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Abstract

We study the transport of inertial particles in water flow in a porous medium. Our
interest lies in understanding the accumulation of particles due to their inertia with re-
spect to the water flow. The inhomogeneities caused by the tortuous paths in a porous
medium can favour accumulation or dispersion of the particles in certain internal ar-
eas of the porous medium. We consider the particles as a dispersed phase immersed
in the water phase, i.e, a fluid-fluid flow model, and assume Stokes drag as the mo-
mentum exchange between phases. Numerical simulations show that essentially two
accumulation regimes can be identified: for low and high flow velocities. When parti-
cles accumulate at the entrance of a pore throat (high velocity region), the flow can be
significantly modified, as the partial blockage of the pore causes a local redistribution
of pressure. This redistribution can divert the upstream water flow into neighbouring
pores. Moreover, we show that accumulation in high velocity regions occurs in hetero-
geneous media, but not in homogeneous media, where we refer to homogeneity with
respect to the distribution of the pore throat diameters.

1 Introduction

The transport of particles in porous media emerge in many problems of interest, such as
spillage of contaminants in soils [1, 2], water filtration systems [3], fines migration [4, 5],
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enhanced oil recovery [6, 7], to name a few. For enhanced oil recovery methods, injection
of nanoparticles along with water has shown to recover initially trapped oil [8, 9, 10]. The
enhancement can be an effect of a favourable change on the relative permeabilities curves
[10] or improved mobility ratio [11], for example. These are effects of the interaction be-
tween the particles and water and/or oil. Another proposed mechanism is microscopic flow
diversion [12, 13, 14]. This mechanism suggests that particles can accumulate when carried
from a large to a narrow pore throat. If the accumulation is intense enough, the pore can
clog, forcing the upstream flow into neighbouring channels. If the flow is diverted into a
oil-containing channel, the initially-trapped oil may be recovered, thus enhancing recovery.
In this case, the mechanism behind accumulation is particles inertia. This claim was sup-
ported by experimental results that shows that the enhancement in oil recovery is stronger
in heterogeneous media, when compared to recovery in homogeneous media [15]. Here, we
refer to homogeneity with respect to the pore size distribution. Therefore, heterogeneous
media present more paths connecting large to narrow pores. Thus, it is expected that het-
erogeneous media exhibit a stronger enhancement in recovery if accumulation of particles
due to inertia, and consequent flow diversion, is an important mechanism. Note that in this
case the trapping mechanism occurs at the pore scale. At the reservoir scale, a different
trapping mechanism can occur. For instance, at the transition zone between a high and
a low-permeability regions, the difference in capillary pressures may trap the non-wetting
phase in a two-phase flow [16, 17].

The transport of a particulate phase by a fluid phase has been studied for a long time.
In the framework of Euler-Euler models, where the particulate phase is considered as a fluid
phase as well, conservation equations for the evolution of particles concentration can be
obtained through mixture theory [18, 19, 20]. Such models may take into account a large
variety of effects: added-mass, drag, Basset history, particle collisions, etc. Often, closure
relations must be provided that account for the mass and momentum transfer between
phases. The need for such closure relations render difficulties in the treatment of the coupled
phases. For very dilute mixtures, the so-called one-way coupled formulation is enough to
describe the multiphase flow problem. In this case, the carrier fluid is not affected by the
presence of the particles and can be fully determined independently. For increasing particles
concentration, their volumetric occupation cannot be neglected, and one must consider a
two-way coupled formulation [21]. When the particles concentration increases even further,
the interparticle interaction must be considered, i.e., collisions, agglomeration and, in the
case of droplets, break-up [22].

One-way coupled models have attracted quite some attention due to the rich behaviour
they may present, even in the regime of dilute mixtures. It has long been recognized that
particles which are heavier than the carrier fluid tend to accumulate in regions of dominating
strain and disperse from regions of dominating vorticity [23, 24, 25]. Such feature have been
proved useful for the study of particles carried by a turbulent flow field [26, 27, 28, 29]. For
example, agglomeration of water droplets in preferential regions of a cloud, which presents
turbulent convective currents, can lead to rain precipitation [30, 31]. Nevertheless, if the
particulate phase is allowed to affect the carrier fluid phase, a two-way couple formulation
must be considered, at least.

Flows established in porous media are highly heterogeneous at the pore scale due to the
tortuous paths of the porous medium [32]. In fact, the non-homogeneities of the flow will



generate regions of dominating strain and/or vorticity inside the porous medium. With this
in mind, we analyse the accumulation patterns that can occur for flow in random media.
Our main focus is to evaluate whether particles accumulation can lead to partial clogging
of a pore, thus diverting the upstream flow [33]. This is one of the proposed mechanism for
enhanced oil recovery by polymer particles injection [15, 13]. For such, we need to consider a
two-way coupled formulation, as one-way coupled models cannot capture the influence of the
particulate phase on the carrier fluid. We will make use of a simple multiphase flow model
that takes into account inertia of particles and the corresponding volumetric occupation.
These are the minimum necessary physical effects that we must consider in order to observe
particle accumulation and flow diversion. We also consider no interparticle interaction, thus
avoiding the use of closure relations. Though restrictive, we proceed to show that the simple
model is enough to shed light in the effect of accumulation.

We begin by introducing the multiphase flow model and present its dimensionless for-
mulation. For the numerical simulations, we consider a porous medium consisting of non-
overlapping solid circles distributed in a 2D rectangular box. We evaluate the influence of
the parameters of interest: Stokes number, Reynolds number and particle-to-water densities
mass ratio. Also, we show that the accumulation pattern is distinct if we consider a het-
erogeneous or a homogeneous media. In particular, the existence of clogs (accumulation in
narrow pore throats, that may lead to flow diversion) only occurs in heterogeneous media.

2 Model formulation

We follow a general derivation based on the classical mixture theory [34, 35]. We consider
that the solid phase is dispersed in the water phase, and hence, it can be described by a
continuous field. The fractional volumetric occupation of the dispersed (solid) phase is given
by ¢ € [0, 1], whereas the water phase occupies a volumetric fraction of 1 — ¢. We consider
that the only internal interaction between the dispersed and the water phase is the Stokes
drag. Additionally, if we consider that the pure mass densities of water and particles, p and
pp, respectively, are constants, we have the following set of governing equations

o(1 - ¢) _
o+ V(1= ¢)u) =0, (2.1)
¢
o, TV (v) =0, (2:2)
Du _ Opp
P1=0)pr =—(1=@)Vp+ V- (1= 9)7) = = ~(u—w), (2.3)
o5 = —09p+ Leu ), (2.4

where u and v are the velocities of water and particles, respectively and t, = ppd2/(184) is
the Stokes time, or the characteristic response time of the particles with respect to changes
in the flow field, with d, the particles diameter [20]. The stress tensor 7, of the water phase
is given by

2
7w =p (Vu + VuT) — §MIV u, (2.5)



where p is the dynamic viscosity of pure water. Moreover, we use the notation that

D 0 d 0

are the material derivatives along the water and particles streamlines, respectively. Boundary
and initial conditions will be added further ahead to complete the model.

The model given by Egs. (2.1)—(2.4) assumes that the particles are small enough to not
disturb the water flow locally. This means that we consider that there is no formation of
wakes behind the particles. If the particles are big enough, vortices could be formed behind
them, leading to a possible turbulence-generating mechanism. Formally, we consider that
the particles diameter is such that the particle-based Reynolds number is smaller than one,
ie., Re, = pucd,/p < 1, where u. is some characteristic flow velocity. In other words,
the flow around the particles is in the Stokes regime. Flows in porous media can exhibit a
variation of several orders of magnitude in its velocity, typically from 1 — 100 pum/s [36]. We
are interested in inertial particles in the colloidal scale, i.e., d, ~ 10~*m, such that for water
properties evaluated at 300K, we have Re, ~ 1075 — 107, typically. Therefore, for these
conditions, transport of inertial particles in porous media will exhibit a Stokes flow around
the particles. It is worth to note that even though the flow around the particles must be in
the Stokes regime, the background flow does not have such restriction.

Equation (2.4), which governs momentum conservation for the dispersed phase, considers
that the particles are rigid, non-deformable and do not interact with each other. This is
analogous to consider the inviscid limit for the dispersed phase, thus neglecting the viscous
contribution in the force balance at the right-hand side of Eq. (2.4). Moreover, this means
that there is no additional pressure contribution due to particle collision, resulting that the
pressure acts in both phases, only weighted by their respective volumetric occupation. More
details can be seen in [19, 37]. Our goal here is to highlight two effects: that inertia of
particles can lead to accumulation patterns for flows established in porous media, and that
if the accumulation is large enough at the entrance of a pore throat, the flow can be diverted
into a neighbouring pore. To reach this goal, we claim that (2.2)-(2.4), with proper initial
and boundary conditions, is one of the simplest model that takes into account the processes
leading to those two effects: inertia and volumetric occupation of particles.

The no-slip flow condition is considered for the water at the surface of the solid grains
forming the porous medium. A question to be addressed regards the boundary condition of
the particles velocity at the wall. The no-slip and no-flow conditions are not necessary true
for particulate flow. For example, a perfect elastic collision would imply specular reflection,
e, [v-n] = —2(v-n)n and [v-t] = 0, where n and ¢ are the unitary vectors normal
and tangential to solid boundaries, respectively. We will consider the limit of asymptotically
small Stokes number, such that an explicit expression for v will be considered instead of
Eq. (2.4). In this case, the particles velocity at the wall will be prescribed. The error in
the calculation of the particle velocity at the wall introduced by this approximation is only
relevant necessarily close to the wall.



2.1 Non-dimensionalization

We consider the following non-dimensional variables for a 2D geometry in the (x,y) Cartesian
coordinates

t=t/t,, &=ua/l, §=uy/l,
u = U/Uc, v = ’U/UC, ]3 - p/pca (27)
where [ and u, are characteristic values for length and velocity, with the characteristic time

given by t. = l/u., and p. = pu./l a characteristic pressure. The non-dimensional governing
equations are then given by (we remove the hats for simplicity)

V- ((1-¢)utgv) =0, (2.8)
¢
3¢ TV (9v) =0, (2.9)

(-6 = (1= ) Vp+ =V ((1 — ) (VuWuT— §IV-u)) ]

Dt R Re St

(2.10)
_dv 1 p
pg——EVp—kg(u—v), (2.11)

where Eq. (2.8) was obtained by summing the dimensionless form of Eqgs. (2.1) and (2.2)
and we introduced the following dimensionless numbers

y te
Re="1C st="2 ;=12 (2.12)

I te’ p
which are the Reynolds number, the Stokes number and the ratio of pure mass densities,
respectively.

As mentioned previously, the model is limited by the constraint of a Stokes flow regime
around the particles, i.e., Re, = pucd,/pn = Re(d,/l) < 1. Therefore, the Stokes regime
around the particles is obeyed for d,/l < Re™'. Since t, = p,d/(18y), we can write the
Stokes number as St = p(Re/18)(d,/1)?. Then, we can write the constraint of Stokes regime
around the spheres as )
p

St < TS

(2.13)

2.2 Asymptotic limit of St < 1

In order to facilitate the analysis, we consider the asymptotic limit of small Stokes numbers,
i.e., St <« 1. This limit allows for a small response time of the particles with respect to
changes in the surrounding flow field. In other words, the inertia effects are limited.

In this limit, we can expand the particles velocity in powers of St as

v = vy + Stv; + o(St), (2.14)



where 0(St) is interpreted as a Landau symbol. Using (2.14) into Eq. (2.11), which yields
d/dt = D/Dt + O(St), and equating the terms of order 0 and 1 in St gives the following
asymptotic expression for v

1 ou

v:u—St( 5

where it is required that pRe > O(St). Equation (2.15) is a modified version of the expression
first obtained by Maxey [23] and used recently to study particle-laden turbulent flows [28, 27,
29, 38]. In the present case, we consider an additional contribution due to the pressure, and
this difference is important for the near-wall treatment of particles velocity. Moreover, using
d/dt instead of D/Dt allows for an explicit expression for v, which facilitates the problem
analysis, as will be shown ahead.

Using (2.15) we have the following system of governing equations

V-((1=¢)u+¢v) =0, (2.16)

¢ B
5 + V- (pv) =0, (2.17)

Du_ 1, Lo (a- r 2rgw)) - P
(1_¢)E_ Re(l (b)Vp—i-ReV ((1 o) (Vu+Vu 3IV u)) St(u v),
(2.18)
cu—st(—vp+ Luy 2.19
v=u— <% p+a+u- u). (2.19)
We can rewrite Eq. (2.17) as
Ldo .

aa =-V v, (220)

where, as introduced previously, d/dt is the material derivative along v. Therefore, accumu-
lation or dispersion of particles along its streamlines is characterized by the quantity

V-v:V-u—St(%AP%—%V-U%—V-(U-VU,)). (2.21)
According to Egs. (2.20) and (2.21), when V - v < 0, accumulation is favoured, whereas
dispersion is favoured for V- v > 0. Note that V - u # 0 may happen in certain areas of the
domain due to the inherent compressibility (see Eq. (2.16)).

We consider the no-slip flow for the water at the solid boundaries, i.e., |u| = 0, at these
boundaries. Therefore, Eq. (2.19) determines v = —St(pRe) 'Vp as the particles velocity
at solid boundaries. This condition implies slip flow and reflection of particles at the wall.
The error introduced depends on which original boundary condition we had for the particles.
For example, if we had specular reflection, the slip flow at the wall is unrealistic, but the
reflection is not. Nevertheless, the error is restricted to the vicinity of solid boundaries. We
will show that due to vorticity these regions are characterized by dispersion of particles, such
that this error is not expected to be relevant.



Figure 1: Ilustrative porous medium. The nodes of the Delaunay triangulation provides
the coordinates of the centres of the solid grains as well as the basis for calculating the pore
throat diameters. The numerical domain comprises the void space between the solid grains
(the mesh is not shown here).

3 Numerical results

The model given by Eqgs. (2.16)—(2.19) will be solved in illustrative two-dimensional porous
media. We will highlight the main features that arise in the accumulation patterns due to
the non-homogeneity of the flow field established in the porous medium. Our intention is to
quantify the behaviour of the model presented in the previous section in random media. We
will consider media with given pore throat diameter distributions (PTDD). For such, first
we establish a Delaunay triangulation in a 2D rectangle. We modify the distmesh algorithm
[39] to perform the triangulation following a given distribution of edge lengths. The modified
algorithm seeks a triangulation of the domain such that the edge lengths distribution follows
the sum of two Gumbel distributions [40]

fe(N) = Z éexp (—z,-()\) + e_Zi()\)) : (3.1)

where )\ are the values of the edge lengths and z;(\) = (A — «;)/B;. Then, we draw circles
centred at each node of the triangles, making sure that circles do not overlap. Each pore
throat diameter will be then given by subtracting from the length of the original triangle
edge the radii of the circles located in its associated nodes. We construct the medium such
that we can fit a bimodal distribution for the PTDD as a sum of two normal distributions

where £ = X\ — r; — ry is the pore throat diameter length (with 7 and 7o the radii of the
solid grains centred at the nodes of the edges \), u; and o; are the distribution parameters,
with ¢ = 1,2, and 0 < p < 1 the mixture probability. For convention, 7, and o, refers to the
normal distribution around the smaller pores, whereas 75 and oy refers to the larger pores.
The procedure is similar to the one described in [32].

We also define a parameter 7 as

(I =p)mp
7= o (33)
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which is a measurement of the large-to-narrow pore throat diameter ratio. For v < 1, there
is a predominance of smaller pores, whereas for v > 1 there is a predominance of larger
pores. For both limiting cases v — 0 and v — oo, the medium is homogeneous.

We implement Eqgs. (2.16)-(2.19) in COMSOL, thus numerically solving them using a
fully coupled, standard Galerkin finite element method. The water velocity w is discretized
using quadratic Lagrange elements, whereas the pressure p and the volumetric fraction of
particles ¢ are discretized using linear Lagrange elements. The system of equations is solved
implicitly in a domain meshed by a Delaunay tesselation. We consider a parabolic injection
profile for the water as ©w = (4uin; (¥ — Ymin) Ymaz — ¥)/ Ymaz — Ymin)?,0). The numerical
domain will extend from x € [—1,26] and y € [0.5,4.5], but the solid grains fill the box
(1<x<21)U (0.5 <y<4.5).

For numerical stability, we introduce an artificial diffusion term in Eq. (2.17), such that
we essentially solve

¢ | -
%y (m _ P—ew) o, (3.4

and we consider Pe = 20. It is worth to note that the artificial diffusion can be interpreted
as particle diffusion in the water phase. Moreover, since Pe > 0, it tends to lower ¢, i.e.,
disperse particles concentration (see Eq. (2.21)). Nevertheless, as long as the advection
transport is of unitary-order or lower, the influence of Pe is very small, such that the role of
diffusion will be restricted to numerical stabilization.

3.1 Illustrative results for heterogeneous and homogeneous media

We will begin by performing numerical simulations in the medium show in Fig. 1. This
random medium is composed by 181 circles and pore throats. The parameters used for the
initial edge lengths distribution are shown in Tab. 1.

a; = 0.5 8, =0.05
Qg = 0.8 62 =0.10

Table 1: Parameters for the Gumbel distributions used to generate the Delaunay triangula-
tion of the rectangular domain shown in Fig. 1.

This medium represents a heterogeneous porous medium with a PTDD shown in Fig. 2,
where we plot the distribution of the pore throat diameters and the bimodal fit. For the
distribution shown in Fig. 2, we have the fitting parameters shown in Tab. 2. We will
consider u;,; = 1.2, Re = 5,5t = 0.1 and p = 10. Note that according to (2.13), we must
have St < 0.11 for the considered parameters. A value of p = 10 represent particles with a
high mass density when compared to water, silver, for example.

p=0.1834 | v = 22.3662
m = 0.0842 | np = 0.4232
o1 =0.0277 | 0o = 0.2191

Table 2: Fitting parameters for the heterogeneous media shown in Fig. 1
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Figure 2: Bimodal distribution for the pore throat diameter of the medium shown in Fig. 1.
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Figure 3: Flow pattern without particles (¢ = 0). Upper: Water phase velocity. Bottom:
pressure drop along the domain. The flow is from left to right and shown for ¢ = 10.

In Fig. 3 we show the water velocity field (upper) and the pressure drop (bottom) for
the case of flow without particles, i.e., for ¢ = 0 everywhere. The flow reached a stationary
solution and it is shown at ¢ = 10. One can see that the flow pattern is heterogeneous
due to the tortuous paths of the porous medium. This heterogeneity in the velocity field
is determinant for the accumulation and dispersion of particles. In fact, it is possible to
predict regions where accumulation and dispersion will be predominant without solving the



full compressible model. To do so, we consider Eq. (2.21) with V - w = 0, which happens
when ¢ = 0,

1
pRe
Moreover, one can see that the pressure drop Vp along the domain is nearly linear, such
that Ap < 1. Hence, we expect that, quantitatively, the first term in the right-hand side of
Eq. (3.5) is much smaller than the second term, such that we can approximate

V-v:—5t< Ap—i—V-(u-Vu)). (3.5)

52 — w?)

V-vr -St(V:(u-Vu)) = —St( 5 (3.6)
where s = dyu, + d,u, and w = Oyu, — O u, are the local strain and vorticity of the flow,
respectively. Of course, as particles tend to accumulate, compressibility effects will take
place and (3.6) must be replaced by (2.21). Nevertheless, possible locations of accumulation
and dispersion of particles can be estimated by analyzing (3.6) in the domain [28, 41, 21, 24].
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Figure 4: Upper part: surface plot of —(s* — w?)/2. Regions where —(s* — w?)/2 < 0 will
tend to favour accumulation of particles, whereas regions where —(s? —w?)/2 > 0 will favour
dispersion. Bottom part: particles concentration for injection at ¢ = 0.1. Plots are shown
for t = 80, after the stationary regime was achieved.

In the upper part of Fig. 4, we plot St™'V v = — (s> —w?)/2. One can see that vorticity
is induced near the solid boundaries of the circular grains, which will make particles disperse
from it (positive regions in the upper Fig. 4). On the other hand, regions with dominating
strain will favour accumulation, according to (3.6) and (2.20) (negative regions in the upper
Fig. 4). The accumulation/dispersion pattern is shown in the bottom part of Fig. 4
by considering injection of particles with ¢ = 0.1. Large rates of strain are caused by
an abrupt change in the water velocity. In this scenario, one can recognize four different
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characteristic regions where accumulation will be favoured: in the wake behind solid grains,
at stagnation points, in no-flow regions near high-velocity regions and at the entrance of
narrow pore throats. In Fig. 5 we show four zoomed-in regions from Fig. 4, each with a
different characteristic particle accumulation pattern. We also plot the water streamlines
as solid lines and particles velocity as arrows. Note that due to inertia, water and particles
trajectories are not parallel.

Figure 5: Particle concentration ¢ (surface plot), water streamlines (solid black lines) and
particles streamlines (yellow arrows) for four different regions of the domain: (a) behind a
solid grain, (b) at a stagnation point, (c¢) in a no-flow region and (d) at the entrance of a
narrow pore throat.

From the four accumulation scenarios, only accumulation at the pore entrance, Fig.
5(d), can significantly alter the water flow. While in the other three cases the particles
accumulate in a low-velocity region, at the pore entrance accumulation occurs in a high-
velocity region. Therefore, if the accumulation capacity is large at the pore entrance, the
channel may experience a partial or total clogging, which may causes a local redistribution
of the pressure in the upstream side of the flow. If the clogging is severe, the local pressure
redistribution can divert the water flow into neighbouring channels.

In Fig. 6 we show py,;, —pp, the pressure difference between the flow without particles and
the flow with particles. The arrows in the domain point the clogs. One can see that in some
regions of intense accumulation at the pore-entrance, the pressure decreased (larger positive
values in Fig. 6), thereby causing the local pressure behind the channel to increase (negative
values in Fig. 6). This can be more clearly seen in Fig. 7, where we show a zoomed-in
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Figure 6: Pressure difference between the flow without and with particles. Positive re-
gions means that the pressure decreased, whereas negative regions means that the pressure
increased. The arrows point the clogs.
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Figure 7: Surface plot of the (a) pressure and (b) water flux differences between the cases
without and with particles near a partially clogged channel.

region with the pressure difference and the difference between water fluxes divided by the
average water flux in the case without particles, i.e., (¥,, — ¥,)/W,,, where ¥ = (1 — ¢)|u|
and U = Q! fQ WdS) is the average water flux in the domain €2. Note that at the entrance
of the partially clogged channel, there is a pressure decrease. This happens because of the
particle accumulation at the pore entrance, which decreases the water flow in the channel.
Total clogging is not observed because in our model we do not consider particle attachment
at the wall, and, by construction, our solid grains do not touch each other. Therefore, the
region near the solid grain, which is dominated by vorticity, favours particle dispersion. One
must bear in mind however, that due to the approximation (2.15) the error in v increases
near the wall.

The occurrence of a clog can be identified by a pore throat presenting a significant de-
crease in the pressure at its entrance and a consequent decrease in its water flux. Since
clogging is usually not complete, the near-wall regions of the partially clogged pore experi-
ence a faster flow, as discussed previously. Nevertheless, the overall water flux in the pore
decreases, as we can see in Fig. 8, where we show the time variation of the water flux for the
partially clogged channel and a nearby channel indicated in Fig. 7. Note that the decrease of
the water flux in the partially clogged channel occurs at the same time scale as the increase

12
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Figure 8: Time variation of the water flux ¥ = (1 — ¢)|u| in the clogged and a nearby pore.
Corresponding channels are indicated in Fig. 7(a).

in the water flux in the diverted channel. This indicates that these changes are correlated.

Since accumulation in a high velocity region is an effect of flow acceleration when going
from a large to a narrow pore, it is expected that in a homogeneous medium this accumulation
pattern is minimal, as most of the pores have the same size in such medium. To test this
hypothesis, we consider a flow through the homogeneous medium shown in Fig. 10. For
the initial edge lengths distribution, we use the same values shown in Tab. 1, only changing
ay = 0.7. This change was done to obtain a more homogeneous distribution of edges. After
we draw the solid grains, the homogeneous medium have a PTDD shown in Fig. 9. We fit
the PTDD through a bimodal distribution, with parameters given in Tab. 3.

p=0.7289 | v=0.9235
m = 0.1350 | n = 0.3352
o1 = 0.0557 | o9 = 0.1400

Table 3: Fitting parameters for the homogeneous media shown in Fig. 9

As discussed previously, it is expected that only significant accumulation at low-velocity
regions will occur. Here, we consider the same parameters as before (Re = 5,5t = 0.1 and
p = 10), but now with injection of water occurring at w;,; = 0.6 ! In Fig. 10 we show
surface plots for St='V - v and ¢. Note that we still have regions of predominant strain and
vorticity. However, differently from what is observed for the heterogeneous medium (see Fig
4), the regions of dominating strain are mostly located in low-velocity regions. Therefore,
an intense accumulation of particles occurs only in low-velocity regions, such that the flow
pattern is not strongly modified by the accumulation of particles. This feature can be seen
in Fig. 11, where, as before, we plot the pressure difference without and with particles.

!This modification on the injection condition was done in order to have values of St~'V - v at the same
order of magnitude as in the heterogeneous case, see upper part of Fig. 10.
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Figure 10: Upper part: surface plot of —(s? — w?)/2. Bottom part: particles concentration
for injection at ¢ = 0.1.

The existence of higher accumulation in high-velocity regions only in heterogeneous me-
dia means that blockage of pores, with a consequent pressure redistribution in the upstream
side and possible flow diversion, will not occur in homogeneous media. At least, not to a
large extent. In the context of enhanced oil recovery through polymer particles injection,
experimental results indicates that heterogeneous cores show increased rates of recovery com-
pared to homogeneous cores [15]. These results are consistent with the proposed mechanism
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decrease in the pressure is caused by the presence of particles in the flow and is not associated
with partial blockage of pore channels.

of particle accumulation and flow diversion leading to EOR.

Note that the predominance of same-size pores will exist no matter which homogeneous
medium we consider. Therefore, the lack of significant accumulation in high-velocity regions
will be a feature of every homogeneous media, such that the conclusions drawn in this section
are quite general. Formally, from our definition, homogeneous media are characterized by
v~ 0and v > 1.

3.2 Influence of u;,;, Re and p

As discussed in the previous section, accumulation and dispersion patterns can be analysed
through the quantity V -v. We showed that it is possible to evaluate this quantity in a flow
scenario without particles in order to have an approximate relation between strain-dominated
regions and accumulation, and between vorticity-dominated regions and dispersion. In our
approach, the maximum accumulation will occur in the region where V - v achieves its
minimal value. Therefore, by defining a parameter ¢ as

§ = min(St 'V - v) (3.7)

we can study accumulation behaviour by analyzing the variations in it with the problem
parameters. We will do so by considering the heterogeneous medium shown in Fig. 1.

For increasing values of the injection velocity u;,; the rates of strain and vorticity through
the medium increase. This leads to a decrease in d, as we can see in Fig. 12(a), where we plot
0 for a fixed value of Re = 5. Therefore, for increasing injection velocities it is expected that
accumulation increases. For a fixed value of u;,; and varying values of Re, we have a non-
monotonous variation of J, as shown in Fig. 12(b), where we consider u;,; = {1.0;1.2;1.4}.
For small values of Re, an increase in the Reynolds number leads to an increase in 4, thus
lowering the accumulation of particles. However, after a critical Re, an increase in the
Reynolds number leads to a decrease on ¢, thus enhancing accumulation of particles. An
increase in Re means a decrease on the viscous boundary layer at the solid grains surface.
Since we keep the injection velocity fixed, an increase in Re (and the consequent decrease
on the viscous layer) means that the overall flow velocity increases. For the left branch, it
means that an increase in the velocity leads to a decrease on the accumulation of particles,
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of the injection velocity leads to a decrease on § and, consequently, on the accumulation rate.
The variation with Re presents two characteristic regimes: a Stokes regime (left branch) and
a convection-dominated regime (right branch).

whereas for the right branch leads to an increase on the accumulation. We refer to the left
branch as a Stokes regime and the right branch as a convection-dominated regime. Recalling
that v ~ —u -V -w and 6 ~ =V - (v - Vu), we conclude that in the convection-dominated
regime, accumulation and dispersion of particles is favoured by the increase in velocity. On
the other hand, in the Stokes regime the convective transport is of higher-order, such that
an increase in the velocity only enhances the transport of particles along with water. In fact,
when Re is small, the velocity of particles approximates as

vrRu— —Vp, (3.8)

such that V- v ~ V - wu. Thus, in the Stokes regime, an increase on the overall flow
velocity does not enhance accumulation. Rather, it decreases accumulation, as particles will
be transported into the downstream direction. As shown in Fig. 12(b), the Stokes regime
shrinks for increasing injection velocities, as expected.

As shown in (3.6), strain-dominated regions tend to favour accumulation. However, as
pointed out by Eq. (2.20), this occurs along the streamlines of the particles. If the particles
velocity increases considerably, accumulation locations might move further downstream in-
side the domain. For accumulation in low velocity regions, this poses a minor difference, as
the particles streamlines are barely modified in such regions. On the other hand, for accu-
mulation in high velocity regions, this will favour dispersion of particles, as they will tend
to move further downstream, thus lowering accumulation. In Fig. 13 we plot the pressure
difference for illustrative values of p = 15,10,5. A decrease in the particles-to-water mass
densities ratio leads to an increase in the particles velocity, according to Eq. (2.19). We can
see that the formation of clogs is unfavoured for decreasing values of p (recalling that a clog
is characterized by a significant decrease on the pressure at the pore entrance). If we write
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Eq. (2.20) in Eulerian coordinates, we have

10¢ 1

——=—-V.v—-—-v Vo 3.9

e S0V (39)
Then, if we evaluate the local variation of ¢, we can see that particles with higher velocity
tend to disperse accumulation due to the convective transport (second term in the right-hand
side of Eq. (3.9)). This makes clogs disappear if the particles velocity is too high, as we can
see in the surface plot of the pressure differences shown in Fig. 13.
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4 Conclusions

We considered a simple multiphase flow model to analyse the transport of inertial particles
by water in random media. The tortuous paths of the random medium generate regions of
dominating strain and vorticity, which favours accumulation and dispersion of particles, re-
spectively. The numerical results show that heterogeneous media present significant accumu-
lation in low and high velocity regions, whereas homogeneous media present only significant
accumulation in low velocity regions. Thus, blockage of pores and consequent redistribution
of pressure on the upstream side occurs predominantly in heterogeneous media. This result
supports the claim that particle accumulation and flow diversion plays a significant role in
enhancing oil recovery through polymer particles, as proposed lately [15, 12, 13].

Detailed knowledge of the water flow pattern without particles in the porous medium
can provide information as to where accumulation will be favoured by analysing strain-
dominated regions. In the presence of particles, near the surface of the solid grains, vorticity
is dominating and particles will tend to disperse from it. It is worth noting that stochasticity
of real porous media is not perfectly described by circular grains. Therefore, more simulations
should be performed for realistic media reconstructed from micro-CT scans from real rocks,
for example.

As particles begin to accumulate, interparticle interaction should become relevant, such
that a four-way coupled formulation must be considered [22]. In such scenario, the spec-
ification of the type of particle under consideration will be crucial. For example, some
nanoparticles can form gels [42, 43] for increasing concentrations. For those particles, clogs
will exhibit a snowball-like effect for increasing concentrations, possibly resulting in total
clogging of a pore. Extending the model to account for the interactions of the particles
requires the specification of the rheology of the particles.
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