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UNIQUENESS RESULT FOR AN AGE-DEPENDENT

REACTION-DIFFUSION PROBLEM

VO ANH KHOA, TRAN THE HUNG, AND DANIEL LESNIC

Abstract. This paper is concerned with an age-structured model in pop-

ulation dynamics. We investigate the uniqueness of solution for this type of
nonlinear reaction-diffusion problem when the source term depends on the den-

sity, indicating the presence of, for example, mortality and reaction processes.

Our result shows that in a spatial environment, if two population densities
obey the same evolution equation and possess the same terminal data of time

and age, then their distributions must coincide therein.

1. Introduction

In population dynamics, there are several factors interestingly contributing to
the complicated and nontrivial spatio-temporal spread patterns of diseases. Espe-
cially demographic-disease ages and spatial movement naturally interweave in many
ways. Their correlation and interaction are expected to participate in mathematical
modeling and analysis, and can lead to models with distinct levels of complexity.

As far as we know, disease management measures are often age-dependent and
their effectiveness may also be dependent on the mobility status of the involved
species, such as larvicides and insecticide sprays for mosquito-borne diseases (e.g.
the invasion and spread of West Nile virus in North America in [8]) used to control
the mosquito population at different levels of their maturity. We recall the struc-
tured population model in [12] for the total number of matured individuals in a
single species population at the demographic age, which reads as

ut + ua = D∆u− d0u.(1.1)

Here, t denotes the time, a denotes age, u represents the population density, D and
d0 are, respectively, the diffusion and death rates of the immature individual, under
the assumption that the maturation rate is regulated by the birth process and the
dynamics of the individual during the maturation phase.

A generalized approach for this mosquito-borne disease model is given by the
coupled McKendrick von-Foerster equations (see also [11, 13, 14]) where the reser-
voir as the host and the age-structured host population are observed. Following [2],
the spatial spread of vector-borne diseases model involving age-structure is

(1.2)

{
ut + ua = D1 (a) ∆u− u (d1 (a) + χ (a) m (t, x)) ,

vt + va = D2 (a) ∆v − vd2 (a) + uχ (a) m (t, x) .

Here, u and v play roles as susceptible and infected hosts, respectively, while Di (a)
are the age-dependent diffusivities by natural means, χ(a) is the age-dependent
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transmission coefficient, di (a) are the age-dependent death rates of such hosts for
i = 1, 2 and m can be regarded as the number of infected adult mosquitoes.

Let Ω ⊂ Rn for n ≥ 2 be a bounded, open and connected domain with sufficiently
smooth boundary and let A be the linear second-order differential operator

(1.3) Au (t, a, x) =

n∑
i,j=1

∂

∂xi

(
dij (t, a, x)

∂u (t, a, x)

∂xj

)
,

accounting e.g. for the anisotropic diffusion and possibly taxis processes.
Setting QΩ

T,a†
:= (0, T )× (0, a†)× Ω for T, a† > 0, we consider the problem:

(1.4)


ut + ua −Au = F (t, a, x;u) in QΩ

T,a†
,

u (T, a, x) = u0 (a, x) in (0, a†)× Ω,

u (t, a†, x) = u1 (t, x) in (0, T )× Ω,

where F is a given source term, endowed either with the homogeneous Dirichlet
boundary condition

u (t, a, x) = 0 on (0, T )× (0, a†)× ∂Ω,(1.5)

or with the Robin-type boundary condition

−d(t, a, x)∇u (t, a, x) · n = S(u) on (0, T )× (0, a†)× ∂Ω.(1.6)

Here, n denotes the outward unit normal vector to the boundary ∂Ω, d =
(dij)i,j=1,n is the diffusion tensor and S is some given function.

In this paper, we prove that under certain assumptions on the source term F and
surface reaction S, the solution to the system (1.4) and (1.5) or (1.6) is unique, if it
exists. The present source term F can model several types of polynomial reactions
(e.g. logistic and von Bertalanffy) and even exponential growth (Arrhenius laws).
It can also be modelled as

F (t, a, x;u) = −µ̃ (t;u)u (t, a, x) ,

where µ̃ > 0 is called the time- and density-dependent mortality modulus. This
mortality-related functional usually arises in the Lotka-von Foerster model, where
the simple modulus is

µ̃ (t;u) =

∫ a†

0

∫
Ω

u (t, a, x) dxda,

provided the mortality process is also controlled by the total population at time t
during the whole age and environment.

It is worth noting that when age can be viewed as a temporal time, the first
equation in (1.4) is usually referred to as an ultra-parabolic equation. In literature,
the backward problem (1.4) and (1.5) has been explored in [15] for an abstract
linear class of ultra-parabolic problems. Such problems are basically ill-posed in
the sense that the solution does not depend continuously on the data no matter
how smooth it is. As a matter of fact, a regularization has to be designed. The
starting point of an evolution equation involving multi-time variables is from [6, 7].
It is shown in [6] that the forward problem for (1.4) and (1.5) is well-posed in the
space of Hölder continuous functions. As a byproduct, the result therein provides
the representation of solution, based on the semi-group theory along the upper and
lower triangles dividing the rectangle of times. The evolution of the system with
two different times were discussed by an argument where some diffusion processes
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with memory take place. In the framework of stochastic optimal control, the reader
can be referred to e.g. [9, 10], for related contributions to this problem.

The rest of this paper is organized as follows: Section 2 is devoted to introduce
notation and conventions throughout this paper. In addition, we provide techni-
cal assumptions on parameters and coefficients involved in (1.4). In Section 3, we
deliberately present two subsections where the Dirichlet and Robin-type boundary
conditions are considered, respectively. Our main results are reported in Theorem
3.2 and Theorem 3.5, whilst their cores of proof are based on Lemma 3.1 and Lemma
3.4, respectively. Essentially, the main technique here is inspired from [1, Chapter
6]. This approach was used to treat the backward parabolic operator within the
study of the large-time behavior of solutions to a linear class of initial-boundary
value parabolic equations. It is also helpful in the analysis of regularization for
inverse and ill-posed problems. In this work, we extend the uniqueness result par-
ticularly to a class of semi-linear age-dependent reaction-diffusion equations.

2. Preliminaries

In parallel with using the notation QΩ
T,a†

, the same meaning is also given to the

notation QT,a† = (0, T ) × (0, a†) and QΩ
(t1,t2)×(a1,a2) = (t1, t2) × (a1, a2) × Ω, etc.

throughout this paper. Moreover, depending on the context, by |·| we denote either
the volume measure of a domain or the absolute value of a function.

To this end, for any domain D we also set ‖·‖D to be the norm in L2 (D) and
the same indication goes to the inner product 〈·, ·〉D.

For the sake of our analysis in this work, we need the following set of assumptions:

(A1) The diffusion tensor d = (dij)1≤i,j≤n ∈
[
C1
(
QΩ
T,a†

)]n×n
is symmetric and

there exist positive constants c and c such that

c |ξ|2 ≤
n∑

i,j=1

dij (t, a, x) ξiξj ≤ c |ξ|2 for any ξ ∈ Rn.

(A2) There exists a positive constant M > 0 such that

|∂tdij (t, a, x)|+ |∂adij (t, a, x)| ≤M for all (t, a, x) ∈ QΩ
T,a†

.

(A3) The source term F : QΩ
T,a†
×L2

(
QΩ
T,a†

)
→ R is (0, 1] 3 α-Hölder continuous

with respect to the density argument, i.e. there exists LF > 0 such that for all

(t, a, x) ∈ QΩ
T,a†

,

|F (t, a, x;u1)− F (t, a, x;u2)| ≤ LF |u1 − u2|α for all u1, u2 ∈ L2
(
QΩ
T,a†

)
.

(A4) For the surface reaction term S : L2 (∂Ω)→ R there exists m > 0 such that

〈(∂t + ∂a) (S (u1)− S (u2)) , u1 − u2〉∂Ω ≤ m ‖u1 − u2‖2∂Ω for all u1, u2 ∈ L2 (∂Ω) .

(A5) The surface reaction term S : L2 (∂Ω)→ R is monotone, i.e.

〈S (u1)− S (u2) , u1 − u2〉∂Ω ≥ 0 for all u1, u2 ∈ L2 (∂Ω) .

(A6) The surface reaction term S : L2 (∂Ω)→ R is (0, 1] 3 β-Hölder continuous,
i.e. there exists LS > 0 such that

|S (u1)− S (u2)| ≤ LS |u1 − u2|β for all u1, u2 ∈ L2 (∂Ω) .
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Lemma 2.1. (cf. [4]) For any γ > 0 and α0 ∈ (0, 1], the following inequality holds

(2.1) Xα0 ≤ α0γ
α0−1X + (1− α0) γα0 for all X ≥ 0.

Lemma 2.2. (cf. [3]) There exists a positive constant C0 such that

(2.2) ‖u‖2∂Ω ≤ C0

(
‖u‖2Ω + ‖∇u‖2Ω

)
for any u ∈ H1(Ω).

Remark 2.3. The constant C0 in (2.2) can be identified from the trace inequality

‖u‖2∂Ω ≤ c (ε,Ω) ‖u‖2Ω + ε ‖∇u‖2Ω for any u ∈ H1 (Ω) and ε > 0.(2.3)

This inequality is roughly dependent on the geometry of Ω. As a typical example
from [3, Theorem 2], if Ω is star-shaped, c(ε,Ω) is of the order of O(1+ε−1). When
u has zero mean on ∂Ω, i.e.

∫
∂Ω
udσx = 0, then we have the stronger Poincaré

inequality ‖u‖2∂Ω ≤ C̃0 ‖∇u‖2Ω, for some constant C̃0 > 0.

3. Main results

3.1. Dirichlet boundary condition (1.5). Let us set the function space

WΩ
T,a†

:= C
(
QT,a† ;H

1
0 (Ω)

)
∩ L2

(
QT,a† ;H

2 (Ω)
)
∩ C1

(
QT,a† ;H

1
0 (Ω)

)
.(3.1)

Assume that there exist two solutions u1 and u2 of (1.4) and (1.5) that belong
to WΩ

T,a†
. Then their difference w = u1 − u2 ∈WΩ

T,a†
satisfies

(3.2)


wt + wa −Aw = F (t, a, x;u1)− F (t, a, x;u2) in QΩ

T,a†
,

w (t, a, x) = 0 on Q∂Ω
T,a†

,

w (T, a, x) = 0 in (0, a†)× Ω,

w (t, a†, x) = 0 in (0, T )× Ω.

Let us denote

PΩ
T,a†

:=
{
u ∈WΩ

T,a†
: u|∂Ω = 0, u|t∈{0,T} = 0, u|a∈{0,a†} = 0

}
and λ (t, a) := t− T + a− a† − η < 0 for some η > 0.

Lemma 3.1. Assume (A1) and (A2) hold. Then for any v ∈ PΩ
T,a†

, m ∈ N∗ and

k ∈ R∗+, we have∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†
≥ 4m

k

∥∥λ−mk −1v
∥∥2

QΩ
T,a†
−M

∥∥λ−mk ∇v∥∥2

QΩ
T,a†

.(3.3)

Moreover, if 0 < T + a† ≤ µ for a sufficiently small constant µ > 0, there exists a
positive K such that

(3.4) K
∥∥λ−mk (Av − vt − va)

∥∥2

QΩ
T,a†
≥
∥∥λ−mk −1v

∥∥2

QΩ
T,a†

+
1

2

∥∥λ−mk ∇v∥∥2

QΩ
T,a†

,

for sufficiently large m.

Proof. Let z = λ−
m
k v ∈ PΩ

T,a†
. Then

(3.5) λ−
m
k (Av − vt − va) = Az − (zt + za)− 2m

k
λ−1z.
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By the definition of inner product in L2
(
QΩ
T,a†

)
, we obtain∥∥λ−mk (Av − vt − va)

∥∥2

QΩ
T,a†

= ‖zt + za‖2QΩ
T,a†
− 2 〈zt + za,Az〉QΩ

T,a†

+
4m

k

〈
λ−1z, zt + za

〉
QΩ
T,a†

+

∥∥∥∥Az − 2m

k
λ−1z

∥∥∥∥2

QΩ
T,a†

.(3.6)

For the second term in right-hand side (RHS) of (3.6), using integration by parts

−2 〈zt + za,Az〉QΩ
T,a†

= 2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

(∂t∂xiz + ∂a∂xiz) dij∂xjzdxdadt

= 2

∫ T

0

∫ a†

0

∫
Ω

(∂t + ∂a)

 ∑
1≤i,j≤n

∂xizdij∂xjz

 dxdadt

− 2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xiz(∂t + ∂a)
(
dij∂xjz

)
dxdadt

= −2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xiz(∂t + ∂a) (dij) ∂xjzdxdadt

− 2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xizdij(∂t + ∂a)∂xjzdxdadt,

where we have used that z ∈ PΩ
T,a†

. Since dij = dji (cf. (A1)), from the first and

fifth rows we obtain

2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

(∂t + ∂a) (∂xiz) dij∂xjzdxdadt

= −
∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xiz (∂t + ∂a) (dij) ∂xjzdxdadt.

Thus, we obtain that
(3.7)

− 2 〈zt + za,Az〉QΩ
T,a†

= −
∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xiz (∂t + ∂a) (dij) ∂xjzdxdadt.

In the same manner, the third term in the RHS of (3.6) is

4m

k

〈
λ−1z, zt + za

〉
QΩ
T,a†

=
2m

k

∫ T

0

∫ a†

0

∫
Ω

(∂t + ∂a)
(
λ−1z2

)
dxdadt

+
4m

k

∫ T

0

∫ a†

0

∫
Ω

λ−2z2dxdadt =
4m

k

∥∥λ−1z
∥∥2

QΩ
T,a†

.(3.8)

Using (A2), from (3.7) and (3.8), we obtain∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†
≥ 4m

k

∥∥λ−1z
∥∥2

QΩ
T,a†

−M
∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∣∣∂xiz∂xjz∣∣ dxdadt ≥ 4m

k

∥∥λ−1z
∥∥2

QΩ
T,a†
−M ‖∇z‖2QΩ

T,a†
.
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Substituting z = λ−
m
k v, we end the proof of (3.3).

Using (A1), integration by parts and |λ (t, a)| ≤ T + a† + η we have

−
〈
λ−

2m
k v,Av − vt − va

〉
QΩ
T,a†

≥ −2m

k
(T + a† + η)

∥∥λ−mk −1v
∥∥2

QΩ
T,a†

+ c
∥∥λ−mk ∇v∥∥2

QΩ
T,a†

(3.9)

It then follows from (3.3) that (3.9) can be estimated by

−
〈
λ−

2m
k v,Av − vt − va

〉
QΩ
T,a†

≥ − (T + a† + η)

2

(∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

+M
∥∥λ−mk ∇v∥∥2

QΩ
T,a†

)
+ c

∥∥λ−mk ∇v∥∥2

QΩ
T,a†

.(3.10)

Using (3.3), we have

−
〈
λ−

2m
k v,Av − vt − va

〉
QΩ
T,a†

≤ 1

2

∥∥λ−mk −1v
∥∥2

QΩ
T,a†

+
1

2

∥∥λ−mk +1 (Av − vt − va)
∥∥2

QΩ
T,a†

≤ k

8m

(∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

+M
∥∥λ−mk ∇v∥∥2

QΩ
T,a†

)
+

(T + a† + η)
2

2

∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

.

Combining this with (3.10) then reads as

c
∥∥λ−mk ∇v∥∥2

QΩ
T,a†

≤

(
k

8m
+

(T + a† + η)

2
+

(T + a† + η)
2

2

)∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

+

(
(T + a† + η)M

2
+
kM

8m

)∥∥λ−mk ∇v∥∥2

QΩ
T,a†

.

Accordingly, if µ0 ≥ µ ≥ T + a† > 0, η0 ≥ η > 0 and m0 are such that

2

(
(µ0 + η0)M

2
+
kM

8m0

)
≤ c,(3.11)

then for any m ≥ m0, we obtain∥∥λ−mk ∇v∥∥2

QΩ
T,a†
≤ C1

∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

,(3.12)

where C1 := 2
c

(
k

8m + (µ+η)
2 + (µ+η)2

2

)
. Combining (3.12) and (3.3), we conclude

that ∥∥λ−mk −1v
∥∥2

QΩ
T,a†

+
1

2

∥∥λ−mk ∇v∥∥2

QΩ
T,a†

≤
[
k

4m
+ C1

(
1

2
+
kM

4m

)]∥∥λ−mk (Av − vt − va)
∥∥2

QΩ
T,a†

.

Then denoting C2 = 2
c

(
k

8m0
+ (µ0+η0)

2 + (µ0+η0)2

2

)
and choosing

(3.13) K :=
k

4m0
+ C2

(
1

2
+
kM

4m0

)
,
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we conclude that (3.4) holds for m ≥ m0. �

Let us now choose m0 sufficiently large, and µ0 and η0 sufficiently small such
that K given by (3.13) satisfies

(3.14) 0 < K ≤ 1

4αL2
F

.

Let also 0 < η1 ≤ min{1, η0} and choose

(3.15) η = η1, µ
′
0 = η

m( 1
α
−1)

m( 1
α
−1)+k 2

k

2m( 1
α
−1)+2k − η > 0.

We consider here T + a† ≤ µ′0 since the uniqueness result for the latter case
T + a† > µ′0 is a direct consequence from the former case. In that case, the time
and age intervals can be divided into many countable subsets whose lengths are not
larger than µ′0, which brings us back to the former case.

Let 0 < t1 < t2 < T and 0 < a1 < a2 < a† and take κ : QT,a† → R such that it
is twice continuously differentiable in (t1, t2)× (a1, a2) and

(3.16) κ (t, a) =

{
0 if (t, a) ∈ QT,a†\ ((t1, t2)× (a1, a2) ∪ [t2, T ]× [a2, a†]) ,

1 if (t, a) ∈ [t2, T ]× [a2, a†] .

Let v = κw, where w is the solution of (3.2), then notice that v ∈ PΩ
T,a†

. Starting

from the estimate (3.4), we have that for sufficiently large m ≥ m0

K
∥∥λ−mk (Av − vt − va)‖2QΩ

(t1,t2)×(a1,a2)
+K

∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ

(t2,T )×(a2,a†)

≥
∥∥λ−mk −1w

∥∥2

QΩ

(t2,T )×(a2,a†)
+

1

2

∥∥λ−mk ∇v∥∥2

QΩ

(t2,T )×(a2,a†)
.(3.17)

From (3.2) and (A3), we get λ−
2m
k (Aw − wt − wa)

2 ≤ λ−
2m
k L2

F |w|
2α

, then ap-

plying Lemma 2.1 with X = |w|2 > 0, α0 = α and

(3.18) γ = [(t2 − t1)(a2 − a1)]
− 1
α λ

2m
kα ‖λ−mk ‖

2
α

(t1,t2)×(a1,a2) > 0,

we have

λ−
2m
k (Aw − wt − wa)

2 ≤ αL2
F

λ−
2m
kα ‖λ−mk ‖

2
α (α−1)

(t1,t2)×(a1,a2)

[(t2 − t1)(a2 − a1)]
1− 1

α

w2

+ (1− α)L2
F

‖λ−mk ‖2(t1,t2)×(a1,a2)

(t2 − t1)(a2 − a1)
.

Integrating both sides over Ω, we have

∥∥λ−mk (Aw − wt − wa)
∥∥2

Ω
≤ αL2

F

λ−
2m
kα + 2m

k ‖λ−mk ‖
2
α (α−1)

(t1,t2)×(a1,a2)

[(t2 − t1)(a2 − a1)]
1− 1

α

λ−
2m
k ‖w‖2Ω

+ (1− α)|Ω|L2
F

‖λ−mk ‖2(t1,t2)×(a1,a2)

(t2 − t1)(a2 − a1)
.(3.19)
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Notice that for α ∈ (0, 1], it holds λ−
2m
kα + 2m

k = λ
2m
k (1− 1

α ) ≤ η
2m
k (1− 1

α ). Using this
bound and integrating both sides of (3.19) over (t2, T )× (a2, a†), we obtain∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ

(t2,T )×(a2,a†)

≤ αL2
F

∥∥λ−mk ∥∥2(1− 1
α )

(t1,t2)×(a1,a2)

(t2 − t1)
1− 1

α (a2 − a1)
1− 1

α

∥∥λ−mk w∥∥2

QΩ

(t2,T )×(a2,a†)
η

2m
k (1− 1

α )

+ (1− α) |Ω| (T − t2) (a† − a2)

(t2 − t1) (a2 − a1)
L2
F

∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)
.(3.20)

Using that |λ| ≤ µ′0 + η, we have∥∥λ−mk ∥∥2(1− 1
α )

(t1,t2)×(a1,a2)
≤ (t2 − t1)

1− 1
α (a2 − a1)

1− 1
α (µ′0 + η)

2m
k ( 1

α−1) ,(3.21) ∥∥λ−mk w∥∥2

QΩ

(t2,T )×(a2,a†)
≤ (µ′0 + η)

2 ∥∥λ−mk −1w
∥∥2

QΩ

(t2,T )×(a2,a†)
.(3.22)

Plugging (3.20)-(3.22) into (3.17) and by the choice (3.15), we obtain

K
∥∥λ−mk (Av − vt − va)

∥∥2

QΩ
(t1,t2)×(a1,a2)

(3.23)

+K |Ω| (T − t2) (a† − a2)

(t2 − t1) (a2 − a1)
L2
F

∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)
≥ 1

2

∥∥λ−mk −1w
∥∥2

QΩ

(t2,T )×(a2,a†)
.

For any t2 < t3 < T and a2 < a3 < a†, (3.23) can be further estimated by

K (T + a† + η − t2 − a2)
− 2m

k

(
‖Av − vt − va‖2QΩ

(t1,t2)×(a1,a2)
+ Ta† |Ω|L2

F

)
≥ (T + a† + η − t3 − a3)

− 2m
k −2

2
‖w‖2QΩ

(t3,T )×(a3,a†)
.(3.24)

Observing that(
T + a† + η − t2 − a2

T + a† + η − t3 − a3

)− 2m
k

→ 0 as m→∞,(3.25)

we obtain from (3.24) that w ≡ 0 for (t, a, x) ∈ QΩ
(t3,T )×(a3,a†)

and thus for (t, a, x) ∈
QΩ
T,a†

since 0 < t1 < t2 < t3 and 0 < a1 < a2 < a3 can be taken arbitrarily small.

Hence, we state the following uniqueness theorem.

Theorem 3.2. Assume (A1)-(A3) hold. Then, the problem (1.4) with the Dirichlet
boundary condition (1.5) admits no more than one solution in WΩ

T,a†
.

Remark 3.3. The presence of k > 0 in the context of Lemma 3.1 implies that m can
be taken as a real positive number. As a corollary, the uniqueness result holds when
the source term F is globally Lipschitz, i.e. α = 1. When F is locally Lipschitz, it
can also be reduced to the global case if we set

ŴΩ
T,a†

= C
(
QT,a† ;H

1
0 (Ω) ∩ L∞ (Ω)

)
∩ L2

(
QT,a† ;H

2 (Ω)
)
∩ C1

(
QT,a† ;H

1
0 (Ω)

)
.

This space implies that the population density is essentially bounded in space and
uniformly bounded in time and age. This further gives us an idea to obtain the
uniqueness of solution when α > 1. In fact, if we assign this boundedness to a
constant r > 0 and apply the elementary inequality |X|α ≤ αrα−1 |X| provided
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that |X| ≤ r and α > 1, then we get back the globally Lipschitz case.
Concerning the existence of the function κ in (3.16), we can rely on the applica-

tion of partitions of unity (cf. [5, Proposition 2.25]). It says that if M is a smooth
manifold with or without boundary, then for any closed subset A ⊆ M and any
open subset U containing A, there exists a smooth bump function for A supported
in U . Accordingly, the existence of κ is guaranteed by taking,

A = [t2, T ]× [a2, a†] , M = QT,a† and U = {(t1, t2)× (a1, a2)} ∪A.

3.2. Robin-type boundary condition. Similar to the previous subsection, to
prove uniqueness we consider u1 and u2 as two solutions (in some appropriate
spaces) of (1.4) and (1.6) and then denote w = u1 − u2, which satisfies

(3.26)


wt + wa −Aw = F (t, a, x;u1)− F (t, a, x;u2) in QΩ

T,a†
,

−d (t, a, x)∇w (t, a, x) · n = S (u1)− S (u2) on Q∂Ω
T,a†

,

w (T, a, x) = 0 in (0, a†)× Ω,

w (t, a†, x) = 0 in (0, T )× Ω.

We set the following function spaces:

W̃Ω
T,a†

:= C
(
QT,a† ;H

1 (Ω)
)
∩ L2

(
QT,a† ;H

2 (Ω)
)
∩ C1

(
QT,a† ;H

1 (Ω)
)
,(3.27)

P̃Ω
T,a†

:=
{
u ∈ W̃Ω

T,a†
: u|t∈{0,T} = 0, u|a∈{0,a†} = 0

}
.(3.28)

The space P̃Ω
T,a†

does not now contain any boundary information on ∂Ω as in PΩ
T,a†

due to the Robin-type boundary condition (1.6) instead of the Dirichlet boundary

condition (1.5). Thus, Lemma 3.1 cannot be applied with any function in P̃Ω
T,a†

.

However, we are able to formulate the following lemma with w ∈ P̃Ω
T,a†

directly as

a solution of (3.26). Here, we also set λ (t, a) := t− T + a− a† − η for η > 0.

Lemma 3.4. Let β ∈ (0, 1) and assume (A1), (A2) and (A4)-(A6) hold. Let

w ∈ P̃Ω
T,a†

be a solution of the problem (3.26). Then, for any m ∈ N∗, k ∈ R∗+ and

0 < t1 < t2 < T , 0 < a1 < a2 < a†, we have∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ
T,a†

(3.29)

≥ 4m

k

∥∥λ−mk −1w
∥∥2

QΩ
T,a†
−M

∥∥λ−mk ∇w∥∥2

QΩ
T,a†
− 2m

∥∥λ−mk w∥∥2

Q∂Ω
T,a†

− η2

4C0

∥∥λ−mk −1w
∥∥2

Q∂Ω
T,a†
− 16C0A,

where

A = βL2
S

η
2m
k (1− 1

β )+2
∥∥λ−mk ∥∥ 2

β (β−1)

(t1,t2)×(a1,a2)

[(t2 − t1) (a2 − a1)]
1− 1

β

∥∥λ−mk w∥∥2

Q∂Ω
T,a†

(3.30)

+

(
m

kηβ+1

) 2
1−β

(1− β) |∂Ω|L2
S

Ta†
∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

(t2 − t1) (a2 − a1)
.
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Also, if 0 < T + a† ≤ µ for sufficiently small µ > 0, there exists K > 0 such that

K
∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ
T,a†

+KA ≥
∥∥λ−mk −1w

∥∥2

QΩ
T,a†

+
1

2

∥∥λ−mk ∇w∥∥2

QΩ
T,a†

,

(3.31)

for sufficiently large m.

Proof. We can adapt the proof of Lemma 3.1 to prove the estimates (3.29) and

(3.31). Omitting some calculus, let z = λ−
m
k w ∈ P̃Ω

T,a†
, then (as in (3.6))

∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ
T,a†

= ‖zt + za‖2QΩ
T,a†
− 2 〈zt + za,Az〉QΩ

T,a†

+
4m

k

〈
λ−1z, zt + za

〉
QΩ
T,a†

+

∥∥∥∥Az − 2m

k
λ−1z

∥∥∥∥2

QΩ
T,a†

.(3.32)

Using the Robin boundary condition from (3.26), we obtain

−2 〈zt + za,Az〉L2
(
QΩ
T,a†

) = −2

∫ T

0

∫ a†

0

∫
∂Ω

(zt + za) d∇z · ndσxdadt︸ ︷︷ ︸
:=I1

+ 2

∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

(∂t∂xiz + ∂a∂xiz) dij∂xjzdxdadt︸ ︷︷ ︸
:=I2

.(3.33)

As in the derivation of (3.7) and using (A2) we obtain

I2 = −
∫ T

0

∫ a†

0

∫
Ω

∑
1≤i,j≤n

∂xiz (∂t + ∂a) (dij) ∂xjzdxdadt

≥ −M ‖∇z‖2
L2

(
QΩ
T,a†

) .(3.34)

To estimate I1, recall the Robin boundary condition from (3.26) to get

I1 = 2

∫ T

0

∫ a†

0

∫
∂Ω

(zt + za)λ−
m
k (S (u1)− S (u2)) dσxdadt

= 2

∫ T

0

∫ a†

0

∫
∂Ω

(∂t + ∂a)
[
λ−

m
k z (S (u1)− S (u2))

]
dσxdadt︸ ︷︷ ︸

:=I3

−2

∫ T

0

∫ a†

0

∫
∂Ω

λ−
m
k z (∂t + ∂a) (S (u1)− S (u2)) dσxdadt︸ ︷︷ ︸

:=I4

+
4m

k

∫ T

0

∫ a†

0

∫
∂Ω

λ−
m
k −1z (S (u1)− S (u2)) dσxdadt︸ ︷︷ ︸

:=I5

.(3.35)
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Notice that due to the zero conditions in the definition (3.28) of P̃Ω
T,a†

, the first

term I3 of (3.35) vanishes. Using (A4), we estimate I4 by

I4 = −2

∫ T

0

∫ a†

0

∫
∂Ω

λ−
2m
k (u1 − u2) (∂t + ∂a) (S (u1)− S (u2)) dσxdadt

≥ −2m
∥∥λ−mk w∥∥2

Q∂Ω
T,a†

.(3.36)

By the back-substitution z = λ−
m
k w, the term I5 can be estimated by

I5 ≥ −
2m

k

(
kη2

8mC0

∥∥λ−mk −1w
∥∥2

Q∂Ω
T,a†

+
8mC0

kη2

∥∥λ−mk (S (u1)− S (u2))
∥∥2

Q∂Ω
T,a†

)
.

(3.37)

Apply (A6) and the inequality (2.1) for X = |w|2 ≥ 0, α0 = β ∈ (0, 1) and

γ = [(t2 − t1) (a2 − a1)]
− 1
β

(
η2k

m

) 2
β−1

λ
2m
kβ

∥∥λ−mk ∥∥ 2
β

(t1,t2)×(a1,a2)
> 0,

for 0 < t1 < t2 < T, 0 < a1 < a2 < a†, to get (using that |λ| > η), as in (3.19),

m2

k2η2

∥∥λ−mk (S (u1)− S (u2))
∥∥2

Q∂Ω
T,a†
≤ A.(3.38)

As in (3.8) since z ∈ P̃Ω
T,a†

, we observe that

(3.39)
4m

k

〈
λ−1z, zt + za

〉
QΩ
T,a†

=
4m

k

∥∥λ−1z
∥∥2

QΩ
T,a†

.

We complete the proof of (3.29) by grouping together (3.32), (3.34), (3.36)-(3.39).
It remains to prove the estimate (3.31). Using Green’s formula we have

−
〈
λ−

2m
k w,Aw − wt − wa

〉
QΩ
T,a†

=

∫ T

0

∫ a†

0

∫
∂Ω

λ−
2m
k w (S (u1)− S (u2)) dσxdadt︸ ︷︷ ︸

:=I6

+

∫ T

0

∫ a†

0

∫
Ω

λ−
2m
k (d∇w) · ∇wdxdadt︸ ︷︷ ︸
:=I7

+

∫ T

0

∫ a†

0

∫
Ω

λ−
2m
k w (wt + wa) dxdadt︸ ︷︷ ︸
:=I8

.(3.40)

Since |λ (t, a)| ≤ T + a† + η for all (t, a) ∈ QT,a† , I8 can be estimated using
integration by parts, while for I6 and I7 we use (A1) and (A5) to obtain

−
〈
λ−

2m
k w,Aw − wt − wa

〉
QΩ
T,a†

≥ c
∥∥λ−mk ∇w∥∥2

QΩ
T,a†

− 2m

k
(T + a† + η)

∥∥λ−mk −1w
∥∥2

QΩ
T,a†

.(3.41)
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Using Young’s inequality

1

2

∥∥λ−mk −1w
∥∥2

QΩ
T,a†

+
1

2

∥∥λ−mk +1 (Aw − wt − wa)
∥∥2

QΩ
T,a†

≥ −
〈
λ−

2m
k w,Aw − wt − wa

〉
QΩ
T,a†

,

then (3.41) yields (using also that |λ| ≤ T + a† + η)

K2

∥∥λ−mk −1w
∥∥2

QΩ
T,a†

+
(T + a† + η)

2

2

∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ
T,a†

(3.42)

≥ c
∥∥λ−mk ∇w∥∥2

QΩ
T,a†

where K2 := 1
2 + 2m

k (T + a† + η). Now using (2.2) in the third and fourth terms
of the RHS of (3.29), we obtain (using also that |λ| > η)∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ
T,a†

(3.43)

≥ K1

∥∥λ−mk −1w
∥∥2

QΩ
T,a†
−
(
M + 2mC0 +

1

4

)∥∥λ−mk ∇w∥∥2

QΩ
T,a†
− 16C0A,

where K1 := 4m
k − 2mC0 (T + a† + η)

2 − η2

4 . Multiplying (3.43) by K2K
−1
1 and

applying (3.42), we obtain

[
c−K2K

−1
1

(
M + 2C0m+

1

4

)]∥∥λ−mk ∇w∥∥2

QΩ
T,a†
≤ I9 + I10,(3.44)

which in line with the estimate (3.12). In (3.44), we have denoted

I9 :=

[
K2K

−1
1 +

(T + a† + η)
2

2

]∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ
T,a†

,

I10 := 16K2K
−1
1 C0A.

Since K2K
−1
1 → 1

2 (T + a† + η) as m → ∞, if 0 < T + a† ≤ µ for sufficiently
small µ > 0, then can choose µ0 ≥ µ ≥ T + a† > 0, η0 ≥ η > 0 and m0 ≤ m such

that K1 > 0 and 2K2K
−1
1

(
M + 2C0m+ 1

4

)
≤ c. Then, for any m ≥ m0 denoting

C3 :=
2

c
max

{
K2K

−1
1 +

(µ+ η)
2

2
, 16K2K

−1
1 C0

}
,

from (3.43) and (3.44) we obtain∥∥λ−mk −1w
∥∥2

QΩ
T,a†

+

[
1−K−1

1

(
M + 2C0m+

1

4

)]∥∥λ−mk ∇w∥∥2

QΩ
T,a†

(3.45)

≤
(
K−1

1 + C3

)(∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ
T,a†

+ A

)
We can now take m0 sufficiently large, and µ0 and η0 sufficiently small such that

K−1
1

(
M + 2C0m+ 1

4

)
≤ 1

2 for any m ≥ m0. Then, we conclude that (3.31) holds
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for m ≥ m0 by choosing K := K−1
3 + C4, where

K3 :=
4m0

k
− η2

4
− 2m(µ0 + η0)2C0, K4 :=

1

2
+

2m0

k
(µ0 + η0) ,

C4 :=
2

c
max

{
K4K

−1
3 +

(µ0 + η0)
2

2
, 16K4K

−1
3 C0

}
,

using that K4K
−1
3 ≥ K2K

−1
1 since the function K2K

−1
1 is monotonically decreas-

ing, as a function of m. �

Remark that in deriving (3.29) and (3.31), we have never used that w satisfies
the first equation in (3.26). Let us now define

κ (t, a) =

{
0 if (t, a) ∈ QT,a†\ ({(t1, t2)× (a1, a2)} ∪ [t2, T ]× [a2, a†]) ,

1 if (t, a) ∈ {(t1, t2)× (a1, a2)} ∪ [t2, T ]× [a2, a†] ,

and set v := κw ∈ P̃Ω
T,a†

. Then, from the second equation of (3.26) we have

− d (t, a, x)∇v (t, a, x) · n

=

{
S (u1)− S (u2) on ((t1, t2)× (a1, a2) ∪ [t2, T ]× [a2, a†])× ∂Ω,

0 on
(
QT,a†\ ((t1, t2)× (a1, a2) ∪ [t2, T ]× [a2, a†])

)
× ∂Ω.

Then, it can be remarked that the inequality (3.31) in Lemma 3.4 holds not only
for w but also for v = κw since in (3.40) we only need to use that I6 ≥ 0, with the
rest of the argument remaining the same. Then, from (3.31) applied to v we have
(since v = w in ((t1, t2)× (a1, a2) ∪ [t2, T ]× [a2, a†])× Ω and v = 0 otherwise)

K
∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ
(t1,t2)×(a1,a2)

+K
∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ

(t2,T )×(a2,a†)

(3.46)

+KA1 +KA2 ≥
∥∥λ−mk −1w

∥∥2

QΩ

(t2,T )×(a2,a†)
+

1

2

∥∥λ−mk ∇w∥∥2

QΩ

(t2,T )×(a2,a†)
,

where

A1 = βL2
S

η
2m
k (1− 1

β )+2
∥∥λ−mk ∥∥ 2

β (β−1)

(t1,t2)×(a1,a2)

[(t2 − t1) (a2 − a1)]
1− 1

β

∥∥λ−mk w∥∥2

Q∂Ω
(t1,t2)×(a1,a2)

+

(
m

kηβ+1

) 2
1−β

(1− β) |∂Ω|L2
S

Ta†
∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

(t2 − t1) (a2 − a1)
,

A2 = βL2
S

η
2m
k (1− 1

β )+2
∥∥λ−mk ∥∥ 2

β (β−1)

(t1,t2)×(a1,a2)

[(t2 − t1) (a2 − a1)]
1− 1

β

∥∥λ−mk w∥∥2

Q∂Ω

(t2,T )×(a2,a†)
.

Since |λ| ≤ T + a† + η ≤ µ′0 + η, we have that

A1 ≤ βL2
S (µ′0 + η)

2m
k ( 1

β−1)+2
η

2m
k (1− 1

β )+2
∥∥λ−mk −1w

∥∥2

Q∂Ω
(t1,t2)×(a1,a2)

(3.47)

+

(
m

kηβ+1

) 2
1−β

(1− β) |∂Ω|L2
S

Ta†
∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

(t2 − t1) (a2 − a1)
.
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Also, as in (3.21), with α replaced by β, using (2.2) and |λ| ≤ µ′0 + η, we have

A2 ≤ βL2
S (µ′0 + η)

2m
k ( 1

β−1)+2
η

2m
k (1− 1

β )+2C0

∥∥λ−mk −1w
∥∥2

QΩ

(t2,T )×(a2,a†)
(3.48)

+ βL2
S (µ′0 + η)

2m
k ( 1

β−1) η
2m
k (1− 1

β )+2C0

∥∥λ−mk ∇w∥∥2

QΩ

(t2,T )×(a2,a†)
.

From (3.20)-(3.22), we have that

∥∥λ−mk (Aw − wt − wa)
∥∥2

QΩ

(t2,T )×(a2,a†)
(3.49)

≤ αL2
F

η
2m
k (1− 1

α ) ∥∥λ−mk ∥∥ 2
α (α−1)

(t1,t2)×(a1,a2)

[(t2 − t1) (a2 − a1)]
1− 1

α

∥∥λ−mk w∥∥2

QΩ

(t2,T )×(a2,a†)

+ (1− α) |Ω|L2
F

Ta†
∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

(t2 − t1) (a2 − a1)

≤ αL2
F (µ′0 + η)

2m
k ( 1

α−1)+2
η

2m
k (1− 1

α ) ∥∥λ−mk −1w
∥∥2

QΩ

(t2,T )×(a2,a†)

+ (1− α) |Ω|L2
F

Ta†
∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

(t2 − t1) (a2 − a1)
.

Combining (3.47)-(3.48), for sufficiently large m ≥ m0 it follows from (3.46)
(noticing also η2 ≤ (µ′0 + η)2) that

K
∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ
(t1,t2)×(a1,a2)

(3.50)

+KβL2
S (µ′0 + η)

2m
k ( 1

β−1)+2
η

2m
k (1− 1

β )

(∥∥λ−mk −1w
∥∥2

Q∂Ω
(t1,t2)×(a1,a2)

+C0

∥∥λ−mk ∇w∥∥2

QΩ

(t2,T )×(a2,a†)

)
+K

[
αL2

F (µ′0 + η)
2m
k ( 1

α−1)+2
η

2m
k (1− 1

α )

+C0βL
2
S (µ′0 + η)

2m
k ( 1

β−1)+2
η

2m
k (1− 1

β )
] ∥∥λ−mk −1w

∥∥2

QΩ

(t2,T )×(a2,a†)

+K
Ta†

(t2 − t1) (a2 − a1)

[
(1− α) |Ω|L2

F

+ (1− β) |∂Ω|L2
S

(
m

kηβ+1

) 2
1−β
]∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

≥
∥∥λ−mk −1w

∥∥2

QΩ

(t2,T )×(a2,a†)
+

1

2

∥∥λ−mk ∇w∥∥2

QΩ

(t2,T )×(a2,a†)
.
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Let 0 < η1 ≤ min {1, η0}, take η = η1 and

µ′0 =


η

m( 1
β
−1)

m( 1
β
−1)+k 2

k

2m( 1
β
−1)+2k − η if α ≥ β,

η

m( 1
α
−1)

m( 1
α
−1)+k 2

k

2m( 1
α
−1)+2k − η if α < β.

(3.51)

Also, for sufficiently large m0, and µ0, η0 sufficiently small, choose

0 < K ≤ 1

8
min

{
1

αL2
F

,
1

C0βL2
S

,
1

βL2
S

}
.(3.52)

With the choice (3.51), we have that (µ′0 + η)
2m
k ( 1

β−1)+2
η

2m
k (1− 1

β ) = 2. Further,
with the choice (3.52) we have that 2K

(
αL2

F + C0βL
2
S

)
≤ 1

2 and then (3.50) yields

K
∥∥λ−mk (Aw − wt − wa)

∥∥2

QΩ
(t1,t2)×(a1,a2)

+
1

4

∥∥λ−mk −1w
∥∥2

Q∂Ω
(t1,t2)×(a1,a2)

+
KTa†

(t2 − t1) (a2 − a1)

[
|Ω|L2

F + |∂Ω|L2
S

(
m

kηβ+1

) 2
1−β
]∥∥λ−mk ∥∥2

(t1,t2)×(a1,a2)

≥ 1

2

∥∥λ−mk −1w
∥∥2

QΩ

(t2,T )×(a2,a†)
+

1

4

∥∥λ−mk ∇w∥∥2

QΩ

(t2,T )×(a2,a†)
.

Observe that to complete the uniqueness result, we only need to mimic the way
(3.24) was obtained from (3.23), and the limit(m

k

) 2
1−β

(
T + a† + η − t2 − a2

T + a† + η − t3 − a3

)− 2m
k

→ 0 as m→∞

for any t2 < t3 < T and a2 < a3 < a†, and thus w ≡ 0 for (t, a, x) ∈ QΩ
T,a†

.

In case β = 1, I5 in (3.35) can be directly estimated from (3.37), using the
Lipschitz continuity in (A6), without the need of employing the inequality (2.1) to
obtain (3.38). The rest of details in obtaining w ≡ 0 in case β = 1 are skipped.

In conclusion, we can state the following uniqueness theorem.

Theorem 3.5. Assume (A1)-(A6) hold. Then, the problem (1.4) satisfying the

Robin boundary condition (1.6) admits no more than one solution in W̃Ω
T,a†

.
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