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Abstract. In this work, we consider a mathematical model for flow in a unsaturated porous
medium containing a fracture. In all subdomains (the fracture and the adjacent matrix blocks)
the flow is governed by Richards’ equation. The submodels are coupled by physical transmission
conditions expressing the continuity of the normal fluxes and of the pressures. We start by analyzing
the case of a fracture having a fixed width-length ratio, called ε > 0. Then we take the limit ε → 0
and give a rigorous proof for the convergence towards effective models. This is done in different
regimes, depending on how the ratio of porosities and permeabilities in the fracture, respectively
matrix scale with respect to ε, and leads to a variety of effective models. Numerical simulations
confirm the theoretical upscaling results.
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1. Introduction. Fractured porous media arise in a multitude of environmental
and technical applications, including fragmented rocks, hydraulic fracturing, carbon
dioxide sequestration, and geothermal systems. Fractures are thin formations, in
which the hydraulic properties such as porosity and permeability differ significantly
from those of the surrounding matrix blocks. Hence, fractures have a crucial impact
on fluid flow [1], and fractures or entire fracture networks must be incorporated in the
mathematical models for fluid flow. This is challenging from the numerical point of
view, firstly due to the high geometrical complexity of fracture networks and secondly
because grid cells with a high aspect ratio or a very fine grid resolution within the
fractures and in the adjacent matrix region are required.

In order to overcome the latter difficulty, it is appealing to embed fractures as
lower-dimensional manifolds into a higher-dimensional domain (e.g. as lines in a
two-dimensional domain) and thus to reduce the fracture width. Depending on the
context, fractures may block or conduct fluid flow, which can be expressed for example
by coupling the mathematical model for the matrix blocks with a differential equation
on the lower-dimensional fractures. Herein, we prove that such models result naturally
from models with positive fracture width in the limit case where the width passes to
zero. The presented model in this work provides a physically-consistent fundation for
discrete fracture modeling approaches (e.g. [20, 57]).

We consider a two-dimensional model for unsaturated fluid flow in a fractured
porous medium. For the ease of presentation, the geometry is given by two rectangular
matrix blocks, separated by a single fracture. Here we assume that, next to the
matrix blocks, the fracture is a porous medium too, as encountered e.g. in the case of
sediment-filled fractures [32], or layered porous media [45]. We assume that the pore
space of the porous medium is filled with a liquid (say, water) and air. Provided that
the domain is interconnected and connected to the surface, the assumption that the
air is infinitely mobile is justified, and the air pressure can be set to zero in the full
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two-phase model. In this way, the governing model in the matrix blocks and in the
fracture is the Richards equation [51],

(1) ∂t(φS(ψ))−∇ · (KaK(S(ψ))∇ψ) = f.

Here, ψ denotes the pressure head, φ the porosity of the medium, S the water satura-
tion, Ka and K stand for the absolute, respective relative hydraulic conductivity, and
f is a source or sink term. For simplicity, the gravity is neglected, and the absolute
permeability is a scalar, but all the results in this paper can be extended to include
gravity, or anisotropic media.

In (1), φ and Ka are medium-dependent parameters. Similarly, the water satu-
ration S is a given, increasing function of ψ, whereas the relative conductivity K is
a given function of S. As for φ and Ka, these relationships depend on the type of
the material in the porous medium. Therefore, all these material properties may be
different in the fracture and in the matrix blocks, see e.g. [30]. Well-known are the
van Genuchten–Mualem [26] and Brooks–Corey [13] relationships.

The Richards equation is a non-linear parabolic partial differential equation and
may degenerate wherever the flow is saturated S′(ψ) = 0 (the fast diffusion case) or
K(S(ψ))→ 0 (the slow diffusion case). However, the rigorous mathematical results in
this work only cover non-degenerate cases, when the medium is strictly unsaturated.
On the other hand, the effective models derived here remain formally valid also in the
degenerate cases.

In view of its practical relevance, the Richards equation has been investigated
thoroughly in the mathematical literature. Without being exhaustive, we mention
[4, 5, 17] for results concerning the existence of weak solutions including degenerate
cases. Uniqueness results are obtained in e.g. [47, 48]. The numerical methods are
developed in agreement with the analytical results. One remarkable feature is that
when compared to the case of the heat equation, the solutions to the Richards equation
lack regularity. For this reason, as well as for ensuring stability, the implicit Euler
scheme is commonly used for the time discretisation. The outcome is a sequence of
time discrete nonlinear elliptic equations, which are generally solved by means of linear
iterative schemes like Newton, fixed-point or Picard. Such methods are discussed and
compared e.g. in [40]. For the spatial discretisation, we mention [22, 23, 37] where
finite volume approaches are presented, [7, 50, 60] for mixed finite element methods,
and [21, 46] for finite element schemes.

In all papers mentioned above, the parameters and nonlinearities are either fixed
over the entire domain, or vary smoothly. In other words, the problems can be
considered over the entire domain, without paying particular attention to the fact
that there are different media involved. In the present work, the medium consists of
different homogeneous blocks, connected through transmission conditions that will be
given below. In this context, domain decomposition methods represent an efficient way
to reduce both the problem complexity, and to deal with the occurrence of different
homogeneous blocks. We refer to [10] for a domain decomposition scheme applied to
unsaturated flows in layered solis, and to [54] for a scheme combining linearization
and domain decomposition techniques in each iteration.

The present work is considering a particular situation, where the medium consists
of two homogeneous blocks, separated by a thin, homogeneous structure, the fracture.
We consider a two-dimensional situation, and let ε > 0 be a dimensionless number
giving the ratio between the fracture width and length. Since the fracture is assumed
thin, ε can be seen as a small parameter. If fractures are viewed as two-dimensional
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objects, their discretization becomes complex as the mesh should either contain ani-
sotropic elements respecting the fracture shape, or should be extremely fine. To avoid
such issues, one possibility is to approximate fractures as lower dimensional elements
in the entire domain. This implies finding appropriate, reduced dimensional models
for the fracture, and how these are connected to the models in the matrix blocks. In
this sense, we mention [6, 42], where the reduced dimensional models for two-phase
flow, respective reactive transport in fractured media are derived by formal argu-
ments based on a transversal averaging of the model inside fractures. Similar results,
but using anisotropic asymptotic expansion methods in terms of ε are obtained in
[18, 43, 44, 49], where the convergence of the averaging process is proved rigorously
when ε ↘ 0. We also refer to [2, 12, 24, 25], where reduced dimensional models
for flow in fractured media are presented with emphasis on developing appropriate
numerical schemes.

The models considered here are assuming that the pressure is continuous at the
interfaces separating the matrix blocks and the fracture. In other words, entry pres-
sure models leading to the extended pressure condition derived in [16] are disregar-
ded. For such models we also mention that homogenization results are obtained in
[19, 31, 53, 56]. In particular, oil trapping effects are well explained by such models.

Although the pressure is assumed continuous at the interfaces separating the
homogeneous blocks, this does not rule out the situation where the averaged pressure
across a fracture may still become discontinuous in the reduced dimensional models.
Such models are discussed e.g. in [2]. The present analysis does not cover such cases,
but we refer to [39] for the formal derivation of such models in the specific context
discussed here.

Still referring to fractured media, but with a different motivation, are the works
in [59] for a phase field model describing the propagation of fluid filled fractures and
[28] for iterative approaches to static fractures.

The main goal in this work is to give a mathematically rigorous derivation of
the reduced dimensional models in fractured media. Based on anisotropic asymptotic
expansion, we give rigorous proofs for the convergence of averaging procedure when
passing ε, the ratio between the fracture width and length, to zero. Depending on how
the ratio of the porosities and of the absolute permeabilities in the different types of
materials scale w.r.t. ε, five different reduced dimensional models are obtained. More
precisely, if the fracture is more permeable than the adjacent blocks, it becomes a
preferential flow path. On the contrary, if the fracture is less permeable than the
blocks, the fluid will have a preference to flow in the blocks. In consequence, the
reduced dimensional fracture equation for the fracture can be an interface condition
or a differential equation. Such results are obtained by means of a formal derivation
in [3, 42]. Our approach is in spirit of [58, 43, 44], where the single phase flow
through a highly permeable fracture is considered. This corresponds to a particular
choice of the scalings in the porosity, respectively absolute permeability ratio. The
key mathematical challenge in this work is to obtain estimates specifying the explicit
dependence on ε. The starting mathematical equations have coefficients that depend
on ε and the major part of the work is in identifying the dependence of the estimates
on ε.

The outline of this work is as follows. In Section 2, the coupled model is for-
mulated, and a non-dimensionalisation procedure is carried out in order to derive a
dimensionless model, which is then used for the upscaling. Two scaling parameters,
κ and λ, are introduced. These account for the scaling of the porosities and absolute
hydraulic conductivities with respect to ε. In Section 3, we briefly state the main
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results of this work. Section 4 is concerned with the existence of solutions to the
model for a constant but positive fracture width, i.e. ε > 0. This is done by applying
Rothe’s method (see e.g. [36]). Based on compactness arguments we prove the exis-
tence of solutions to the coupled model. Further, to reduce the dimensionality of the
fracture, we investigate the limit of vanishing fracture width, that is ε→ 0 in Section
5. Section 6 presents numerical simulations that confirm our theoretical upscaling
results.

2. Model. First, we formulate the model in dimensional form. Thereafter, we
introduce reference quantities and make assumptions on their scaling with respect to
one another. This is where the scaling parameters κ and λ come into play. By relating
the dimensional quantities to the reference quantities, the non-dimensional model is
derived, which will be considered in the subsequent sections.

2.1. Dimensional model. We resort to a simple two-dimensional geometry
consisting of two square solid matrix blocks with edge length L separated by a fracture
of width l. The geometry is illustrated in Figure 1 (left).
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Fig. 1. Dimensional (left) and dimensionless (right) geometry of the fracture and the surroun-
ding matrix blocks

The subscripts m and f indicate the matrix blocks and the fracture, respectively.
They are defined as
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We use superscript hats for denoting quantities associated with the dimensional model
in order to distinguish them from the dimensionless quantities which will be introduced
subsequently.
The model defined on the dimensional geometry is given by
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Problem PD:

∂t̂(φmŜm(ψ̂mj )) + ∇̂ · v̂mj = f̂mj in Ω̂T̂mj ,

v̂mj = −K̂a,mK̂m(Ŝm(ψ̂mj ))∇̂ψ̂mj in Ω̂T̂mj ,

∂t̂(φf Ŝf (ψ̂f )) + ∇̂ · v̂f = f̂f in Ω̂T̂f ,

v̂f = −K̂a,f K̂f (Ŝf (ψ̂f ))∇̂ψ̂f in Ω̂T̂f ,

v̂mj · ~n = v̂f · ~n on Γ̂T̂j ,

ψ̂mj = ψ̂f on Γ̂T̂j ,

ψ̂ρ(0) = ψ̂ρ,I in Ω̂ρ,

for ρ ∈ {m1,m2, f}, j ∈ {1, 2}, where Ω̂m := Ω̂m1 ∪ Ω̂m2 , and where we set ΩT̂ :=
Ω × (0, T̂ ] for all spatial domains Ω and a given final time T̂ > 0. Furthermore, ~n is

a normal vector pointing from Ω̂mj into Ω̂f . Ŝρ, v̂ρ, ψ̂ρ, K̂a,ρ, K̂ρ are the saturation,
flux, pressure height, absolute and relative hydraulic conductivities in the subdomain
Ωρ, respectively. ψ̂ρ,I is a given initial condition and f̂ρ is a source/sink term.
In words, the Richards equation is modeling the flow in the fracture and in the matrix
blocks, supplemented with the continuity of the normal flux and of the pressure as
transmission conditions, and initial conditions.

2.2. Non-dimensionalisation. We define ε := l
L , that is, the ratio of the frac-

ture width to its length. We take L as the reference length scale. The dimensionless
geometry is as shown in Figure 1 (right):
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Since the pressure is continuous at the interfaces, we define a single reference pressure
head for the entire domain, ψ̄ = L. We further assume that the matrix blocks have
the same properties. Consequently, only two absolute hydraulic conductivities are
encountered, K̄m and K̄f , respectively. As reference time scale we set

(4) T̄ :=
φmL

2

K̂mψ̄
=
φmL

K̂m

.

The dimensionless pressure heads are then given as ψmj = ψ̂mj/L and ψf = ψ̂f/L,

the dimensionless time as t = t̂/T̄ , and the final time as T = T̂ /T̄ . As regards the

source terms, we set fmj = f̂mj T̄ /φm and ff = f̂f T̄ /φm.

The functions Ŝρ and K̂ρ (where ρ ∈ {m1,m2, f}) are dimensionless. Expressed
in terms of dimensionless arguments, they become Sρ and Kρ.
Using the Darcy law in the mass balance equation in Problem PD and using (4) one
gets the dimensionless equations for the matrix blocks (j ∈ {1, 2})

(5) ∂tSm(ψmj )−∇ ·
(
Km(Sm(ψmj ))∇ψmj

)
= fmj in ΩTmj .
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As announced in the introduction, the results depend on the types of materials
in the blocks and in the fractures. More exactly, important is how the ratio of the
porosities and of the absolute hydraulic conductivities in the fracture and the matrix
blocks are scaling w.r.t. ε,

(6)
φf
φm

∝ εκ, and
K̂a,f

K̂a,m

∝ ελ.

Here κ, λ ∈ R are scaling parameters. For the ease of notation, we take the constants
of proportionality to be one for the analysis. Using this and applying the same ideas
as above, the model in the fracture becomes

(7) ∂t(ε
κSf (ψf ))−∇ ·

(
ελKf (Sf (ψf ))∇ψf

)
= ff in ΩTf .

The transmission condition for the normal flux transforms into

(8) Km(Sm(ψmj ))∇ψmj · ~n = ελKf (Sf (ψf ))∇ψf · ~n on ΓTj .

In what follows, the dimensionless fracture width ε > 0 is a model parameter. Given
ε > 0, the dimensionless model becomes

Problem Pε :



∂tSm(ψεmj ) +∇ · vεmj = fmj in ΩTmj ,

vεmj = −Km(Sm(ψεmj ))∇ψ
ε
mj in ΩTmj ,

∂t(ε
κSf (ψεf )) +∇ · vεf = fεf in ΩTf ,

vεf = −ελKf (Sf (ψεf ))∇ψεf in ΩTf ,

vεmj · ~n = vεf · ~n on ΓTj ,

ψεmj = ψεf on ΓTj ,

ψερ(0) = ψρ,I in Ωρ.

Remark 1 (Scaling parameters). The scaling parameters κ, λ ∈ R will be crucial
in determining the effective models in the limit ε → 0. κ is related to the storage
capacity of the fracture: for κ < 0, the reference porosity of the fracture increases for
decreasing ε as compared to the reference porosity of the matrix blocks. For κ ≤ −1,
the fracture maintains its ability to store water as ε approaches zero. For κ = 0, no
scaling occurs, and for κ > 0, the storage ability of the fracture decreases for ε → 0
due to the decline of both the fracture volume (assuming fixed L) and of the fracture
porosity.

The parameter λ instead gives the scaling of the conductivities. Here we consider
the case λ < 1. λ < 0 corresponds to the case of a highly conductive fracture when
compared to the matrix, which means that the flow through the fracture is more
rapid. Whenever λ > 0 the fractures are less permeable than the blocks. The case
λ = 0 means comparable conductivities. The case λ ≥ 1 corresponds to impermeable
fractures, leading in the limit ε → 0 to models where the pressures at the matrix
block at each side of the fractures are discontinuous (see [39]). To analyze such cases
rigorously, one can employ techniques that are similar to ones used in [34], which are
different from those used here. Accordingly, we only restrict to the case when λ < 1.

3. Main result. Our main result is the rigorous derivation of effective models
replacing the fracture by an interface. Table 1 provides a brief summary of the effective
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models for the entire range (κ, λ) ∈ [−1,∞) × (−∞, 1) except for the case when
κ = −1, λ ∈ (−1, 1). Due to the non-linearity of the time derivative term involved,
the identification of the limit requires stronger estimates than we have. Therefore,
this case is left unresolved.

Fracture equation Parameter range for (κ, λ)

Effective model I Richards’ equation {−1} × {−1}
Effective model II Elliptic equation (−1,∞)× {−1}
Effective model III ODE for spatially constant pressure {−1} × (−∞,−1)
Effective model IV Spatially constant pressure (−1,∞)× (−∞,−1)
Effective model V Pressure and flux continuity between matrix blocks (−1,∞)× (−1, 1)

Table 1
Summary of the effective models

We state the strong formulation of the effective models for (κ, λ) ∈ [−1,∞) ×
(−∞, 1) except κ = −1, λ ∈ (−1, 1).

3.1. Effective models: strong formulation. Effective model I consists of Ri-
chards’ equation in the matrix block subdomains and the one-dimensional Richards’
equation in the fracture. It occurs for κ = λ = −1.

Effective model I:

(9)



∂tSm(Ψmj )−∇ ·
(
Km(Sm(Ψmj ))∇ψmj

)
= fmj , in ΩTmj ,

∂tSf (Ψf )− ∂y (Kf (Sf (Ψf ))∂yΨf ) = [~qm]Γ , on ΓT ,

Ψmj = Ψf , on ΓT ,

Ψmj (0) = Ψmj ,I , on Ωmj ,

Ψf (0) = Ψf,I , on Γ,

where

(10) [~qm]Γ := (Km(Sm(Ψm1))∇Ψm1 · ~nm1 +Km(Sm(Ψm2))∇Ψm2 · ~nm2)
∣∣
Γ

is the flux difference between the two solid matrix subdomains acting as a source term
for Richards’ equation in the fracture (note that ~nm1

= −~nm2
).

If the porosity ratio does not change with vanishing fracture width and the permea-
bility ratio is taken to be reciprocally proportional to the fracture width, i.e. κ > −1
and λ = −1, one ends up with an effective model consisting of Richards’ equation in
the matrix blocks and a stationary elliptic equation in the fracture.

Effective model II:

(11)


∂tSm(Ψmj )−∇ ·

(
Km(Sm(Ψmj ))∇Ψmj

)
= fmj , in ΩTmj ,

−∂y (Kf (Sf (Ψf ))∂yΨf ) = [~qm]Γ , on ΓT ,

Ψmj = Ψf , on ΓT ,

Ψmj (0) = Ψmj ,I , on Ωmj .

For κ = −1 and λ < −1, the pressure in the fracture becomes spatially constant in the
effective model, and due to the pressure continuity, acts as the boundary condition
for the pressure in the matrices.
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Effective model III:

(12)



∂tSm(Ψmj )−∇ ·
(
Km(Sm(Ψmj ))∇Ψmj

)
= fmj , in ΩTmj ,

Ψf (t, y) = Ψf (t), on ΓT ,

∂tSf (Ψf )(t) =

∫ 1

0

[~qm]Γ dy, on ΓT ,

Ψmj = Ψf , on ΓT ,

Ψmj (0) = Ψmj ,I , on Ωmj ,

Ψf (0) = Ψf,I , on Γ.

For κ > −1 and λ < −1, the pressure in the fracture takes a constant value at each
time, in such a way that the total flux across the fracture is conserved:

Effective model IV:

(13)



∂tSm(Ψmj )−∇ ·
(
Km(Sm(Ψmj ))∇Ψmj

)
= fmj , in ΩTmj ,

Ψf (t, y) = Ψf (t), on ΓT ,∫ 1

0

[~qm]Γ dy = 0, on ΓT ,

Ψmj = Ψf , on ΓT ,

Ψmj (0) = Ψmj ,I , on Ωmj .

For κ > −1 and λ ∈ (−1, 1), an effective model results in which the fracture as
a physical entity has disappeared. In this case, both the pressure and the flux are
continuous on Γ.

Effective model V:

(14)


∂tSm(ψmj )−∇ ·

(
Km(Sm(ψmj ))∇ψmj

)
= fmj , in ΩTmj ,

[~qm]Γ = 0, on ΓT ,

ψmj = ψf , on ΓT ,

ψmj (0) = ψmj ,I , on Ωmj .

4. Existence. This section is concerned with the existence of a (weak) solution
to Problem Pε for a fixed fracture width ε > 0. We proceed in the spirit of [49],
where a linear model for reactive flow with nonlinear transmission conditions at the
interfaces is considered. For the sake of readability, we drop the superscript ε since it
is fixed throughout this section.

4.1. Notation. In this work, we use common notation from functional analysis.
The space L2(Ω) contains all real valued square integrable functions on a domain
Ω ⊂ Rd, and W 1,2(Ω) ⊂ L2(Ω) stands for the subset of functions whose weak first
order derivatives lie in L2(Ω) as well. Furthermore, Bochner spaces L2(0, T ;X) will
be used, where X stands for a Banach space. For all domains Ω ⊂ Rd and time
intervals [0, T ], we introduce the following abbreviations for the norm and the inner
product:

(15)
‖ · ‖Ω := ‖ · ‖L2(Ω), and ‖ · ‖ΩT := ‖ · ‖L2(0,T ;L2(Ω)),

(·, ·)Ω := (·, ·)L2(Ω) , and (·, ·)ΩT := (·, ·)L2(0,T ;L2(Ω)) .
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In view of the particular Problem Pε, we use the following conventions:
• ρ is the index for the subdomain and takes values in {m1,m2, f},
• j is the index for specifying the matrix block subdomain and takes values in
{1, 2},

• for functions g which are the same in both matrix block subdomains (such as
S, K, . . .), we define gm1

= gm2
=: gm, which allows to write e.g. Sρ(ψρ).

Moreover, C ≥ 0 is a generic constant.

4.2. Assumptions. For the analysis, we assume that the following conditions
are satisfied:

(Af ) fρ ∈ C(0, T ;L2(Ωρ)) and there exists Mf > 0 such that |fρ| ≤ Mf a.e. in
ΩTρ .

(ADS ) Sρ ∈ C1(R).
(AS) There exist mS ,MS > 0 such that 0 < mS ≤ S′ρ(ψρ) ≤MS for all ψρ ∈ R.

(ADK ) Kρ ∈ C1(R) and K ′ρ(Sρ) > 0 for all Sρ ∈ R.
(AK) There exist mK ,MK > 0 such that 0 < mK ≤ Kρ(Sρ) < MK for all Sρ ∈ R.
(Aρ) There exists Mρ > 0 such that |ψρ,I | ≤Mρ a.e. in Ωρ.

Remark 2 (Assumptions). Note that due to Assumption (AS), we only consider
the regular parabolic case here. Assumption (AK) excludes the slow diffusion case and
guarantees the existence of a minimum positive permeability everywhere. Moreover,
for the sake of presentation, we make the assumption Sρ(0) = 0, which can easily be

achieved by redefining Sρ(ψ) = S̃ρ(ψ)− S̃ρ(0). Assumption (AS) immediately yields
the estimate ‖S(ψ)‖Ω ≤MS‖ψ‖Ω.

4.3. Weak solution. We establish a suitable notion of a solution to Problem
Pε. For this purpose, we define the function spaces

(16)
Vmj ⊂W 1,2(Ωmj ),

Vf ⊂W 1,2(Ωf ),

where the desired boundary conditions are implicitly imposed by the choice of the
subspaces Vmj and Vf . We choose homogeneous Dirichlet conditions for the external
boundaries in this section, that is, Vmj = {u ∈ W 1,2(Ωmj ) : u = 0 on ∂Ωmj \ Γj}.
This choice of boundary condition simplifies the presentation and extensions to ot-
her boundary conditions such as no flow Neumann conditions can be made without
additional difficulties. Note that these spaces depend on the fixed fracture width ε.

The weak formulation of Problem Pε reads as follows:

Definition 3 (Weak solution). A triple (ψm1
, ψm2

, ψf ) belonging to product
space L2(0, T ;Vm1

)×L2(0, T ;Vm2
)×L2(0, T ;Vf ) is called a weak solution to Problem

Pε if

(17) ψm1
= ψf on Γ1 and ψm2

= ψf on Γ2 for a.e. t ∈ [0, T ],
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in the sense of traces, and

(18)

−
2∑
j=1

(
Sm(ψmj ), ∂tφmj

)
ΩTmj
− εκ (Sf (ψf ), ∂tφf )ΩTf

+

2∑
j=1

(
Km(Sm(ψmj ))∇ψmj ,∇φmj

)
ΩTmj

+ ελ (Kf (Sf (ψf ))∇ψf ,∇φf )ΩTf

=
2∑
j=1

(
fmj , φmj

)
ΩTmj

+ (ff , φf )ΩTf

+
2∑
j=1

(
Sm(ψmj ,I), φmj (0)

)
Ωmj

+ εκ (Sf (ψf,I), φf (0))Ωf
,

for all (φm1
, φm2

, φf ) ∈W 1,2(0, T ;Vm1
)×W 1,2(0, T ;Vm2

)×W 1,2(0, T ;Vf ) satisfying

(19) φm1
= φf on Γ1 and φm2

= φf on Γ2 for a.e. t ∈ [0, T ],

and

(20) φρ(T ) = 0, for ρ ∈ {m1,m2, f}.

Note that it makes sense to evaluate the test functions φρ at the times t = 0 and t = T
in the above definition since the space W 1,2(0, T ;Vρ) is embedded in C(0, T ;Vρ).

4.4. Time discretisation. In what follows, we discretise the problem in time
using an implicit Euler approach, which gives elliptic equations at every discrete time
tk = k∆t, for k ∈ {0, . . . , N}, where N ∈ N. We assume without loss of generality
that N∆t = T . Here, ∆t > 0 denotes the fixed time step size. Choose ψ0

ρ = ψρ,I
and let the sequence of solutions in domain Ωρ of the time-discrete problems be given
as {ψkρ}. Moreover, let fkρ := fρ(tk). The definition of a weak solution to the time-
discrete problem is given by

Definition 4. Let k > 0 and let (ψk−1
m1

, ψk−1
m2

, ψk−1
f ) ∈ Vm1

×Vm1
×Vf be given.

We call (ψkm1
, ψkm2

, ψkf ) ∈ Vm1
×Vm1

×Vf a weak solution to the time-discrete problem
at time tk if it satisfies

(21) ψkm1
= ψkf on Γ1 and ψkm2

= ψkf on Γ2

in the sense of traces, and
(22)

2∑
j=1

(
Sm(ψkmj ), φmj

)
Ωmj

+ εκ
(
Sf (ψkf ), φf

)
Ωf

+ ∆t
2∑
j=1

(
Km(Sm(ψkmj ))∇ψ

k
mj ,∇φmj

)
Ωmj

+ ελ∆t
(
Kf (Sf (ψkf ))∇ψkf ,∇φf

)
Ωf

= ∆t
2∑
j=1

(
fkmj , φmj

)
Ωmj

+ ∆t
(
fkf , φf

)
Ωf

+
2∑
j=1

(
Sm(ψk−1

mj ), φmj

)
Ωmj

+ εκ
(
Sf (ψk−1

f ), φf

)
Ωf
,

for all (φm1 , φm2 , φf ) ∈ Vm1 × Vm2 × Vf satisfying φmj = φf on Γj for j ∈ {1, 2}.
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4.5. Existence of solution for the time-discrete problem. We begin with
the existence of solution for the time-discrete problem as given in Definition 4. We
show that the solution triple (ψkm1

, ψkm2
, ψkf ) ∈ Vm1

×Vm2
×Vf satisfying Definition 4

can be interpreted as a solution to an elliptic problem having coefficients with possibly
jump discontinuities. The existence of solution is thus tantamount to showing that
of an elliptic problem defined in the whole domain having possibly discontinuous
coefficients. The latter follows from standard elliptic theory. We start by introducing
the space V

V := {(ψm1
, ψm2

, ψf ) ∈ Vm1
× Vm2

× Vf , s.t. ψm1
= ψf at Γ1, ψm2

= ψf at Γ2} ,

equipped with the norm

‖ψ‖V :=

√(
‖ψm1

‖2W 1,2(Ωm1
) + ‖ψm2

‖2W 1,2(Ωm2
) + ‖ψf‖2W 1,2(Ωf )

)
.

As before, the equalities on the interfaces Γ1,Γ2 are in the sense of traces. Below we
will use the characteristic function χρ of Ωρ, ρ ∈ {m1,m2, f} in defining a function
over Ω given a triple in V. We have the following proposition showing that V is
isomorphic to W 1,2(Ω).

Proposition 5. Given ψ ∈ W 1,2(Ω), its restriction to Ωρ, ρ ∈ {m1,m2, f},
defines a triple (ψm1

, ψm2
, ψf ) ∈ V. Conversely, given (ψm1

, ψm2
, ψf ) ∈ V, ψ =∑

ρ ψρχρ, ρ ∈ {m1,m2, f} lies in W 1,2(Ω).

Proof. We start with the first part. For smooth functions, the assertion is ob-
vious. Using a density argument and trace inequalities on Γ1 and Γ2, the extension
to W 1,2 functions is straightforward. For the converse, the boundedness of the L2

norm is clear. Further, it is sufficient to prove that the weak derivatives of the tri-
ple (ψm1 , ψm2 , ψf ) ∈ V are equal to those of ψ restricted to Ωρ. For a given triple
(ψm1

, ψm2
, ψf ) ∈ V, let ψ =

∑
ρ ψρχρ, ρ ∈ {m1,m2, f}. Let φ be weak derivative of

ψ in the i−th direction. Using partial integration, for any smooth function w with
compact support in Ω,∫

Ω

φwdx = −
∫

Ω

ψ∂iwdx = −
∑
ρ

∫
Ωρ

ψρ∂iwdx.

Using partial integration on each subdomain

−
∑
ρ

∫
Ωρ

ψρ∂iwdx =
∑
ρ

∫
Ωρ

∂iψρwdx,

where the terms on the boundaries Γ1,Γ2 get cancelled due to traces being equal.
The last equality shows that φ restricted to Ωρ, ρ ∈ {m1,m2, f} is equal to the weak
derivative of ψ in the i-th direction. This proves the proposition.

Remark 6. With respect to the norm ‖ψ‖W 1,2(Ω) =
√
‖ψ‖2Ω + ‖∇ψ‖2Ω, and the

same for the W 1,2 norm on Ωρ, ρ ∈ {m1,m2, f}, the isomorphism of V to W 1,2(Ω) is
an isometry.

Next, we consider an elliptic problem defined in the entire domain Ω. For a given
triple (ψk−1

m1
, ψk−1

m2
, ψk−1

f ) ∈ V, define ψk−1 =
∑
ρ ψ

k−1
ρ χρ, ρ ∈ {m1,m2, f}, and the

coefficients K = Km1
χm1

+ελKfχf +Km2
χm2

, and S = Sm1
χm1

+εκSfχf +Sm2
χm2

.
Definition of a solution for Problem PΩ is as follows:
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Definition 7 (Weak solution of Problem PΩ). Given ψk−1, a weak solution
ψk ∈W 1,2

0 (Ω) is such that for all φ ∈W 1,2
0 (Ω) it holds that

(23)
(
S(ψk), φ

)
Ω

+ ∆t
(
K(S(ψk))∇ψk,∇φ

)
Ω

= ∆t
(
fk, φ

)
Ω

+
(
S(ψk−1), φ

)
Ω
.

The above problem therefore is a non-linear elliptic problem with positive elliptic
coefficient and a lower order reaction term that is monotone with respect to unknown
and piecewise smooth functions with respect to space. The existence of solution in
the Hilbert space W 1,2

0 (Ω) is standard and can be read from [9, 11]. This is stated in
the next lemma.

Lemma 8. There exists a weak solution of problem PΩ in the sense of Definition
7.

The summary of the above discussion results in the existence of a solution for
time discrete problem as per Definition 4 and is given below.

Lemma 9. Given (ψk−1
m1

, ψk−1
m2

, ψk−1
f ) ∈ Vm1

× Vm1
× Vf , k > 0 , there exists a

solution triple (ψkm1
, ψkm2

, ψkf ) ∈ Vm1 × Vm1 × Vf and

(24) ψkm1
= ψkf on Γ1 and ψkm2

= ψkf on Γ2.

Proof. The existence result in Lemma 8 provides ψk ∈ W 1,2
0 (Ω). Proposition

5 gives a triple (ψkm1
, ψkm2

, ψkf ) ∈ Vm1
× Vm1

× Vf satisfying ψkm1
= ψkf on Γ1 and

ψkm2
= ψkf on Γ2. Moreover, Proposition 5 states the equality of weak derivatives of

ψk restricted to Ωρ with those of ψkρ . Starting from (23), this yields the existence
result in Lemma 9.

Our interface conditions on Γ1,Γ2 are natural: the continuity of flux and the
pressures. In case when the interface conditions are nonlinear, we refer to the work
of [15, 33, 35, 49].

4.6. A priori estimates. We define in each domain the energy functional

(25) Wρ(ψρ) =

∫ ψρ

0

S′ρ(ϕ)ϕ dϕ,

which we will require in the proof of the following a priori estimate. First, we gather
some properties of Wρ in a simple lemma, which is based on Assumption (AS):

Lemma 10. The functional Wρ satisfies the following inequalities:

(26)

Wρ(ψρ) ≥ 0,

Wρ(ψρ)−Wρ(ξρ) ≤ ψρ(Sρ(ψρ)− Sρ(ξρ)),

mS

ψ2
ρ

2
≤ Wρ(ψρ) ≤MS

ψ2
ρ

2
,

for all ψρ, ξρ ∈ R.

We obtain the following estimate for the time-discrete solution:

Lemma 11 (A priori estimate I). The solution (ψkm1
, ψkm2

, ψkf ) to the time-discrete
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problem in Definition 4 satisfies

(27)

2∑
j=1

(
max

l∈{1,...,N}

∫
Ωmj

Wm(ψlmj ) d~x

)
+ εκ max

l∈{1,...,N}

∫
Ωf

Wf (ψlf ) d~x

+
∆t mK

2

2∑
j=1

N∑
k=1

‖∇ψkmj‖
2
Ωmj

+ ελ
∆t mK

2

N∑
k=1

‖∇ψkf‖2Ωf

≤
2∑
j=1

∫
Ωmj

Wm(ψmj ,I) d~x+ εκ
∫

Ωf

Wf (ψf,I) d~x

+
∆t Cpm

2mK

2∑
j=1

N∑
k=1

‖fkmj‖
2
Ωmj

+ ε−λ
∆t Cpf
2mK

N∑
k=1

‖fkf ‖2Ωf .

Proof. We test in (22) with the triple (φm1
, φm2

, φf ) = (ψkm1
, ψkm2

, ψkf ), which
yields
(28)

2∑
j=1

(Sm(ψkmj )− Sm(ψk−1
mj ), ψkmj )Ωmj

+ εκ(Sf (ψkf )− Sf (ψk−1
f ), ψkf )Ωf

+ ∆t
2∑
j=1

(Km(Sm(ψkmj ))∇ψ
k
mj ,∇ψ

k
mj )Ωmj

+ ελ∆t(Kf (Sf (ψkf ))∇ψkf ,∇ψkf )Ωf

=

2∑
j=1

∆t(fkmj , ψ
k
mj )Ωmj

+ ∆t(fkf , ψ
k
f )Ωf .

Poincaré’s inequality gives

(29) ‖∇ψkρ‖2Ωρ ≥
‖∇ψkρ‖2Ωρ

2
+
‖ψkρ‖2Ωρ

2Cpρ
,

for ρ ∈ {m1,m2, f}, where Cpρ > 0 denotes the Poincaré constant of the respective
subdomain. The geometries of Ωm1

and Ωm2
are the same, and so are the Poincaré

constants hence, for which reason we set Cpm := Cpm1
= Cpm2

, but note that for more
general geometries, one can simply set Cpm := max{Cpm1

, Cpm2
} in the following

estimates.
Making use of this together with Assumption (AK) and equation (26)2 in Lemma 10,
we estimate

(30)

2∑
j=1

∫
Ωmj

Wm(ψkmj ) d~x+ εκ
∫

Ωf

Wf (ψkf ) d~x+
∆t mK

2

2∑
j=1

‖∇ψkmj‖
2
Ωmj

+
∆t mK

2
ελ‖∇ψkf‖2Ωf +

∆t mK

2Cpm

2∑
j=1

‖ψkmj‖
2
Ωmj

+ ελ
∆t mK‖ψkf‖2Ωf

2Cpf

≤
2∑
j=1

∫
Ωmj

Wm(ψk−1
mj ) d~x+ εκ

∫
Ωf

Wf (ψk−1
f ) d~x+

∆t Cpm
2mK

2∑
j=1

‖fkmj‖
2
Ωmj

+

ε−λ
∆t Cpf
2mK

‖fkf ‖2Ωf +
∆t mK

2Cpm

2∑
j=1

‖ψkmj‖
2
Ωmj

+ ελ
∆t mK‖ψkf‖2Ωf

2Cpf
,
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where we applied the Cauchy–Schwarz inequality and Young’s inequality. Summing
over k from 1 to l for an arbitrary 1 ≤ l ≤ N leaves us with

(31)

2∑
j=1

∫
Ωmj

Wm(ψlm1
) d~x+ εκ

∫
Ωf

Wf (ψlf ) d~x+
∆t mK

2

2∑
j=1

l∑
k=1

‖∇ψkmj‖
2
Ωmj

+ ελ
∆t mK

2

l∑
k=1

‖∇ψkf‖2Ωf ≤
2∑
j=1

∫
Ωmj

Wm(ψmj ,I) d~x+ εκ
∫

Ωf

Wf (ψf,I) d~x

+
∆t Cpm

2mK

2∑
j=1

l∑
k=1

‖fkmj‖
2
Ωmj

+ ε−λ
∆t Cpf
2mK

l∑
k=1

‖fkf ‖2Ωf ,

which finishes the proof.

Remark 12 (Non-degenerate case). In the strictly parabolic case as considered
in this work, where an mS > 0 exists such that 0 < mS ≤ S′ρ(ψρ) for all ψρ ∈ R,

we immediately obtain an L2 bound for ψkρ from the first two terms in Lemma 11 by
Lemma 10:

(32) mS

‖ψkmj‖
2
Ωmj

2
≤
∫

Ωmj

Wm(ψkmj ) d~x, and mS

‖ψkf‖2Ωf
2

≤
∫

Ωf

Wf (ψkf ) d~x.

In what follows, we prove the L∞ stability of the time-discrete solution. We define
the non-negative and non-positive cut of a function u ∈W 1,2(Ω) by

(33) [u]+ := max{u, 0}, [u]− := min{u, 0}.

Note that [u]+, [u]− ∈W 1,2(Ω), see e.g. [27, Lemma 7.6].

Lemma 13 (A priori estimate II). For each ∆t > 0, ρ ∈ {m1,m2, f}, and k ∈
{1, . . . , N}, it holds

(34) ‖ψkρ‖L∞(Ωρ) ≤Mψ (k∆t+ 1) ,

where

(35) Mψ := max

{
Mρ,

Mf

mS

}
.

Proof. The proof is done by induction. For k = 0, the statement holds due to
Assumption (Aρ). Assume now that ‖ψk−1

ρ ‖L∞(Ωρ) < Mψ ((k − 1)∆t+ 1) . First, we

show that ψkρ ≤Mψ (k∆t+ 1) almost everywhere in Ωρ.

We test equation (22) with φρ =
[
ψkρ −Mψ(k∆t+ 1)

]
+

. These test functions satisfy

the required transmission condition because ψkmj = ψkf on Γj . Adding some terms on
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both sides of the equation, we obtain
(36)

2∑
j=1

(
Sm(ψkmj )− Sm (Mψ(k∆t+ 1)) ,

[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ εκ
(
Sf (ψkf )− Sf (Mψ(k∆t+ 1)) ,

[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf

+ ∆t

2∑
j=1

(
Km(Sm(ψkmj ))∇

(
ψkmj −Mψ(k∆t+ 1)

)
,∇
[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ ελ∆t
(
Kf (Sf (ψkf ))∇

(
ψkf −Mψ(k∆t+ 1)

)
,∇
[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf

=
2∑
j=1

(
Sm(ψk−1

mj )− Sm (Mψ(k∆t+ 1)) ,
[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ εκ
(
Sf (ψk−1

f )− Sf (Mψ(k∆t+ 1)) ,
[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf

+ ∆t
2∑
j=1

(
fkmj ,

[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ ∆t
(
fkf ,
[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf
.

From Assumptions (AS) and (AK), and in particular the monotonicity of Sρ, we
deduce

(37)

mS

2∑
j=1

∥∥∥ [ψkmj −Mψ(k∆t+ 1)
]

+

∥∥∥2

Ωmj

+ εκmS

∥∥∥ [ψkf −Mψ(k∆t+ 1)
]
+

∥∥∥2

Ωf

+ ∆t mK

2∑
j=1

∥∥∥∇ [ψkmj −Mψ(k∆t+ 1)
]

+

∥∥∥2

Ωmj

+ ελ∆t mK

∥∥∥∇ [ψkf −Mψ(k∆t+ 1)
]
+

∥∥∥2

Ωf

≤
2∑
j=1

(
Sm(ψk−1

mj )− Sm (Mψ((k − 1)∆t+ 1)) ,
[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ εκ
(
Sf (ψk−1

f )− Sf (Mψ((k − 1)∆t+ 1)) ,
[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf

+ ∆t
2∑
j=1

((
fkmj −mSMψ

)
,
[
ψkmj −Mψ(k∆t+ 1)

]
+

)
Ωmj

+ ∆t
((
fkf −mSMψ

)
,
[
ψkf −Mψ(k∆t+ 1)

]
+

)
Ωf
,

where we used Sρ(ψρ) ≥ Sρ(ξρ) +mS(ψρ − ξρ) on the right hand side in order to get

(38) Sρ (Mψ((k∆t+ 1)) ≥ Sρ (Mψ((k − 1)∆t+ 1)) +mSMψ∆t.

Note that the first two terms on the right hand side in equation (37) are non-positive

due to the induction assumption and the monotonicity of Sρ. Since Mψ ≥ Mf

mS
, the last

two terms are non-positive as well, from which we infer that ψkρ ≤MS(k∆t+1) almost

everywhere in Ωρ. Similarly, one tests equation (22) with φρ =
[
ψkρ +Mψ(k∆t+ 1)

]
−
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in order to show that ψkρ ≥ −Mψ (k∆t+ 1) almost everywhere in Ωρ. This concludes
the proof.

4.7. Interpolation in time. Now, we define functions on a continuous time
domain by interpolating the solutions of the time-discrete problem in time. We use
piecewise linearly interpolated functions in addition to piecewise constant functions:
for almost every t ∈ (tk−1, tk] set

(39)

Ψ̄ρ
∆t(t) := ψkρ ,

S̄ρ∆t(t) := S(ψkρ),

Ŝρ∆t(t) := S(ψk−1
ρ ) +

t− tk−1

∆t
(S(ψkρ)− S(ψk−1

ρ )).

Moreover, we need the piecewise constant interpolation of the source term f̄ρ∆t(t) = fkρ .
In view of the a priori estimates in Lemmas 11 and 13, we obtain the following result
for the interpolated functions:

Lemma 14. The functions Ψ̄ρ
∆t, S̄

ρ
∆t, and Ŝρ∆t are bounded uniformly with respect

to ∆t in L∞(0, T ;L2(Ωρ)) ∩ L2(0, T ;Vρ) ∩ L∞(ΩTρ ) for ρ ∈ {m1,m2, f}.
In order to get strong convergence in L2(0, T ;L2(Ωρ)), we need the following estimate
for the time derivative of the saturation:

Lemma 15. The functions Ŝρ∆t are uniformly bounded with respect to ∆t in
W 1,2(0, T ;W−1,2(Ωρ)) for ρ ∈ {m1,m2, f}.

Proof. Since the function Ŝρ∆t(t) is piecewise linear, its weak time derivative exists,
is piecewise constant, and for almost every t ∈ (tk−1, tk] given by

(40) ∂tŜ
ρ
∆t(t) =

Sρ(ψ
k
ρ)− Sρ(ψk−1

ρ )

∆t
.

We view ∂tŜ
ρ
∆t as an element of L2(0, T ;W−1,2(Ωρ)), where W−1,2(Ωρ) is the dual of

W 1,2
0 (Ωρ) (the latter space containing the W 1,2 functions on Ωρ with vanishing trace

on the entire boundary ∂Ωρ). Testing equation (22) with arbitrary φρ ∈ W 1,2
0 (Ωρ)

and φσ ≡ 0 for σ 6= ρ yields the estimate
(41)∣∣∣〈∂tŜρ∆t(t), φρ〉W−1,2(Ωρ),W 1,2

0 (Ωρ)

∣∣∣ =

∣∣∣∣∣
(
Sρ(ψ

k
ρ)− Sρ(ψk−1

ρ )

∆t
, φρ

)
Ωρ

∣∣∣∣∣
≤
∣∣∣ (Kρ(Sρ(ψ

k
ρ))∇ψkρ ,∇φρ

)
Ωρ

∣∣∣+
∣∣∣ (fkρ , φρ)Ωρ ∣∣∣

≤ ‖φρ‖W 1,2(Ωρ)

(
MK‖∇ψkρ‖Ωρ + ‖fkρ ‖Ωρ

)
.

Using the a priori estimate in Lemma 11, we obtain

(42) ‖∂tŜρ∆t‖L2(0,T ;W−1,2(Ωρ)) ≤ C,

which finishes the proof.

Remark 16. Note that the above estimate is independent of ε for Ωm1
,Ωm2

. Ho-
wever, for Ωf , K depends on ε and later we make precise the dependence of the above
estimate on ε and show that indeed the above estimate is independent of ε.

Compactness arguments give rise to the following convergent subsequences:
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Lemma 17. There exists a Ψρ ∈ L2(0, T ;Vρ) and a subsequence ∆t → 0 along
which we obtain for ρ ∈ {m1,m2, f}

(43)

{Ŝρ∆t}∆t → Sρ(Ψρ) strongly in L2(0, T ;L2(Ωρ)),

{S̄ρ∆t}∆t → Sρ(Ψρ) strongly in L2(0, T ;L2(Ωρ)),

{Ψ̄ρ
∆t}∆t → Ψρ strongly in L2(0, T ;L2(Ωρ)),

{Ψ̄ρ
∆t}∆t ⇀ Ψρ weakly in L2(0, T ;Vρ).

Proof. The first convergence follows from the Aubin–Lions–Simon theorem [8, 55]
by the estimates in Lemmas 11 and 15. The convergence of the piecewise linearly
interpolated functions implies the convergence of the piecewise constantly interpolated
functions towards the same limit function (see e.g. [38, Lemma 3.2]). The third
convergence is a consequence of Assumption (AS) by virtue of which the inverse
function S−1

ρ exists and is Lipschitz continuous. Finally, the weak convergence in

L2(0, T ;Vρ) is provided by the Eberlein–Šmulian theorem in view of the bounds in
Lemma 11.

It remains to show that the triple of limit functions is a weak solution:

Theorem 18. The limit (Ψm1
,Ψm2

,Ψf ) is a weak solution to Problem Pε in the
sense of Definition 3.

Proof. Let (φm1
, φm2

, φf ) ∈ Vm1
× Vm2

× Vf . Summing (22) from 1 to k yields
for almost every t ∈ (tk−1, tk)
(44)

2∑
j=1

(
Sm(Ψ̄

mj
∆t (t)), φmj

)
Ωmj

+ εκ
(
Sf (Ψ̄f

∆t(t)), φf

)
Ωf
−

2∑
j=1

(
Sm(ψmj ,I), φmj

)
Ωmj

− εκ (Sf (ψf,I), φf )Ωf
+

2∑
j=1

∫ t

0

(
Km(Sm(Ψ̄

mj
∆t (τ)))∇Ψ̄

mj
∆t (τ),∇φmj

)
Ωmj

dτ

+ ελ
∫ t

0

(
Kf (Sf (Ψ̄f

∆t(τ)))∇Ψ̄f
∆t(τ),∇φf

)
Ωf
dτ −

2∑
j=1

∫ t

0

(
f̄mj (τ), φmj

)
Ωmj

dτ

−
∫ t

0

(
f̄f (τ), φf

)
Ωf
dτ =

2∑
j=1

∫ tk

t

(
f̄mj (τ), φmj

)
Ωmj

dτ +

∫ tk

t

(
f̄f (τ), φf

)
Ωf
dτ

−
2∑
j=1

∫ tk

t

(
Km(Sm(Ψ̄

mj
∆t (τ)))∇Ψ̄

mj
∆t (τ),∇φmj

)
Ωmj

dτ

− ελ
∫ tk

t

(
Kf (Sf (Ψ̄f

∆t(τ)))∇Ψ̄f
∆t(τ),∇φf

)
Ωf
dτ.

The terms on the right hand side correct the error made on the left hand side
by integrating to t instead of tk. Now, we choose test functions (φm1

, φm2
, φf ) ∈

L2(0, T ;Vm1
) × L2(0, T ;Vm2

) × L2(0, T ;Vf ) fulfilling φmj = φf on Γj and integrate
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in time from 0 to T to get
(45)

2∑
j=1

∫ T

0

(
Sm(Ψ̄

mj
∆t (t)), φmj (t)

)
Ωmj

dt+ εκ
∫ T

0

(
Sf (Ψ̄f

∆t(t)), φf (t)
)

Ωf
dt

−
2∑
j=1

∫ T

0

(
Sm(ψmj ,I), φmj (t)

)
Ωmj

dt− εκ
∫ T

0

(Sf (ψf,I), φf (t))Ωf
dt

+
2∑
j=1

∫ T

0

∫ t

0

(
Km(Sm(Ψ̄

mj
∆t (τ)))∇Ψ̄

mj
∆t (τ),∇φmj (t)

)
Ωmj

dτ dt

+ ελ
∫ T

0

∫ t

0

(
Kf (Sf (Ψ̄f

∆t(τ)))∇Ψ̄f
∆t(τ),∇φf (t)

)
Ωf
dτ dt

−
2∑
j=1

∫ T

0

∫ t

0

(
f̄mj (τ), φmj (t)

)
Ωmj

dτ dt−
∫ T

0

∫ t

0

(
f̄f (τ), φf (t)

)
Ωf
dτ dt

=
2∑
j=1

N∑
k=1

∫ tk

tk−1

∫ tk

t

(
f̄mj (τ), φmj (t)

)
Ωmj

dτ dt+
N∑
k=1

∫ tk

tk−1

∫ tk

t

(
f̄f (τ), φf (t)

)
Ωf
dτ dt

−
2∑
j=1

N∑
k=1

∫ tk

tk−1

∫ tk

t

(
Km(Sm(Ψ̄

mj
∆t (τ)))∇Ψ̄

mj
∆t (τ),∇φmj (t)

)
Ωmj

dτ dt

− ελ
N∑
k=1

∫ tk

tk−1

∫ tk

t

(
Kf (Sf (Ψ̄f

∆t(τ)))∇Ψ̄f
∆t(τ),∇φf (t)

)
Ωf
dτ dt.

From the strong L2 convergence in (43)2, we infer that

(46)

∫ T

0

(
Sρ(Ψ̄

ρ
∆t(t)), φρ(t)

)
Ωρ
dt→

∫ T

0

(Sρ(Ψρ(t)), φρ(t))Ωρ
dt.

Furthermore, the strong convergence of Ψ̄ρ
∆t in L2(0, T ;L2(Ωρ)) in equation (43)3 and

the weak convergence of the gradients in L2(0, T ;L2(Ωρ)) in equation (43)4 together
with the Lipschitz continuity of Sρ and Kρ yield

(47)

∫ T

0

∫ t

0

(
Kρ(Sρ(Ψ̄

ρ
∆t(τ)))∇Ψ̄ρ

∆t(τ),∇φρ(t)
)

Ωρ
dτ dt

→
∫ T

0

∫ t

0

(Kρ(Sρ(Ψρ(τ)))∇Ψρ(τ),∇φρ(t))Ωρ
dτ dt.

This follows from the following considerations: due to the ellipticity of Kρ, Ψ̄ρ
∆t

strongly converges in L2(0, T ;L2(Ωρ)) and because of the Lipschitz continuity of Kρ

and S, Kρ(Sρ(Ψ̄
ρ
∆t(τ))) converges to Kρ(Sρ(Ψρ(τ))) strongly in L2(0, T ;L2(Ωρ)). Due

to boundedness of Kρ we know that there exists a ~ξρ ∈
(
L2(Ωρ)

)d
such that

(48) Kρ(Sρ(Ψ̄
ρ
∆t(τ)))∇Ψ̄ρ

∆t(τ) ⇀ ~ξρ, weakly in
(
L2(Ωρ)

)d
.

The identification of ~ξρ to Kρ(Sρ(Ψρ))∇Ψρ then follows by taking smoother test
functions and passing to the limit.
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Moreover, the time-continuity of f gives

(49)

∫ T

0

∫ t

0

(
f̄ρ(τ), φρ(t)

)
Ωρ
dτ dt→

∫ T

0

∫ t

0

(fρ(τ), φρ(t))Ωρ
dτ dt.

In what follows, we show that the terms on the right hand side in equation (45) vanish
as ∆t approaches zero. For the terms involving a source term fρ, we obtain
(50)∣∣∣∣∣

N∑
k=1

∫ tk

tk−1

∫ tk

t

(
f̄ρ(τ), φρ(t)

)
Ωρ
dτ dt

∣∣∣∣∣ ≤ (∆t)2

2

N∑
k=1

‖fkρ ‖2Ωρ +
∆t

2

∫ T

0

‖φρ‖2Ωρ ≤ C∆t,

where we used the Cauchy–Schwarz inequality and Young’s inequality.
Furthermore, we get

(51)

∣∣∣∣∣
N∑
k=1

∫ tk

tk−1

∫ tk

t

(
Kρ(Sρ(Ψ̄

ρ
∆t(τ)))∇Ψ̄ρ

∆t(τ),∇φρ(t)
)

Ωρ
dτ dt

∣∣∣∣∣
≤ (∆t)2MK

2

N∑
k=1

‖∇ψkρ‖2Ωρ +
∆t

2

∫ T

0

‖∇φρ‖2Ωρ

≤ C∆t,

using the a priori estimate in Lemma 11. Therefore, in the limit ∆t→ 0, we are left
with

(52)

2∑
j=1

∫ T

0

(
Sm(Ψmj (t)), φmj (t)

)
Ωmj

dt+ εκ
∫ T

0

(Sf (Ψf (t)), φf (t))Ωf
dt

+
2∑
j=1

∫ T

0

∫ t

0

(
Km(Sm(Ψmj (τ)))∇Ψmj (τ),∇φmj (t)

)
Ωmj

dτ dt

+ ελ
∫ T

0

∫ t

0

(
Kf (Sf (Ψf (τ)))∇Ψmj (τ),∇φf (t)

)
Ωf
dτ dt

=
2∑
j=1

∫ T

0

∫ t

0

(
fmj (τ), φmj (t)

)
Ωmj

dτ dt+

∫ T

0

∫ t

0

(ff (τ), φf (t))Ωf
dτ dt

+

2∑
j=1

∫ T

0

(
Sm(ψmj ,I), φmj (t)

)
Ωmj

dt+ εκ
∫ T

0

(Sf (ψf,I), φf (t))Ωf
dt,

for all (φm1 , φm2 , φf ) ∈ L2(0, T ;Vm1)× L2(0, T ;Vm2)× L2(0, T ;Vf ) such that φmj =
φf on Γj for j ∈ {1, 2}.
Note that when choosing test functions (φ̃m1

, φ̃m2
, φ̃f ) ∈W 1,2(0, T ;Vm1

)

×W 1,2(0, T ;Vm2
) ×W 1,2(0, T ;Vf ) satisfying φ̃m1

(T ) = φ̃m2
(T ) = φ̃f (T ) = 0, inte-

gration by parts yields

(53)

∫ T

0

∫ t

0

(
fρ(τ), ∂tφ̃ρ(t)

)
Ωρ
dτ dt = −

∫ T

0

(
fρ(t), φ̃ρ(t)

)
Ωρ
dt,∫ T

0

∫ t

0

(
Kρ(Sρ(Ψρ(τ)))∇Ψρ(τ),∇∂tφ̃ρ(t)

)
Ωρ
dτ dt

= −
∫ T

0

(
Kρ(Sρ(Ψρ(t)))∇Ψρ(t),∇φ̃ρ(t)

)
Ωρ
dt.
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Thus, selecting φρ = ∂tφ̃ρ in (52) gives

(54)

2∑
j=1

∫ T

0

(
Sm(Ψmj (t)), ∂tφ̃mj (t)

)
Ωmj

dt+ εκ
∫ T

0

(
Sf (Ψf (t)), ∂tφ̃f (t)

)
Ωf
dt

−
2∑
j=1

∫ T

0

(
Km(Sm(Ψmj (t)))∇Ψmj (t),∇φ̃mj (t)

)
Ωmj

dt

− ελ
∫ T

0

(
Kf (Sf (Ψf (t)))∇Ψmj (t),∇φ̃f (t)

)
Ωf
dt

= −
2∑
j=1

∫ T

0

(
fmj (t), φ̃mj (t)

)
Ωmj

dt−
∫ T

0

(
ff (t), φ̃f (t)

)
Ωf
dt

−
2∑
j=1

(
Sm(ψmj ,I), φ̃mj (0)

)
Ωmj

− εκ
(
Sf (ψf,I), φ̃f (0)

)
Ωf
.

Therefore, equation (18) holds true for all appropriate test functions.
In order to show that the interface conditions are satisfied, we estimate

(55) ‖Ψmj −Ψf‖ΓTj ≤ ‖Ψmj − Ψ̄
mj
∆t ‖ΓTj + ‖Ψ̄mj

∆t − Ψ̄f
∆t‖ΓTj + ‖Ψ̄f

∆t −Ψf‖ΓTj

and consider the terms on the right hand side individually. The second term is zero
by definition of the discrete weak solution. For the first term, we obtain by the trace
inequality

(56)
‖Ψmj − Ψ̄

mj
∆t ‖

2
ΓTj

≤ C(Ωmj )‖Ψmj − Ψ̄
mj
∆t ‖ΩTmj

(
‖∇Ψmj −∇Ψ̄

mj
∆t ‖ΩTmj + ‖Ψmj − Ψ̄

mj
∆t ‖ΩTmj

)
.

By the weak convergence in equation (43)4, the term in brackets is bounded, and
from the strong convergence in equation (43)3, we get that ‖Ψmj − Ψ̄

mj
∆t ‖ΩTmj → 0 for

∆t → 0. The third term on the right hand side of equation (55) vanishes with an
analogous argument, which finishes the proof.

Remark 19. For fixed ε, the estimate in the fracture can be improved by isolating
the equation in the fracture. By carrying out the same procedure as above but with
φf ∈ L2(0, T ;W 1,2

0 (Ωf )), that is, having zero boundary values on Ωf , we obtain

(57)
∂tSf (Ψ̄f

∆t) ⇀ ∂tSf (ψf ) weakly in L2(0, T ;W−1,2(Ωf )),

Kf (Sf (Ψ̄f
∆t))∇Ψ̄f

∆t ⇀ Kf (Sf (ψf ))∇ψf weakly in L2(0, T ;W 1,2
0 (Ωf )),

and ψf satisfies the equation,

(58) εκ (∂tSf (ψf ), φf )ΩTf
+ ελ (Kf (Sf (ψf ))∇ψf ,∇φf )ΩTf

= (ff , φf )ΩTf
,

for all φf ∈ L2(0, T ;W 1,2
0 (Ωf )).

5. Rigorous upscaling. In this section, we prove the convergence of Problem
Pε towards effective models in the limit ε → 0 by means of rigorous upscaling. We
present the upscaling for the parameter range (κ, λ) ∈ [−1,∞) × (−∞, 1) except
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for the case when κ = −1, λ ∈ (−1, 1). This corresponds to scenarios in which the
inverse fracture width is an upper bound for the ratio of the fracture porosity to the
matrix and the fracture width is a lower bound for the ratio of the fracture hydraulic
conductivity to the matrix.
We employ techniques from [18], where upscaling was considered in the context of
crystal dissolution and precipitation, and [49], which is concerned with the upscaling
of a reactive transport model. For a more detailed presentation of the results, we refer
the reader to [39].

5.1. Kirchhoff transformation and rescaling of the geometry. We apply
the Kirchhoff transform (see [4]) in each subdomain. For this, we introduce a function

(59) Kρ : R→ R, uρ := Kρ(ψρ) =

∫ ψρ

0

Kρ(Sρ(ϕ)) dϕ.

Due to the assumptions on Kρ and Sρ, the Kirchhoff transformation is invertible and
one can define the property

(60) bρ(uρ) := Sρ ◦ K−1
ρ (uρ).

Note that bρ is Lipschitz continuous due to the Lipschitz continuity of Sρ and K−1
ρ .

By the chain rule, one obtains ∇uρ = Kρ(Sρ(ψρ))∇ψρ, which transforms Problem
Pε into a semi-linear problem. Since Kρ is Lipschitz continuous, the Kirchhoff trans-
formed problem is equivalent to the original problem [41], and all a priori estimates
from the previous section are satisfied for the Kirchhoff transformed variables, too.
The advantage of the Kirchhoff transformed formulation is the linear flux term. Ho-
wever, this comes at the cost of a non-linear transmission condition for the Kirchhoff
transformed pressure variable.
We rescale the fracture in horizontal direction by defining z = x/ε, and introduce the
following notations:

(61)

ũf (t, z, y) = uf (t, zε, y),

ũf,I(z, y) = uf,I(zε, y) := Kf (ψf,I)(zε, y),

f̃f (t, z, y) = ff (t, zε, y).

To unify the notation, we set z = x in the matrix blocks. For the notation of the
domains, we use the following conventions: since the solid matrix subdomains are
merely translated when ε varies, we omit the ε in the notation and write Ωmj without
a superscript. The fracture domain will be denoted as Ωεf := (− ε2 ,

ε
2 )× (0, 1), and the

shorthand notation Ωf := Ω1
f will be used. The solution in each domain uερ will be

endowed with a superscript ε to emphasise the ε-dependence.
Moreover, we introduce the one-dimensional fracture domain for the effective

models Γ = {0}×(0, 1) and the function space for the fracture solution in the effective
model

(62) V̄f := {u ∈ L2(Γ) : ∂yu ∈ L2(Γ), u = 0 on ∂Γ} = W 1,2
0 (Γ).

Figure 2 illustrates the geometry of the problem in rescaled variables and the geometry
of the effective models, in which the fracture has become one-dimensional.
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(−1.5, 0) (−0.5, 0) (0.5, 0) (1.5, 0)

(−1.5, 1) (−0.5, 1) (0.5, 1) (1.5, 1)

Ωm1 Ωm2
Ωf

Γ1 Γ2

y

z

ε→ 0

(−1, 0) (0, 0) (1, 0)

(−1, 1) (0, 1) (1, 1)

Ωm1 Ωm2Γ

y

z

Fig. 2. Geometry with two-dimensional fracture in rescaled variables (left) and upscaled geo-
metry with one-dimensional fracture (right)

For each ε > 0, we define the z-averaged quantities
(63)

ūεf (t, y) :=

∫ 1
2

− 1
2

ũεf (t, z, y) dz, f̄f (t, y) :=

∫ 1
2

− 1
2

f̃f (t, z, y) dz,

b̄f (ũεf )(t, y) :=

∫ 1
2

− 1
2

bf (ũεf )(t, z, y) dz, b̄f (ũεf,I)(y) :=

∫ 1
2

− 1
2

bf (ũεf,I)(z, y) dz,

and

(64)

ŭεf (t) :=

∫ 1

0

ūεf (t, y) dy, f̆f (t) =

∫ 1

0

f̄f (t, y) dy,

b̆f (ũεf )(t) :=

∫ 1

0

b̄f (ũεf )(t, y) dy, b̆f (ũεf,I) :=

∫ 1

0

b̄f (ũf,I)(y) dy.

We state the weak formulation in terms of the Kirchhoff transformed and rescaled
variables. In terms of the rescaled variables, the geometry is ε-independent and the
x-argument of the functions associated with the fracture becomes ε-dependent instead:

Definition 20 (Weak solution in rescaled variables). A triple (uεm1
, uεm2

, ũεf )

∈ L2(0, T ;Vm1)×L2(0, T ;Vm2)×L2(0, T ;Vf ) is called a weak solution to the Kirchhoff
transformed formulation of Problem Pε if
(65)
K−1
m (uεm1

) = K−1
f (ũεf ) on Γ1 and K−1

m (uεm2
) = K−1

f (ũεf ) on Γ2 for a.e. t ∈ [0, T ],

in the sense of traces, and

(66)

−
2∑
j=1

(
bm(uεmj ), ∂tφmj

)
ΩTmj

− εκ+1
(
bf (ũεf ), ∂tφf

)
ΩTf

+
2∑
j=1

(
∇uεmj ,∇φmj

)
ΩTmj

+ ελ−1
(
∂zũ

ε
f , ∂zφf

)
ΩTf

+ ελ+1
(
∂yũ

ε
f , ∂yφf

)
ΩTf

=
2∑
j=1

(
fmj , φmj

)
ΩTmj

+ ε
(
f̃f , φf

)
ΩTf

+
2∑
j=1

(
bm(umj ,I), φmj (0)

)
Ωmj

+ εκ+1 (bf (ũf,I), φf (0))Ωf
,

for all (φm1
, φm2

, φf ) ∈W 1,2(0, T ;Vm1
)×W 1,2(0, T ;Vm2

)×W 1,2(0, T ;Vf ) satisfying

(67) φm1 = φf on Γ1 and φm2 = φf on Γ2 for a.e. t ∈ [0, T ],
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and

(68) φρ(T ) = 0 for ρ ∈ {m1,m2, f}.

The formulation in Definition 20 is the starting point for deriving limit models for all
choices of κ and λ.

5.2. Uniform estimates with respect to ε. In order to prove the convergence
of Problem Pε towards an effective model, we establish estimates for the solution and
its derivatives independent of ε, similar to the uniform estimates with respect to ∆t
in Section 4.
Testing with z-independent functions φf (t, z, y) = φf (t, y) in the fracture (and hence
φm1

and φm2
fulfilling φm1

(t, z, y)|Γ1
= φf (t, y) = φm2

(t, z, y)|Γ2
for a.e. t ∈ [0, T ]) in

Definition 20 gives
(69)

−
2∑
j=1

(
bm(uεmj ), ∂tφmj

)
ΩTmj

− εκ+1(b̄f (ũεf ), ∂tφf )ΓT +
2∑
j=1

(
∇uεmj ,∇φmj

)
ΩTmj

+ ελ+1(∂yū
ε
f , ∂yφf )ΓT =

2∑
j=1

(
fmj , φmj

)
ΩTmj

+ ε(f̄f , φf )ΓT

+

2∑
j=1

(
bm(umj ,I), φmj (0)

)
Ωmj

+ εκ+1
(
b̄f (ũf,I), φf (0)

)
Γ
,

for all (φm1
, φm2

, φf ) ∈W 1,2(0, T ;Vm1
)×W 1,2(0, T ;Vm2

)×W 1,2(0, T ; V̄f ) satisfying
φm1

(t, z, y)|Γ1
= φf (t, y) = φm2

(t, z, y)|Γ2
for a.e. t ∈ [0, T ] and φρ(T ) = 0 for

ρ ∈ {m1,m2, f}.
Based on the a priori estimate in Lemma 11, one shows that the solution and its
derivatives can be bounded uniformly in ε for κ ≥ −1, λ ≤ −1, and ε > 0 sufficiently
small; in addition, we get uniform essential bounds for the solution since the constant
Mψ in Lemma 13 is ε-independent:

Lemma 21. There exists a C > 0 independent of ε such that

(70)

2∑
j=1

‖uεmj‖
2
L2(0,T ;Vmj ) + εκ+1‖ũεf‖2ΩTf + ελ+1‖∂yũεf‖2ΩTf + ελ−1‖∂zũεf‖2ΩTf ≤ C,

2∑
j=1

‖uεmj‖L∞(ΩTmj
) + ‖ũεf‖L∞(ΩTf ) ≤ C.

These estimates are directly carried over to the averages of fracture solution by virtue
of Jensen’s inequality:

Lemma 22. There exists a C > 0 independent of ε such that

(71) εκ+1‖ūεf‖2ΓT +ελ+1‖∂yūεf‖2ΓT +‖ūεf‖L∞(ΓT ) +εκ+1‖ŭεf‖2(0,T ) +‖ŭεf‖L∞(0,T ) ≤ C.

As remarked before (see Remark 16), it remains to show that the time derivative
estimate in the fracture ∂tb(u

ε
f ) ∈ L2(0, T ;W−1,2(Ωf )) as obtained in Lemma 15 is

independent of ε. We have the following result.

Lemma 23. Under the assumption that the source term ε−2κ ‖f̃f‖2ΩTf ≤ C and

the initial data ελ−κ−2W(ũεf,I) ≤ C, the functional ∂tbρ is uniformly bounded with

respect to ε in L2(0, T ;W−1,2(Ωρ)) for ρ ∈ {m1,m2, f}.
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Proof. For Ωρ, ρ = {m1,m2} the proof in the Lemma 15, carries unchanged to
show that ∂tbρ, ρ = {m1,m2} is bounded uniformly in ε in the L2(0, T ;W−1,2(Ωρ))
norm. What remains is to consider the fracture case. We use a duality technique
for deducing the ε independence. In (66), choose φf ∈ L2(0, T ;W 1,2(Ωf )), φf = 0
on ∂Ωf and φmj = 0, j ∈ {1, 2}. Note that putting the time derivative back to bf is
justified in view of Remark 19. This leads to,

(72)

εκ+1
(
∂tbf (ũεf ), φf

)
ΩTf

+ ελ−1
(
∂zũ

ε
f , ∂zφf

)
ΩTf

+ ελ+1
(
∂yũ

ε
f , ∂yφf

)
ΩTf

= ε
(
f̃f , φf

)
ΩTf

Our approach is to use duality technique in the above equation to deduce the
L2(0, T ;W−1,2(Ωf )) estimate in the fracture. However, the presence of ε dependent
coefficients require us to make precise this dependency. This is achieved by using the
equivalency of W 1,2 norms. Let G solve the following elliptic problem for a.e. t,

(73)
−∇ · (Aε∇G) = ∂tbf , in Ωf ,

G = 0, on ∂Ωf ,

where

Aε =

[
ελ−1 0
0 ελ+1

]
.

For notational ease, we have suppressed dependence of G on ε. Define an W 1,2
0 (Ωf )

equivalent norm,

‖v‖1,ε := ‖
√
Aε∇v‖Ωf ,

for all v ∈W 1,2
0 (Ωf ). In terms of variational formulation,

(
√
Aε∇G,

√
Aε∇v)Ωf = 〈∂tbf , v〉W−1,2(Ωf ),W 1,2

0 (Ωf )

for all v ∈ W 1,2
0 (Ωf ). For the norm of the dual space to W 1,2

0 (Ωf ), a simple exercise
gives,

‖∂tbf‖−1,ε = ‖
√
Aε∇G‖Ωf .

On the other hand, we have for the W 1,2
0 (Ωf ) equivalence of norms,

ε
λ+1
2 ‖∇G‖Ωf ≤ ‖

√
Aε∇G‖Ωf ≤ ε

λ−1
2 ‖∇G‖Ωf .(74)

Note that the L2 norm for the middle term depends on the ε whereas the norms on
the left and right are independence of ε. With the ε-independent norm defined as,

‖∂tbf‖W−1,2(Ωf ) = sup
φ∈W 1,2(Ωf )

〈∂tbf , φ〉W−1,2(Ωf ),W 1,2
0 (Ωf )

‖∇φ‖Ωf
we relate using (74)

‖∂tbf‖W−1,2(Ωf ) = sup
φ∈W 1,2(Ωf )

〈∂tbf , φ〉W−1,2(Ωf ),W 1,2
0 (Ωf )

‖∇φ‖Ωf

≤ sup
φ∈W 1,2(Ωf )

‖∂tbf‖−1,ε
‖φ‖1,ε
‖∇φ‖Ωf

≤ ‖∂tbf‖−1,ε ε
λ−1
2 .
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Choosing φf = G in (72) and integrating in time from 0 to t, we obtain
(75)

εκ+1

∫ t

0

‖∂τ bf‖2−1,ε dτ +

∫ t

0

〈∂τ bf (ũεf ), ũεf 〉W−1,2(Ωf ),W 1,2
0 (Ωf ) dτ = ε

∫ t

0

(
f̃f , G

)
Ωf

dτ

≤ ε2+α 1

2
‖f̃f‖2Ωtf +

1

2
ε−α−λ+1

(
ελ−1‖∂zG‖2Ωtf

)
,

where we choose α = −(κ+ λ) to get

εκ+1

∫ t

0

‖∂τ bf‖2−1,ε dτ +

∫ t

0

〈∂τ bf (ũεf ), ũεf 〉W−1,2(Ωf ),W 1,2
0 (Ωf ) dτ ≤

1

2
ε2−κ−λ‖f̃f‖2Ωtf

+
1

2
εκ+1

∫ t

0

‖∂tbf‖2−1,ε dτ.

This implies,

(76)
εκ+1

∫ t

0

‖∂τ bf‖2−1,ε dτ + 2

∫ t

0

〈∂τ bf (ũεf ), ũεf 〉W−1,2(Ωf ),W 1,2
0 (Ωf ) dτ

≤ ε2−κ−λ‖f̃f‖2ΩTf .

In order to treat the second term in the integral above, recall Wf defined as

Wf (ũf ) =

∫ ũf

0

b′f (ϕ)ϕ dϕ,

and recall the positivity of the above function as stated in Lemma 10. Further, note
that the second term in (76) can be written down as

∫ t

0

〈∂τ bf (ũεf ), ũεf 〉W−1,2(Ωf ),W 1,2
0 (Ωf )dτ =

∫ t

0

d

dτ

(∫
Ωf

Wf (ũf (τ)) d~x

)
dτ

=

∫
Ωf

Wf (ũf (t)) d~x−
∫

Ωf

Wf (ũf,I) d~x.

Using above in (76), we get
(77)

εκ+1

∫ t

0

‖∂τ bf‖2−1,ε dτ + 2

∫
Ωf

W(ũεf (t)) d~x ≤ ε2−κ−λ‖f̃f‖2ΩTf + 2

∫
Ωf

W(ũεf,I) d~x.

Further, we use the equivalence of norms to obtain,

(78)

∫ t

0

‖∂τ bf‖2W−1,2(Ωf ) dτ ≤ ε
λ−1

∫ t

0

‖∂τ bf‖2−1,ε dτ ≤ ε−2κ‖f̃f‖2Ωtf

+ 2 ελ−κ−2

∫
Ωf

W(ũεf,I) d~x.

As we assume that the source term ε−2κ‖f̃f‖2ΩTf ≤ C and the initial data satisfies

ελ−κ−2W(ũεf,I) ≤ C, the right hand side is uniformly bounded. The positivity of the
second term in (76) proves the lemma.
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From these estimates, we obtain the following convergent subsequences using
compactness arguments as ε→ 0:

(79)

uεmj → Umj strongly in L2(0, T ;L2(Ωmj )),

uεmj ⇀ Umj weakly in L2(0, T ;Vmj ),

ūεf ⇀ Ūf weakly in L2(0, T ;L2(Γ)).

For λ ≤ −1, the gradient of the fracture solution ∇ũεf is bounded in L2(0, T ;L2(Ωf ))
according to Lemma 21. From this, we infer just as for the matrix block solutions in
equation (79) that there exists a subsequence of ε→ 0 along which

(80)

ũεf → Uf , strongly in L2(0, T ;L2(Ωf )),

ūεf → Ūf , strongly in L2(0, T ;L2(Γ)),

ūεf ⇀ Ūf weakly in L2(0, T ; V̄f ),

ŭεf → Ŭf strongly in L2(0, T ).

We will make use of Proposition 4.3 in [18]:

Proposition 24. Let Ω = (− 1
2 ,

1
2 )× (0, L), f ∈ W 1,2(Ω), and let f̄ : [0, L] → R

be defined as f̄(y) =
∫ 1

2

− 1
2

f(ξ, y) dξ. Then, in the sense of traces

(81) ‖f(ξ0, ·)− f̄‖(0,L) ≤ ‖∂ξf‖Ω,

for each ξ0 ∈ [− 1
2 ,

1
2 ].

This proposition and Lemma 21 yield the following estimate:

Lemma 25. There exists a C > 0 independent of ε such that for any z0 ∈ [− 1
2 ,

1
2 ]

it holds

(82) ‖ũεf (·, z0, ·)− ūεf‖ΓT ≤ ε
1−λ
2 C.

Lemma 25 shows that λ ≤ 1 is sufficient in order to keep the left hand side in equation
(82) bounded when ε vanishes (and convergence is achieved for λ < 1).

5.3. Upscaling theorem. It remains to show that the limit functions are a
solution to the respective effective model:

Theorem 26 (Upscaling theorem). For the following ranges of κ and λ, these
tupels are a solution to the following effective models:

(83)

κ = −1, λ = −1 : (Um1
, Um2

, Ūf ) Effective model I,

κ ∈ (−1,∞), λ = −1 : (Um1
, Um2

, Uf ) Effective model II,

κ = −1, λ ∈ (−∞,−1) : (Um1
, Um2

, Ŭf ) Effective model III,

κ ∈ (−1,∞), λ ∈ (−∞,−1) : (Um1 , Um2 , Ŭf ) Effective model IV,

κ ∈ (−1,∞), λ ∈ (−1, 1) : (Um1 , Um2 , Ūf ) Effective model V.

Proof. We give the proof for λ ≥ −1, the other cases are treated similarly, where
one uses spatially constant test functions for the fracture in (69), i.e. φf (t, z, y) =
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φf (t). Note that for the choice Vf = W 1,2
0 (Ωf ), the only spatially constant test

function is the zero function, but the extension to more general boundary conditions
is straightforward.

Choose arbitrary test functions (φm1 , φm2 , φf ) ∈W 1,2(0, T ;Vm1)×W 1,2(0, T ;Vm2)×
W 1,2(0, T ; V̄f ) satisfying φm1

(t, z, y)|Γ1
= φf (t, y) = φm2

(t, z, y)|Γ2
for a.e. t ∈ [0, T ]

and φρ(T ) = 0 for ρ ∈ {m1,m2, f} and denote the terms in equation (69) by I1, . . . , I8.
For all values of κ and λ, the term I6 vanishes in the limit ε→ 0 due to

|I6| = ε
∣∣∣(f̄εf , φf)ΓT ∣∣∣ ≤ ε‖f̄εf‖ΓT ‖φf‖ΓT → 0.

The terms I5 and I7 do not depend on ε and remain unchanged as ε approaches zero.
The strong L2 convergence from equation (79)1 and the Lipschitz continuity of bm
give

I1 = −
2∑
j=1

(
bm(uεmj ), ∂tφmj

)
ΩTmj

→ −
2∑
j=1

(
bm(Umj ), ∂tφmj

)
ΩTmj

.

Making use of the weak convergence from equation (79)2, we obtain

I3 =
2∑
j=1

(
∇uεmj ,∇φmj

)
ΩTmj

→
(
∇Umj ,∇φmj

)
ΩTmj

.

As regards the fracture solution, we distinguish the cases λ = −1 and λ > −1: in case
of λ = −1, the weak convergence from equation (80)3 yields

I4 =
(
∂yū

ε
f , ∂yφf

)
ΓT
→
(
∂yŪf , ∂yφf

)
ΓT
,

whereas for λ > −1, we get

|I4| = ελ+1
∣∣∣(∂yūεf , ∂yφf)ΓT ∣∣∣ ≤ ελ+1‖∂yūεf‖ΓT ‖∂yφf‖ΓT ≤ ε

λ+1
2 C‖∂yφf‖ΓT → 0,

where we made use of the estimate for ∂yū
ε
f in Lemma 22.

It remains to consider the terms I2 and I8. Here, we make a distinction between
the cases κ = −1 and κ > −1. First, consider the case κ = −1, where I2 =

−
(
b̄f (ũεf ), ∂tφf

)
ΓT

and I8 is independent of ε.

For the term I2, we start by estimating∣∣∣∣∣ (b̄f (ũεf )− bf (Ūf ), ∂tφf
)

ΓT

∣∣∣∣∣ ≤
∣∣∣∣∣ (b̄f (ũεf )− bf (ūεf ), ∂tφf

)
ΓT

∣∣∣∣∣
+

∣∣∣∣∣ (bf (ūεf )− bf (Ūf ), ∂tφf
)

ΓT

∣∣∣∣∣.
For the first term on the right hand side we obtain using the Lipschitz continuity of
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bf and Lemma 25∣∣∣∣∣ (b̄f (ũεf )− bf (ūεf ), ∂tφf
)

ΓT

∣∣∣∣∣ ≤ ‖b̄f (ũεf )− bf (ūεf )‖ΓT ‖∂tφf‖ΓT

=
∥∥∥∫ 1

2

− 1
2

(
bf (ũεf )− bf (ūεf )

)
dz
∥∥∥

ΓT
‖∂tφf‖ΓT

≤MS

∥∥∥∫ 1
2

− 1
2

∣∣∣ũεf − ūεf ∣∣∣ dz ∥∥∥
ΓT
‖∂tφf‖ΓT

≤MSC ε
1−λ
2 ‖∂tφf‖ΓT ,

which goes to zero as ε→ 0.
The second term vanishes due to∣∣∣∣∣ (bf (ūεf )− bf (Ūf ), ∂tφf

)
ΓT

∣∣∣∣∣ ≤MS‖ūεf − Ūf‖ΓT ‖∂tφf‖ΓT ,

and the strong convergence in equation (80)2. This shows that

I2 = −
(
b̄f (ũεf ), ∂tφf

)
ΓT
→ −

(
bf (Ūf ), ∂tφf

)
ΓT
.

For κ > −1, we estimate

|I2| = εκ+1
∣∣∣(b̄f (ũεf ), ∂tφf

)
ΓT

∣∣∣ ≤ εκ+1MS‖ũεf‖ΩTf ‖∂tφf‖ΓT ≤ ε
κ+1MSC‖∂tφf‖ΓT ,

which vanishes in view of Lemma 22, and similarly, we get

|I8| = εκ+1
∣∣∣(b̄f (ũf,I), φf (0)

)
Γ

∣∣∣ ≤ εκ+1MS‖ũf,I‖Ωf ‖φf (0)‖Γ ≤ εκ+1MSC‖φf (0)‖Γ

vanishing in the limit. Finally, the Dirichlet interface condition for the pressure head
has to be proven. It turns out that a weakly convergent subsequence in L2(0, T ;L2(Γ))
in the fracture suffices for this purpose. As the weak convergence of ūεf towards Ūf
does not directly imply the weak convergence of K−1

f (ūεf ) towards K−1
f (Ūf ), we define

the function R(umj ) := (Kf ◦K−1
m )(umj ) in order to transform the interface condition

K−1
m (Umj ) = K−1

f (Ūf ) on Γj into a linear expression in Ūf , namely

R(Umj ) = Ūf on Γj .

Now we take an arbitrary test function φ ∈ L2(0, T ;L2(Γj)) and estimate∣∣∣ (R(Umj )− Ūf , φ
)

ΓTj

∣∣∣ ≤ ∣∣∣ (R(Umj )−R(uεmj ), φ
)

ΓTj

∣∣∣+
∣∣∣ (R(uεmj )− ũ

ε
f , φ
)

ΓTj

∣∣∣
+
∣∣∣ (ũεf − ūεf , φ)ΓTj ∣∣∣+

∣∣∣ (ūεf − Ūf , φ)ΓTj ∣∣∣.
Let us denote the terms on the right hand side by J1, . . . , J4. As uεmj and ũεf satisfy
the interface condition, we immediately get J2 = 0. Note that Assumption (AK)
implies the Lipschitz continuity of R with Lipschitz constant MK

mK
. Making use of this

and the Cauchy–Schwarz inequality yields

J1 ≤
MK

mK
‖Umj − uεmj‖ΓTj ‖φ‖ΓTj ,
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and one shows as in the proof of Theorem 18 that J1 → 0 in the limit ε → 0 using
the trace inequality, the strong convergence in equation (79)1 and the boundedness
of the gradient due to the weak convergence in equation (79)2. For the term J3, we
obtain

J3 ≤ ‖ũεf − ūεf‖ΓTj ‖φ‖ΓTj ,

and from Lemma 25 we infer that J3 → 0. Finally, the weak convergence in equation
(80)3 yields J4 → 0. Since φ ∈ L2(0, T ;L2(Γj)) was arbitrary, one has R(Umj ) = Ūf
on Γj and thereforeK−1

m (Umj ) = K−1
f (Ūf ) on Γj in the sense of traces, which concludes

the proof.

Remark 27. The porous matrix domain Ωm1
has the interface at x = 0 with

fracture domain that corresponds to z = −1 from the fracture domain side. Similarly,
for Ωm2

has the interface at x = 0 with fracture domain boundary at z = 1. In
the case when the solution in the fracture domain is independent of z, the fracture
collapses as an interface (see the effective equations 1 – 5 above) and the two interfaces
from the porous matrix sides coincide.

Remark 28. We remark now the reason for leaving out the case when κ = −1, λ ∈
(−1, 1) in our analysis. From (79) we get the boundedness of uεf and the smoothness

of b̄f (uεf ) implies the existence of a weak limit for b̄εf . However, the identification of

this limit in (69) to b̄f (uf ) requires a strong convergence of ūεf . As the estimates in
Lemma 22 show, the gradients of ūεf is not bounded uniformly with respect to ε and
therefore, the strong convergence of ūεf cannot be deduced. We therefore exclude this
case in our analysis.

6. Numerical simulation. This section is dedicated to a numerical study ai-
ming at the numerical validation of the theoretical upscaling result. The simulation
is carried out using a standard finite volume scheme implemented in MATLAB. The
code solves the model in physical variables as stated in Problem Pε. We use a mat-
ching grid, composed of uniform rectangular cells for partitioning the two-dimensional
subdomains, and intervals of equal size for the one-dimensional fracture in the effective
model. The flux is computed with a two-point flux approximation (TPFA) scheme.
We use an implicit Euler discretisation in time with fixed time step, and the modified
Picard scheme for the linearisation. We employ a monolithic approach and solve the
system of equations for the entire domain at once.

6.1. Realistic example (κ = λ = −1). Our numerical example deals with the
injection of water into an aquifer, which is crossed by a fracture featuring a higher
permeability. Boundary and initial conditions are illustrated in Figure 3. Although
our analysis was limited to homogeneous Dirichlet conditions, we expect the theore-
tical results to hold for the more interesting boundary conditions in our numerical
example as well. In the simulations with a two-dimensional fracture, the dimension-
less fracture width takes the values ε ∈ {1, 0.1, 0.01, 0.001, 0.0001}. We impose no
flow conditions on the boundary except for the inflow region in the lower edge of the
left matrix block subdomain and the right upper boundary, where a Dirichlet con-
dition allows for outflow. Thus, the water must enter or cross the fracture to leave
the domain. The parameters of the van Genuchten parametrisation of the saturation
and the hydraulic conductivity are listed in Figure 3. These parameters are taken
from [26], and correspond to silt loam and Touchet silt loam in the matrix blocks
and in the fracture, respectively. We fix the reference length L = 1 [m] and take the
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end time of the simulation to be T = 0.45. The time step is chosen as 0.015. The
grid size is taken as ∆x = ∆y = 1/160 in the matrix blocks and ∆y = 1/160 and
∆x ∈ {1/160, 1/800, 1/4000, 1/20000, 1/100000} in the fracture, corresponding to the
different fracture widths ε.

Ωm1 Ωm2
Ωf

Γ1 Γ2

y

x

Van Genuchten parametersGeometry

Boundary conditions

Ωm1 = (−1− ε/2,−ε/2)× (0, 1)

Ωm2 = (ε/2, 1 + ε/2)× (0, 1)

Ωεf = (−ε/2, ε/2)× (0, 1)

Initial condition and source term

ψI ≡ −3

f ≡ 0

no flow

ψ = −3

q = 0.5

Fracture Solid matrix

α 0.500 0.423
θS 0.469 0.396
θR 0.190 0.131
n 7.09 2.06

KS 3.507× 10−5 5.74× 10−7

Fig. 3. Simulation parameters for the realistic example: geometry, initial and boundary condi-
tions, and van Genuchten parameters

The van Genuchten–Mualem parametrisation in our dimensionless setting writes as

(84)

Sρ(ψρ) =

 θR,ρ
θS,ρ

+ (1− θR,ρ
θS,ρ

)
[

1
1+(−αρψρ)nρ

]nρ−1

nρ
, ψρ ≤ 0,

θS,ρ, ψρ > 0,

Kρ(Sρ(ψρ)) =

Θeff,ρ(ψρ)
1
2

[
1−

(
1−Θeff,ρ(ψρ)

nρ
nρ−1

)nρ−1

nρ

]2

, ψρ ≤ 0,

1, ψρ > 0,

where θS stands for the water content of the fully saturated porous medium, θR
denotes the residual water content, α and n are curve fitting parameters expressing

the soil properties, and Θeff(ψ) := θ(ψ)−θR
θS−θR is the effective saturation.

The porosity ratio and the ratio of the reference hydraulic conductivities shall be
given by

(85)
φf
φm

=
θS,f
θS,m

ε−1, and
K̄f

K̄m
=
KS,f

KS,m
ε−1,
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respectively, where KS denotes the saturated hydraulic conductivity.
In the limit ε→ 0, we expect the solution to converge towards Effective model I

with the one-dimensional Richards’ equation governing the flow in the fracture.
Figure 4 depicts the pressure head and the saturation of the effective model at final
time t = T . One observes that the pressure head in the lower left matrix block and
in the lower fracture has risen, whereas the pressure head in the right matrix block
has little increased. Due to the different parametrisations of the hydraulic quantities,
the fracture is less saturated than the surrounding matrix blocks regardless of the
pressure continuity at the fracture.
Figure 5 shows that the averages of the pressure head across the fracture width only
slightly differ from the fracture solution of the effective model, even for large ε. For
ε ≤ 10−2, the L2 errors in all subdomains lie below 10−4, and for ε ≤ 10−3, the
L2 errors are smaller than 10−5, which equals the tolerance of our non-linear solver.
Whereas the errors in the matrix blocks are larger than the error in the fracture for
wide fractures, the errors in the matrix blocks converge faster towards zero for vanis-
hing fracture width.

Fig. 4. Solution to the effective model at t = 0.18, pressure head (left) and saturation (right)

7. Conclusion. We have developed effective equations for replacing a fracture
by an interface for Richards’ equation. The starting geometry is a fracture of small
thickness ε in a porous medium. The effective models are derived as the limit of
ε → 0. The ratios of porosity and absolute permeability of the fracture and the
porous matrix are characterized by εκ and ελ, respectively. The effective equations
depend on the two parameters κ and λ and we cover the cases κ > −1, λ < 1. The
numerical examples show that the upscaled models approximate the ε problem in
a satisfactory manner. Further exploration of the numerical tests for the different
upscaled models will be carried out elsewhere.
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