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Carina Bringedal

Abstract We present a phase-field model for single-phase flow and reactive trans-
port where ions take part in mineral precipitation/dissolution reactions. The evolving
interface between fluid and mineral is approximated by a diffuse interface, which
is modeled using an Allen-Cahn equation. As the original Allen-Cahn equation is
not conservative, we apply a reformulation ensuring conservation of the phase-field
variable and address the sharp-interface limit of the reformulated model. This model
is implemented using a finite volume scheme and the discrete conservation of the
reformulated Allen-Cahn equation is shown. Numerical examples show how the
discrete phase-field variable is conserved up to the chemical reaction.
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1 Introduction

We consider single-phase flow with solute transport, where ions can form a mineral
and hence leave the fluid phase. Also, minerals in the mineral phase can dissolve,
releasing ions to the fluid phase. We account for the time evolution of the mineral
and fluid phases. This evolution is not known a-priori as it depends on the consid-
ered reactions, hence we obtain a free-boundary problem. In [11], existence and
uniqueness of a weak solution for such a free-boundary model is proved in a one-
dimensional domain. In [9] a free-boundary model for precipitation and dissolution
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is included in a two-dimensional strip where the mineral width uniquely describes
the geometry. A level-set formulation is used for a more general geometry in [8].

These approaches apply a sharp interface between the mineral and fluid. Al-
ternatively, the transition between mineral and fluid can be considered as diffuse.
Diffuse-interface models for reactive and diffusive transport have been formulated
and analyzed in [10, 12], and later extended to fluid flow in [2]. In these papers the
original Allen-Cahn equation [1] describes the evolution of the diffuse interface.

The Allen-Cahn equation is derived from mean-curvature flow. It fulfills the
max/min principle, but is in its original form not conservative in the sense that the
volume of the considered phases will not remain constant. When using the Allen-
Cahn equation to track the location of the mineral and fluid phases, the amount of
mineral and fluid is not conserved - also in the absence of chemical reactions. Re-
formulations to ensure conservation of the phases has been suggested and analyzed
in the form of a nonlocal term or a Lagrange multiplier [4, 7, 13]. We will here
consider a similar reformulation.

The structure of the paper is as following: In Section 2 we present the original
phase-field model from [2] that we will build upon, while in Section 3 the conser-
vative reformulation and its sharp-interface limit is addressed. Section 4 formulates
a finite volume scheme and we show that the reformulated Allen-Cahn equation is
discretely conservative. Finally we show some numerical examples in Section 5.

2 The original phase-field model and its sharp-interface limit

The original model, as formulated in [2] is, for x ∈Ω , t > 0:

λ
2
∂tφ + γP′(φ) = γλ

2
∇

2
φ −4λφ(1−φ)

1
u∗

f (u), (1a)

∇ · (φv) = 0, (1b)

ρ f ∂t(φv)+ρ f ∇ · (φv⊗v) =−φ∇p+µ f φ∇
2(φv)− 1

λ
g(φ)v+

1
2

ρ f v∂tφ . (1c)

∂t
(
φ(u−u∗)

)
+∇ · (φvu) = D∇ · (φ∇u). (1d)

Here, Ω is the combined fluid and mineral domain and hence constant in time.
The phase field φ approaches 1 in the fluid and 0 in the mineral while λ denotes
the width of the diffuse zone separating the two phases. The double-well potential
is P(φ) = 8φ 2(1− φ)2 and γ is the diffusivity of the interface. Further, v is the
fluid velocity and p the pressure, while ρ f and µ f are the constant fluid density
and viscosity. Since the flow equations are solved also for the mineral part of the
domain, the monotonously decreasing interpolation term g(φ) fulfilling g(1) = 0
and g(0)> 0 is included to ensure zero flow in the mineral. The solute concentration
is denoted as u, D is its diffusivity, and the constant mineral concentration is u∗. The
mineral precipitation and dissolution reaction rate is f (u) = k(u2/u2

eq− 1), where
ueq is a given equilibrium concentration and k a reaction constant.
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The sharp-interface limit of the model (1) is derived by matched asymptotic ex-
pansions in [2]. The background of this procedure can be found in [3]. We let Ω f (t)
denote the domain where φ → 1 and Ωg(t) where φ → 0 as λ → 0. By separating
between these two regions, the model (1) reduces to

∇ ·v = 0 in Ω f (t), (2a)

ρ f ∂tv+ρ f ∇ · (v⊗v)+∇p = µ f ∇
2v in Ω f (t), (2b)

∂tu+∇ · (vu) = D∇
2u in Ω f (t), (2c)

v = 0, in Ωm(t), (2d)

as λ → 0. Through inner expansions and hence investigating the behavior near the
diffuse transition zone, it is found that, as λ → 0 [2]:

vn =−γκ− 1
u∗

f (u) on Γ (t), (3a)

v = 0 on Γ (t), (3b)
vn(u∗−u) = n ·D∇u on Γ (t), (3c)

where vn is the normal velocity of the interface Γ (t) and the curvature κ introduces
the curvature-driven motion. The normal vector n points into the mineral.

However, it is clear from (3a) that the interface evolution is not conservative
as the curvature-driven motion will alter the size of the fluid/mineral domains. By
applying homogeneous Neumann boundary conditions on ∂Ω we obtain

d
dt

∫
Ω

φdx =
∫

Ω

(
− 1

λ 2 γP′(φ)− 4
λ

φ(1−φ)
1
u∗

f (u)
)
dx,

which is non-zero even without chemical reactions.

3 Conservative phase-field model

We now formulate a conservative phase-field model based on the reformulation con-
sidered in [13] for phase separation, where also well-posedness of the reformulation
was assessed. We replace the phase-field equation (1a) by

λ
2
∂tφ + γP′(φ) = γλ

2
∇

2
φ −4λφ(1−φ)

1
u∗

f (u)+
γ

|Ω |

∫
Ω

P′(φ)dx, (4)

where |Ω | is the size of the considered domain. The equations (1b)-(1d) are left
unchanged. The reformulated equation (4) fulfills the global conservation property:

d
dt

∫
Ω

φdx =
∫

Ω

(
− 4

λ
φ(1−φ)

1
u∗

f (u)
)
dx. (5)
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Now the curvature-driven motion does not affect the total amount of φ anymore. In-
terpreting the integrated phase field as porosity, means that porosity can only change
due to the mineral precipitation and dissolution.

We address the sharp-interface limit of the reformulated phase-field equation (4)
by following similar steps as in [4], where a conservative Allen-Cahn equation with-
out chemical reactions was addressed. The equation (4) is first split in two equations:

λ
2
∂tφ + γP′(φ) = γλ

2
∇

2
φ −4λφ(1−φ)

1
u∗

f (u)+ γλξ (t) (6a)

ξ (t) =
1
λ

1
|Ω |

∫
Ω

P′(φ)dx. (6b)

The integral in (6b) is small and will decrease as λ decreases. Hence, it is shown in
[4] that ξ (t) = O(λ 0) as λ → 0. The lowest order terms of the outer expansions of
(6a) still lead to φ approaching 0 and 1 in the mineral and fluid domains as earlier.

For the inner expansions [3], following steps similar as in [2, 4], we arrive at

vn =−γ(κ−κ)− 1
u∗

f (u) on Γ (t),

where κ is the average curvature along Γ (t). This means that the interface normal
velocity is still driven by both the chemical reaction and by curvature, but where the
curvature-driven movement now fulfills conservation of the phase-field parameter.

4 Conservative numerical discretization

As numerical discretization we apply a standard finite-volume scheme on an admis-
sible mesh E [5], and forward or backward Euler in time with constant time step
size ∆ t. For each element K ∈ E , the discretization for the phase-field equation (4)
reads

λ
2|K|

φ
n+1
K −φ n

K
∆ t

+ |K|γP′(φ `
K) = γλ

2
∑

L∈N (K)

|σK,L|F`
K,L

−4λ |K|φ `
K(1−φ

`
K)

f (u`K)
u∗

+ |K| γ

|Ω | ∑J∈E
|J|P′(φ `

J ), (7)

where |K| is the measure of element K. Further, N (K) refers to the neighboring
elements of K and |σK,L| is the measure of the edge σK,L between element K and
a neighbor L. The integral

∫
Ω

P′(φ)dx is approximated by the sum ∑J∈E |J|P′(φ `
J ).

The superscript ` can be either n or n+1 depending on whether forward or backward
Euler is applied. The fluxes F`

K,L approximate the diffusive flux from ∇2φ and are
given by

F`
K,L =

φ `
L−φ `

K
dK,L
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where dK,L is the Euclidean distance between the points xK ∈ K and xL ∈ L. Ob-
viously we have F`

K,L = −F`
L,K on interior edges. As we will apply homogeneous

Neumann boundary conditions for φ , Fσ ≡ 0 for edges σ ∈ ∂Ω .

Theorem 1. The scheme (7) is globally conservative (up to the chemical reaction)
under homogeneous Neumann boundary conditions on φ when the two terms con-
cerning P′(φ) are either both solved explicitly or both implicitly.

Proof. We sum over all K ∈ E . Since F`
K,L = −F`

L,K on internal edges and Fσ = 0
on boundary edges, the contribution from the diffusive flux vanishes. Hence,

∑
K∈E
|K|φ n+1

K = ∑
K∈E
|K|φ n

K +
∆ tγ
λ 2 ∑

K∈E
|K|
( 1
|Ω | ∑J∈E

|J|P′(φ `
J )−P′(φ `

K)
)

−4∆ t
λ

∑
K∈E
|K|φ `

K(1−φ
`
K)

f (u`K)
u∗

.

Since ∑K∈E |K| 1
|Ω | ∑J∈E P′(φ `

J ) = ∑J∈E |J|P′(φ `
J ) as ∑K∈E |K|= |Ω |, the two terms

concerning P′(φ) cancel each other when they are evaluated at the same time level
tn or tn+1. Hence

∑
K∈E
|K|φ n+1

K = ∑
K∈E
|K|φ n

K−
4∆ t
λ

∑
K∈E
|K|φ `

K(1−φ
`
K)

f (u`K)
u∗

,

which means that the scheme is globally conservative in case of f (u) = 0, and the
integrated value of φ can only change due to the chemical reactions. ut

5 Numerical examples

We consider two numerical examples in 2D: In the first the Allen-Cahn equation is
applied to a circular mineral, while in the second example we consider also (1b)-
(1d), where flow through a channel with a dissolving mineral layer is addressed.
Equations (1b)-(1d) are discretized with a FV scheme similar as in (7) with u and
p at nodes xK and velocity on a dual mesh for the edge midpoints. The numerical
examples use uniform, rectangular meshes. The meshes fulfill max{∆x,∆y}< λ/4
to ensure proper resolution of the diffuse interface. For all presented results we use
γ = 1 and λ = 0.1, but the results are qualitatively the same for other choices. All
non-linear systems of equations are solved iteratively using Newton’s method.

5.1 Circular mineral

The unwanted behavior of the non-conservative Allen-Cahn equation is especially
visible when considering a circular mineral. The constant (and non-zero) curva-
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ture of the diffuse interface zone causes the mineral to shrink without the presence
of any chemical reaction. Although this is expected from the standard Allen-Cahn
equation, it is not wanted when using a phase field to track the location of a mineral.

We initialize the square Ω = [0,1]2 with a phase field depicting a mineral of
radius 0.4 centered in the middle of the square. Homogeneous Neumann conditions
are used on all sides. We use the strategy described in [2] to initialize the phase field.
No chemical reactions are included.

Figure 1 shows the integrated phase field over time. In the standard Allen-Cahn
model the mineral disappears. For the conservative formulation, the changes in
porosity are 5.2× 10−9 and 4.9× 10−11 for the explicit and implicit formulation,
respectively. The changes for the implicit formulation can be connected to the tol-
erance of the Newton iterations, while the changes for the explicit are mainly an
artifact of the explicit time stepping. For the explicit time-stepping phase-field val-
ues above 1 and below 0 was encountered.

Fig. 1 The integral of the
phase field; i.e., porosity, as
a function of time. The two
lines for conservative implicit
and explicit are lying on top
of each other.
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5.2 Flow through a dissolving channel

We consider a channel Ω = [0,1]× [0,0.1] with a prescribed parabolic inflow profile
with vmax = 1 on the left side and a constant pressure p= 0 on the right side. Initially,
a mineral layer of width 0.025 is at the top and bottom of the channel, and the fluid
is saturated with the equilibrium concentration ueq = 0.5. Due to symmetry we only
consider the lower half of the channel. At the left inlet a Dirichlet condition of
u = 0.25 is applied, triggering mineral dissolution. We consider three cases:

1) The original model (1), solved fully coupled with backward Euler.
2) The conservative model (4), (1b)-(1d), solved fully coupled with backward Euler.
3) The conservative model (4), (1b)-(1d), solved fully coupled with backward Euler

except for the two terms concerning P′(φ), which are both solved explicitly.
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The resulting non-linear system of equations is solved with Newton’s method. In the
second case the Jacobian for the phase-field equation is full and Newton iterations
are expensive. Although the third case gives cheaper Newton iterations, a small
time-step size is needed to ensure a stable discretization.

In all three cases the mineral dissolves. However, the speed and location of the
dissolution vary due to differences in curvature behavior. Figure 2 (left) shows the
porosity minus the accumulated reactive term ((5) integrated in time) as function of
time for each of the three cases, which should be (close to) zero. Figure 2 (right)
shows the across-channel integral of 1-φ , giving the mineral width, at t = 0.3.

From Figure 2 (left) it is clear that the non-conservative formulation 1) gradu-
ally gives an nonphysical porosity due to the curvature-driven motion of the diffuse
interface. The conservative implicit formulation 2) only has a nonphysical change
in porosity of 6.5× 10−11 throughout the simulation, which can be connected to
the tolerance used for the Newton iterations. Despite applying ∆ t = 10−5 for the
conservative explicit formulation 3), only solutions up to t = 0.35 could be obtained
due to instabilities, and a nonphysical change in porosity of 7.9×10−8 is observed
at this time. The conservative explicit case 3) also shows some difference in curva-
ture behavior compared to case 2) (Figure 2, right). For cases 1) and 3), the mineral
dissolves slower near the inlet and faster near the outlet.
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Fig. 2 Left: Changes in porosity not coming from the chemical reaction over time. The dotted line
is hidden behind the solid line. Right: Mineral width along the x-axis of case 2) in blue; black lines
show difference between case 1) or 3) and 2), at time t = 0.3.

6 Discussion and conclusion

We have formulated a conservative phase-field model for flow and reactive transport
with a mineral precipitation and dissolution reaction. The sharp-interface limit of
the model shows how the interface evolution still includes curvature-driven motion
as well as reaction-driven motion, but where the curvature-driven motion is now
conservative.
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A standard FV scheme on an admissible mesh ensures the discrete conservation
of the phase-field variable (up to the chemical reaction) as long as a consistent ex-
plicit/implicit choice is made for the non-linear terms. However, the explicit choice
needs a very short time step to avoid numerical instabilities to develop. For the im-
plicit choice, the strong nonlinearity in the discretized system of equations creates
difficulties and Newton’s method is slow due to the Jacobian being full. It would
be beneficial to rather use an iterative scheme like the L-scheme [6] to speed up the
non-linear solving steps.

Finally, we note that the reformulated phase-field model can be upscaled simi-
larly as in [2], hence a two-scale (pore-Darcy) model can be obtained, where the
phase field is updated locally on the pore scale. This way, the conservative property
would be achieved for each local pore.

Acknowledgements The author would like to thank Florian Frank (FAU Erlangen-Nürnberg) for
useful discussions on the phase-field formulation. The computational resources and services used
in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research
Foundation - Flanders (FWO) and the Flemish Government - department EWI.

References

1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its ap-
plication to antiphase domain coarsening. Acta Metall 27(6), 1085 – 1095 (1979). DOI
10.1016/0001-6160(79)90196-2

2. Bringedal, C., von Wolff, L., Pop, I.S.: Phase field modeling of precipitation and dissolution
processes in porous media: Upscaling and numerical experiments (2019). Preprint, available
at http://www.uhasselt.be/Documents/CMAT/Preprints/2019/UP1901.pdf

3. Caginalp, G., Fife, P.: Dynamics of layered interfaces arising from phase boundaries. SIAM J
Appl Math 48(3), 506–518 (1988). DOI 10.1137/0148029

4. Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen-Cahn equation and volume preserv-
ing mean curvature flow. Interface Free Bound 12, 527549 (2010). DOI 10.4171/IFB/244
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