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Abstract We consider a model for two-phase flow in a porous medium posed in a
domain consisting of two adjacent regions. The model includes dynamic capillarity
and hysteresis. At the interface between adjacent subdomains, the continuity of the
normal fluxes and pressures is assumed. For finding the semi-discrete solutions
after temporal discretization by the θ-scheme, we proposed an iterative scheme.
It combines a (fixed-point) linearization scheme and a non-overlapping domain
decomposition method. This article describes the scheme, its convergence and a
numerical study confirming this result. The convergence of the iteration towards the
solution of the semi-discrete equations is proved independently of the initial guesses
and of the spatial discretization, and under some mild constraints on the time step.
Hence, this scheme is robust and can be easily implemented for realistic applications.

1 Introduction

Flow in porous media has become a significant field of research, as prominent
applications such as CO2 storage and enhanced oil recovery vitally depend on the
understanding of the underlying phenomena. Since measurements below surface
are costly, if feasible at all, mathematical modeling and simulation are crucial to
predict such processes. Thesemodels usually consist of coupled nonlinear differential
equations, whichmay degenerate and change type. Besides the increasing complexity
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of the models incorporating dynamic capillarity and hysteresis, another difficulty is
caused by the largely varying or even discontinuous physical properties.

To solve the coupled nonlinear equations, discretization and linearization schemes
are necessary. Since Newton based solvers suffer from severe constraints on the
time step sizes to ensure convergence [19], a simple fixed point iteration, the L-
type linearization, has been proposed. Its high robustness comes at the price of a
slower, linear convergence. Additionally, this approach is typically independent of
the spatial discretization, and has thus been combined e.g. with (M)FEM [13, 18] or
a discontinuous Galerkin method [10].

In the situation of block-heterogeneous soils, the application of a domain decom-
position method seems natural to decouple the different homogeneous blocks and
speed up the convergence. This approach is used and optimized for a wide range of
applications [4, 8, 9, 7]. In [15], a non-overlapping Schwarzwaveform-relaxationwas
analyzed for nonlinear convection-diffusion equations in a time-continuous setting.
Such methods can also be used after temporal discretization for porous media equa-
tions [1, 5]. In [21, 22], the domain decomposition was integrated in the linearization
process for the Richards equation respectively two-phase flow.

Here, we propose such a linearization and domain decomposition scheme for two-
phase flow in porous media, including dynamic and hysteretic effects in the capillary
pressure. These methods are independent of the chosen spatial discretization and
avoid the use of derivatives as in Newton based iterations.

2 Mathematical Model and Temporal Discretization

Below, T > 0 is a fixed, final time and Ω ⊂ Rd (d ∈ N) a Lipschitz domain. It
is partitioned into two Lipschitz subdomains Ω1 and Ω2 separated by a (d − 1)-
dimensional manifold Γ. The outer normal vectors at ∂Ωl for l ∈ {1,2} are denoted
by νl . In each subdomain Ωl , the flow of two immiscible, incompressible phases
α ∈ {n,w} through a rigid porousmedium is governed by themass balance equations,
the extended Darcy law and an extended, play-type capillary pressure model [2],

−φl∂t sl + ∇· un,l = 0, φl∂t sl + ∇· uw,l = 0 in Ωl × (0,T), (1)
uα,l = −λα,l(sl)Kl∇pα,l in Ωl × (0,T), (2)

pn,l − pw,l = pc,l(sl) − Φδ,l(∂t sl) − ∂tTl(sl) in Ωl × (0,T). (3)

At Γ, the coupling conditions are the continuity of the normal fluxes and pressures

uα,1 · ν1 = −uα,2 · ν2, pα,1 = pα,2 on Γ × (0,T). (4)

Here, sl denotes the saturation of the wetting phase, uα,l the specific discharge of
the α-phase and pα,l its pressure. The parameters are the porosity φl ∈ (0,1), the
intrinsic permeability Kl ∈ R

d×d , which is symmetric, positive definite and bounded,
the relative mobility λα,l and the capillary pressure pc , while Tl and Φδ,l model the
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dynamic respectively hysteretic effects. In contrast to equilibrium models, in which
Tl = Φδ,l = 0, this model can reproduce experimental results such as fingering and
saturation overshoots [17, 20]. Typically, (3) is a multi-valued relation pn,l − pw,l ∈
pc,l(sl) − γl sign(∂t sl) − ∂tTl(sl) involving a parameter γl ≥ 0 and the sign graph.
Here, we use a regularizationΦδ,l of sign; namelyΦδ,l(ξ) := max{−1,min{δ−1ξ,1}}
with δ > 0 being a regularization parameter.

For simplicity, we only consider homogeneous Dirichlet boundary conditions for
the pressures, i.e. pw,l ≡ pn,l ≡ 0 on (∂Ωl ∩ ∂Ω) × (0,T). Together with an initial
datum sl(0, ·) = s0

l
∈ L∞(Ω), (1)–(4) form an initial-boundary-value problem in s,

pn and pw .

Remark 1 For the existence of unique weak solutions to (1)–(3), we refer to [11, 6].
In particular, we mention [6] for the Hölder continuity of the pressure gradients
∇pn,∇pw .

Notation 1 We denote by L2(X), H1(X) and Hdiv(X) the standard Hilbert spaces
over X ∈ {Ω,Ω1,Ω2}. H1/2(Γ) contains the traces u|Γ on Γ of functions u ∈ H1(Ω).
For the two subdomains Ωl with l ∈ {1,2}, the following spaces will be used

Wl :=
{
w ∈ H1(Ωl) : w |∂Ωl∩∂Ω ≡ 0

}
,

W := L2(Ω) × [W1 ×W2]
2, V := L2(Ω) × [H1

0 (Ω)]
2.

For any function f ∈ L2(Ω), we denote by fl := f |Ωl
the restriction to Ωl for

l ∈ {1,2}. Vice versa, we identify a pair of functions ( f1, f2) ∈ L2(Ω1) × L2(Ω2) with
f and consider f as the natural L2-extension on the whole domain Ω. The L2 inner
product on Ω1 or Ω2 is denoted by (·, ·), while on Γ it is (·, ·)Γ.

Next, we summarize all assumptions on the coefficient functions, which aremostly
also found in realistic physical systems. Note that the degeneration of the equations is
excluded by requiring positive λα and Lipschitz continuous pc . This can be enforced,
if necessary, by a regularization like in [6, 16].

Assumption 1 For l ∈ {1,2} and α ∈ {n,w} we assume that

• λα,l : R → R+ is Lipschitz continuous with Lipschitz constant Lλα ,l and there
exist mλα ,l,Mλα ,l ∈ R

+ such that 0 < mλα ,l ≤ λα,l(s) < Mλα ,l for all s ∈ R;
• pc,l : R→ R is strictlymonotonically decreasing and there existmpc ,l, Lpc ,l ∈ R

+

such that mpc ,l |r − s | ≤
��pc,l(r) − pc,l(s)

�� ≤ Lpc ,l |r − s | for all r, s ∈ R;
• Tl : R→ R is strictly monotonically increasing with Lipschitz constant LT ,l .

Remark 2 The extension of λα,l , pc,l and Tl to any values s ∈ R can be constructed
naturally. This is necessary since the the solutions to the non-degenerated model
need not to satisfy a maximum principle [16].
Furthermore, Φδ,l : R → R is monotonically increasing and Lipschitz continuous
with Lipschitz constant LΦδ ,l = γl/δ.

We discretize the equations in time by the implicit θ-scheme. Given N ∈ N,
let ∆t := T

N and θ ∈ (0,1]. The superscript (·)k denotes the approximations of the
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quantities at time tk = k∆t, in particular we have uk
α,l

:= −λα,l(skl )Kl∇pk
α,l

and
pk
c,l

:= pc,l(skl ). Time averaged quantities are given by (·)k ,θ := θ(·)k + (1− θ)(·)k−1.
After testing, partial integration and summation over l = 1,2 using the continuity of
the normal flux across Γ, we obtain the time-discrete counterparts of (1)–(4).

Problem 1 (Semi-discrete weak formulation)
Given (sk−1, pk−1

n , pk−1
w ) ∈ V, find (sk, pkn, pkw) ∈ V such that for all (ψp,ψn,ψw) ∈

V there holds

−

2∑
l=1

φl

(
sk
l
−sk−1

l

∆t , ψn,l

)
=

2∑
l=1

(
uk ,θ
n,l
, ∇ψn,l

)
, (5)

2∑
l=1

φl

(
sk
l
−sk−1

l

∆t , ψw,l

)
=

2∑
l=1

(
uk ,θ
w,l
, ∇ψw,l

)
, (6)

2∑
l=1

(
pk ,θ
n,l
− pk ,θ

w,l
, ψp,l

)
=

2∑
l=1

(
pk ,θ
c,l
− Φδ,l

(
sk
l
−sk−1

l

∆t

)
−

Tl (s
k
l
)−Tl (s

k−1
l
)

∆t , ψp,l

)
. (7)

Remark 3 (Well-definedness)
If (sk, pkn, pkw) ∈ V is a solution to Problem 1, we have pα,1 |Γ = pα,2 |Γ by

the definition of V. Since sk
l
, sk−1

l
∈ L2(Ωl), testing (5) and (6) with arbitrary

ψα,l ∈ C∞0 (Ωl) implies uk ,θ
α,l
∈ Hdiv(Ωl). Therefore, the normal trace lemma [3,

Lemma III.1.1] yields uk ,θ
α,l
· νl ∈ H1/2(∂Ωl)

′ and integration by parts in (5) and (6)
implies uk ,θ

α,1 · ν1 = −uk ,θ
α,2 · ν2 in H1/2

00 (Γ)
′.

Proving the existence of solutions to this problem lies out of the scope of this paper,
but may be done analogously to the time-continuous case mentioned in Remark 1.
By this, the time-discrete pressure gradients should be bounded.

3 Linearization and Domain Decomposition

To account for the possible discontinuities at the interface Γ, we decouple the
problems in the subdomains. Following [12], we combine the interface conditions
uk ,θ
α,1 · ν1 = −uk ,θ

α,2 · ν2 and pk
α,1 = pk

α,2 by a parameter LΓ ∈ (0,∞) to obtain

gα,3−l = −2LΓpkα,l − gα,l, where gα,l := uk ,θ
α,l
· νl − LΓpkα,l on Γ.

This Robin-type formulation is equivalent to the original conditions for any LΓ , 0,
cf. [22, Remark 1 & 2]. In the next step, we introduce a linearized, iterative scheme,
where i ∈ N is the iteration index. Given the previous solution (sk.i−1, pk ,i−1

n , pk ,i−1
w )

and (gi−1
n ,gi−1

w ), we define the linearized fluxes and interface conditions as

uk ,i
α,l

:= −θλα,l(sk ,i−1
l
)Kl∇pk ,i

α,l
+ (1 − θ)uk−1

α,l , giα,l := −2LΓpk ,i−1
α,3−l − g

i−1
α,3−l .
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In this way, (5) and (6) become linear and decouple into

−φl

(
sk ,i
l
−sk−1

l

∆t , ψn,l

)
=

(
uk ,i
n,l
, ∇ψn,l

)
−

(
LΓpk ,i

n,l
+ gin,l, ψn,l

)
Γ
, (8)

φl

(
sk ,i
l
−sk−1

l

∆t , ψw,l

)
=

(
uk ,i
w,l
, ∇ψw,l

)
−

(
LΓpk ,i

w,l
+ giw,l, ψw,l

)
Γ
, (9)

giα,l = −2LΓpk ,i−1
α,3−l − g

i−1
α,3−l in L2(Γ). (10)

Finally, we also linearize (7) by adding stabilization terms, which vanish in the
limit if the iteration converges. For the latter, we use the parametersLp,l,LΦ,l,LT ,l >
0 to account for the nonlinearity of the functions pc,l , Φl,δ and Tl . They must satisfy
some mild constraints to ensure the convergence of the scheme, as shown below.
With this, the linearized and stabilized counterpart of (7) reads(

pk ,θ,i
n,l
− pk ,θ,i

w,l
, ψp,l

)
=

(
θpc,l(s

k ,i−1
l
) + (1 − θ)pk−1

c,l − Φδ,l

(
sk ,i−1
l

−sk−1
l

∆t

)
, ψp,l

)
−

(
Tl (s

k ,i−1
l

)−Tl (s
k−1
l
)

∆t +
(
Lp,l +

LT ,l+LΦ,l
∆t

) (
sk ,i
l
− sk ,i−1

l

)
, ψp,l

)
,

(11)

where pk ,θ,i
α,l

:= θpk ,i
α,l
+ (1 − θ)pk−1

α,l
. The iteration reduces to solving

Problem 2 (Weak formulation of the LDD-scheme)
Given (sk−1, pk−1

n , pk−1
w ) ∈ V, (sk ,i−1, pk ,i−1

n , pk ,i−1
w ) ∈ W and (gi−1

n ,gi−1
w ) ∈

[L2(Γ)]4, find (sk ,i, pk ,in , pk ,iw ) ∈ W and (gin,giw) ∈ [L2(Γ)]4 such that (8)–(11)
hold for l ∈ {1,2} and all (ψp,ψn,ψw) ∈ W.

3.1 Existence of Solutions and Convergence

Here, we summarize the theoretical results for the LDD iteration. This comprises
the existence of unique solutions to Problem 2, and the convergence of the iterative
sequence. The proofs are generalizations of the ones given in [14] and use ideas from
[10, 12, 21, 22]. We omit the details here.

Lemma 1 (Existence)
Problem 2 has a unique solution.

Theorem 1 (Convergence)
Assume that a solution (sk, pkn, pkw) ∈ V of Problem 1 exists and satisfies

‖K1/2
l
∇pk

α,l
‖L∞(Ωl ) ≤ Mpα ,l as well as uk

α,l
· νl ∈ L2(Γ). Let Assumption 1 be

fulfilled. If the stabilization parameters and time step fulfill for l ∈ {1,2}
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Lp,l ≥
Lpc ,l

θ , LT ,l ≥
LT ,l

2 , LΦ,l ≥
LΦδ ,l

2 and ∆t <
φlmpc ,l∑

α∈{n,w }

θL2
λα ,l

M2
pα ,l

mλα ,l

,

the sequence of solutions of Problem 2 converges towards (sk, pkn, pkw) for any initial
guess (sk ,0, pk ,0n , pk ,0w ) ∈ W and (g0

n,g
0
w) ∈ [L

2(Γ)]4, i.e. for l ∈ {1,2} andα ∈ {n,w}

sk ,i
l
→ skl in L2(Ωl), pk ,i

α,l
→ pkα,l in Wl, giα,l ⇀ gα,l in L2(Γ) as i →∞.

Remark 4 We have LΦδ ,l = γl/δ, such that LΦ,l ≥ γl/(2δ), while the other parame-
ters and the time step are independent of the regularization.

4 Numerical Experiment

For the validation of the theoretical results, we present a numerical study in a
rectangular domain Ω = (−1, 1) × (0,1) split into subdomains at the interface
Γ = { 0 } × (0,1). We use a standard finite element method (Q2) with a uniform
mesh with mesh size ∆x matching at the interface Γ. We choose the final time T = 1
and the Crank-Nicolson method (θ = 1/2) in time, so that we expect errors of the
order O(∆t2+∆x2). Furthermore, we take the same linearization parameters on both
subdomains, i.e. L f := L f ,1 = L f ,2 for f ∈ {p,T,Φ}.

We consider an analytically solvable example with isotropic and constant absolute
permeability K1 = K2 = I, and constant porosity φ1 = φ2 = 1 to explicitly compute
the experimental order of convergence (EOC).We choose linear coefficient functions,
but no hysteresis, i.e. λn(s) = 1− s, λw(s) = s, pc(s) = 0.2− s, T(s) = s, and γ ≡ 0.
The boundary conditions and right-hand side are selected such that the solution is

pn(x, t) =
(1−x1)(1+x1)

2

2(1+t)2 , pw(x, t) =
(1−x1)(1+x1)

2

2(1+t) , s(x, t) = (1−x1)(1+x1)
2

2(1+t) + 0.2.

First, we study the behavior of the method with respect to the time step and mesh
size. The results in table 1 clearly confirm the second order convergence in∆t and∆x
and indicate that the LDD-iteration is discretization independent, since the average
number of iterations per time step stays almost constant.

Next, we study the convergence properties of the method within one time step.
For fixed discretization, we study the error reduction and convergence rate in the
last time step. The results in Fig. 1 indicate a fast, linear convergence. Moreover, a
proper choice of the LDD parameters is crucial for the fast convergence, which can
be seen in Fig. 2. Finding the optimum is an open problem, but the lower bounds
from our analysis (Lp ≥ 1/2 and LT ≥ 1/2) are reasonable indicators.
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Table 1 The LDD-scheme with the parameters Lp = 0.5, LT = 1 and LΓ = 0.375 (LΦ = 0)
achieves experimentally second order convergence (EOC) in pressure (p) and saturation (s). The
average number of iterations per time step stays almost constant.

∆t = ∆x ‖ep ‖L2H 1 EOCp ‖es ‖L2H 1 EOCs Avg. #Iter.

0.2 5.352 · 10−3 5.824 · 10−3 13
0.1 1.394 · 10−3 1.94 1.463 · 10−3 1.993 12.3
0.05 3.564 · 10−4 1.968 3.670 · 10−4 1.995 12
0.025 9.013 · 10−5 1.983 9.192 · 10−5 1.997 11.5
0.0125 2.273 · 10−5 1.987 2.312 · 10−5 1.991 15.5

Fig. 1 Error reduction within
the last time step of the
LDD-scheme for ∆t = 0.05
and ∆x = 0.05. The relative
L2-differences di

p and di
s

in pressure and saturation
decrease fast, and the fitted
convergence rate (CR) is low. 0 5 10

10−10

10−6

10−2

Iteration i

Re
la
tiv

e
di
ffe

re
nc
e

di
p

di
s

CR 0.214

Fig. 2 Parameter dependence
of the average number of iter-
ations per time step for fixed
∆t = ∆x = 0.05 (For sim-
plicity Lp = 0). Deviations
from the optimal parameter
set drastically increase the
convergence rate.
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33
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5 Conclusion

We proposed an iterative LDD-scheme for finding the semi-discrete solutions of a
non-equilibrium two-phasemodel in a block-heterogeneous domain.We summarized
the existence and convergence of the solutions of this LDD-scheme, which holds
under a mild restriction for the time step, independently of the initial guesses or of
the used spatial discretization. Therefore, the scheme is robust and can be easily
adapted for realistic applications.

We will provide a detailed analysis and further numerical studies in a follow-up
article. Further investigation is necessary to generalize themethod for the degenerated
cases. Moreover, an a-posteriori error analysis might lead to estimates for efficient
and adaptive stopping criteria.
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