. Sharmin, M. Bastidas, C. Bringedal, and I. S. Pop. Upscaling of a Navier-Stokes-
Cahn-Hiliard model for two-phase porous-media �ow with solute-dependent surface-
tension e�ects. In preparation.

[14] S. Sharmin, C. Bringedal, and I. S. Pop. On upscaling pore-scale models for two-phase
�ow with evolving interfaces. Advances in Water Resources, 142:103646, 2020.



UHasselt Computational Mathematics Preprint

Series

2021

UP-21-04 M. Bastidas Olivares, S. Sharmin, C. Bringedal, I.S. Pop, A nu-

merical scheme for two-scale phase-field models in porous

media, 2021

UP-21-03 M.J. Gander, S.B. Lunowa, C. Rohde, Non-overlapping Schwarz

waveform-relaxation for nonlinear advection-diffusion equa-

tions, 2021

UP-21-02 M.J. Gander, S.B. Lunowa, C. Rohde, Consistent and asymptotic-

preserving finite-volume domain decompositionmethods for

singularly perturbed elliptic equations, 2021

UP-21-01 J. Schütz, D. Seal, J. Zeifang, Parallel-in-time high-order mul-

tiderivative IMEX methods, 2021

2020

UP-20-07 M. Gahn, M. Neuss-Radu, I.S. Pop, Homogenization of a reaction-

diffusion-advection problem in an evolving micro-domain

and including nonlinear boundary conditions, 2020

UP-20-06 S.B. Lunowa, C. Bringedal, I.S. Pop, On an averaged model

for immiscible two-phase flow with surface tension and dy-

namic contact angle in a thin strip, 2020

UP-20-05 M. Bastidas Olivares, C. Bringedal, I.S. Pop, An adaptive multi-

scale iterative scheme for a phase-field model for precipi-

tation and dissolution in porous media, 2020

UP-20-04 C. Cancès, J. Droniou, C. Guichard, G. Manzini, M. Bastidas Oli-

vares, I.S. Pop, Error estimates for the gradient discretisa-

tion of degenerate parabolic equation of porous medium

type, 2020



UP-20-03 S.B. Lunowa, I.S. Pop, and B. Koren, Linearization and Domain

Decomposition Methods for Two-Phase Flow in Porous Me-

dia Involving Dynamic Capillarity and Hysteresis, 2020

UP-20-02 M. Bastidas, C. Bringedal, and I.S. Pop, Numerical simulation of

a phase-field model for reactive transport in porous media,

2020

UP-20-01 S. Sharmin, C. Bringedal, and I.S. Pop, Upscaled models for

two-phase flow in porous media with evolving interfaces at

the pore scale, 2020

2


