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Abstract

It is well known that multi-phase flow in porous media exhibits hysteretic be-
haviour. This is caused by different fluid-fluid behaviour if the flux reverses. For
instance, in unsaturated ground water flow the process of imbibition and drainage
behave differently. In this paper we study a new model for hysteresis that ex-
tends the current play-type hysteresis model in which the scanning curves between
drainage and imbibition are vertical. In our approach the scanning curves are non-
vertical and can be constructed to approximate experimentally observed scanning
curves. Furthermore our approach does not require any book-keeping when the flux
reverses at some point in space. Specifically, we consider the problem of horizontal
redistribution to illustrate the strength of the new model. We show that all cases of
redistribution can be handled, including the unconventional flow cases. Our analysis
uses a self-similar transformation of the equations. We also present a numerical ap-
proach (L-scheme) for the partial differential equations in a finite domain to recover
all redistribution cases of the infinite column provided time is not too large.

1 Introduction

In this paper we consider the flow of two immiscible and incompressible fluids through a
homogeneous and isotropic porous medium. It is assumed that the pores of the medium
are fully occupied by these fluids. One fluid is the wetting phase and the other one is
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the non-wetting phase. They are denoted by the subscripts w and n. We disregard the
influence of gravity, as we are interested in a horizontal physical system. Further we
assume that there are no internal sinks or sources. The corresponding (i.e. macroscopic)
equations are well-known [1, 5, 9] and in dimensionless form they read:

∂tSi +∇ · ~Fi = 0, ~Fi = −ki(Si)∇Pi for i = n,w; (1.1)

Sn + Sw = 1, Sn, Sw ≥ 0. (1.2)

In (1.1), Si, Pi and ~Fi denote saturation (assumed to be scaled such that 0 ≤ Si ≤ 1),
pressure and volumetric flux of phase i, and ki is the relative permeability of the porous
medium with respect to phase i. If the system contains water as the wetting phase and
air as the non-weeting phase, then it is generally assumed that Pn = Pair is constant. The
equations (1.1) reduce to Richards equation which is the standard equation that models
unsaturated flow in porous domains [1, 5, 9]:

∂tSw +∇ · ~Fw = 0, ~Fw = −kw(Sw)∇Pw with 0 ≤ Sw ≤ 1. (1.3)

In general, the closure relation between P and S is given in form of an algebraic relation-
ship determined from experiments:

Pn − Pw = Pc(Sw), (1.4)

where Pc : (0, 1] → R is the capillary pressure. There is a vast amount of literature
available on the capillary pressure and its interpretation [1, 5, 9]. For properties and
closed-form relations we refer to the well-known references [4, 25].

Sw

0 1

P
c

Pim

Pdr

Pim → Pdr

Pdr → Pim

(a) Schematic diagram of primary infiltra-
tion, drainage and scanning curves [27].

Sw

0 1

P
c

Pim

Pdr

Similarity

Play-type

(b) Schematic diagram of scanning curves for
playtype hysteresis and similarity models [2,12].

Figure 1: Pc-Sw relationships from experiments and existing models
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It is known that multiphase flow in porous media displays hysteretic effects [20]. The
capillary pressure-saturation relationship (henceforth called Pc-Sw relationship) traces one
path while going through an infiltration/imbibition/wetting process and another path
while going through a drainage/drying process. This effect can be incorporated into the
classical model by replacing Pc(Sw) function in (1.4) by two different functions: Pim(Sw)
for infiltration and Pdr(Sw) for drainage. This works quite well if the porous medium is
going through only an infiltration or a drainage process. But if there is a switch between
the two, then the Pc-Sw curves span the region between the Pim and Pdr curves in form of
scanning curves [11]. Typical behaviour is shown in Figure 1. Some of the most common
models for porous media hysteresis are:

1.1 Similarity models

The main idea behind this class of models is to express the scanning curves by a closed-
form relationship that allows the scanning curve to be similar in shape to the imbibition
or drainage curves. With the similarity hypothesis, Philip [16] was able to get reasonable
approximations for scanning curves. Later models such as the Mualem model [12] and
the Lenhard-Parker model [14] were developed using similar concepts. The scanning
curves obtained in this way are close to the experimental scanning curves. Moreover, this
class of models can describe “secondary hysteresis”. This refers to the phenomenon that
the scanning curve through a point, switching from imbibition to drainage, is different
from scanning curve through the same point switching from drainage to imbibition. All
other models discussed in this paper do not include this secondary behaviour, because for
those models a intermediate point can move back and forth on the same scanning curve.
Similarity models can also be used to explain many cases of the horizontal redistribution
problem [8], which is an important benchmark problem for porous flows.

However similarity models are not straightforward to apply because in these models
the saturation at a point is a function of all previous reversal points (when it switches
from infiltration to drainage or vice versa). The closed-form expressions of the scanning
curves actually take in these reversal points as parameters. The order at which the
processes (imbibition/drainage) have gone through plays also a vital role. This leads to
book-keeping for each point in space, making the models difficult to handle in practice
and in any numerical or analytical approach.

1.2 Playtype hysteresis

In this approach one models scanning curves as vertical lines between Pim and Pdr [2,22,
26]. To close relation (1.1) one proposes the form:

Pn − Pw := Pc (Sw, ∂tSw) ∈ P+(Sw)− P−(Sw) · sign (∂tSw) , (1.5)
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where sign(ζ) is the multivalued signum graph,

sign(ζ) =


1 for ζ > 0

[−1, 1] for ζ = 0

−1 for ζ < 0,

(1.6)

and where P+, P− are defined by:

P+ :=
1

2
(Pdr + Pim) , P− :=

1

2
(Pdr − Pim) . (1.7)

This model implies that if ∂tSw > 0, then Pn−Pw = P+(Sw)−P−(Sw) = Pim(Sw), and if
∂tSw < 0, then Pn−Pw = P+(Sw)+P−(Sw) = Pdr(Sw). If Pim(Sw) < Pn−Pw < Pdr(Sw),
then ∂tSw = 0.

The model, including this form of hysteresis, is well posed [10] and is physically jus-
tifiable by pore-scale [21] or thermodynamic [2] arguments. Although this model has the
advantage of being simple and local in time (no information on the history of a point
is required) the resulting vertical scanning curves do not really resemble the ones from
experiments. Moreover, as we show later, playtype hysteresis model cannot describe all
cases of horizontal redistribution for many known cases.

1.3 Interfacial area model

Pore-scale simulations have shown that interfacial areas plays an important role in the
Pc-Sw relationship. Motivated by this, a model was proposed in [6, 7, 13] based on ther-
modynamic considerations. The main idea is to introduce the volumetric interfacial area
(awn) as a new variable, in addition to saturation and pressure, and to assume that awn
is a unique function of saturation and pressure:

awn = awn(Sw, Pn − Pw). (1.8)

A transport equations for awn was proposed leading to a new formulation for multi-
phase flow, including hysteretic behaviour. The model was analyzed in [18] for horizontal
redistribution. There it was shown that for any fixed point x0 in space, there exists a
unique Pc-Sw curve which satisfies

dPc
dS

(Sw) = g(Pc, Sw), with Pc(Sw(x0, 0)) = Pc(x0, 0), (1.9)

where g is a given smooth function of Pc and Sw. Thus if Sw(x, 0) and Pc(x, 0) have only
two values, as they do for horizontal redistribution, two Pc-Sw curves arise. Clearly for
general initial conditions, infinitely many Pc-Sw curves may arise. However the concept of
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primary imbibition and drainage is not described by this model. Hysteresis, in the sense
of switching between two curves at a fixed x0, could only be included by introducing rate
dependent terms in the coefficients [27, p. 67].

The purpose of this paper is to introduce a hysteresis model that is based on the play-
type approach, having primary drainage/imbibition curves and in between non-vertical
scanning curves. These scanning curves can be chosen in such a way that they are close
to experimental data. This model is presented and discussed in Section 2. In Section 3
the equations and conditions for (horizontal) redistribution are given and in Section 4
self-similar solutions are discussed describing all possible redistribution cases using the
new model. Then, in Section 5 a numerical scheme (L-scheme) for the partial differen-
tial equation is presented and computational results are compared with the redistribution
cases. Conclusion are given in Section 6.

2 Extended playtype hysteresis model

In this section we will introduce the extended playtype hysteresis model, discuss its back-
ground and some of its properties. Let u denote the capillary pressure, i.e.

u := Pn − Pw. (2.1)

We extend the playtype hysteresis by introducing non-vertical scanning curves which
become vertical near the end points Sw = 0 and Sw = 1. To this end we replace ∂tSw in
the sign function by ∂t(H(Sw)+u), where H : (0, 1)→ (0,∞) is a function chosen in such
a way that the corresponding scanning curves have the desired properties. Thus instead
of (1.5) we propose

u ∈ P+(Sw)− P−(Sw) · sign(∂tH(Sw) + ∂tu), (2.2)

where P±(Sw) and sign(·) are defined as in (1.7) and (1.6), respectively. To better under-
stand what relation (2.2) implies, let us introduce the following sets:

Definition 1 In the (Sw, u) plane we consider the sets

H := {(Sw, u) : Sw ∈ (0, 1], Pim(Sw) < u < Pdr(Sw)},
∂Hdr := {(Sw, u) : Sw ∈ (0, 1], u = Pdr(Sw)},
∂Him := {(Sw, u) : Sw ∈ (0, 1], u = Pim(Sw)}.

In these definitions we avoid Sw = 0, as Pim(Sw) and
Pdr(Sw) become singular at that point.

u

Sw∂Him

H

∂Hdr

1

Figure 2: Sets in (Sw, u) plane
according to Definition 1.
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If (S, u) ∈ H, then by (1.7)

−1 =
P+(Sw)− Pdr(Sw)

P−(Sw)
<
P+(Sw)− u
P−(Sw)

<
P+(Sw)− Pim(Sw)

P−(Sw)
= 1.

Hence from (2.2)
−1 < sign(∂tH(Sw) + ∂tu) < 1.

Definition (1.6) of sign(·) then gives

∂tH(Sw) + ∂tu = 0. (2.3)

This means that we have

du

dSw
= − dH

dSw
(Sw) for (Sw, u) ∈ H, (2.4)

implying scanning curves with slope − dH
dSw

(Sw). Note that a point can move back and
forth along the same scanning curve, see also Figure 4.

If (S, u) ∈ ∂Him then,

P+(Sw)− u
P−(Sw)

=
P+(Sw)− Pim(Sw)

P−(Sw)
= 1,

and hence sign(∂tH(Sw) + ∂tu) = 1 implying

∂tH(Sw) + ∂tPim(Sw) =

(
dH

dSw
+
dPim
dSw

)
∂tSw ≥ 0.

Thus if dH
dSw

> −dPim

dSw
we have

∂tSw ≥ 0 for (Sw, u) ∈ ∂Him. (2.5)

Similarly if dH
dSw

> −dPdr

dSw
, then

∂tSw ≤ 0 for (Sw, u) ∈ ∂Hdr. (2.6)

Now choosing H such that for each 0 < Sw ≤ 1

dH

dSw
(Sw) ≥ max

{
−dPim
dSw

(Sw),−dPdr
dSw

(Sw)

}
, (2.7)

both the lower bound conditions are satisfied and so are inequalities (2.5) and (2.6).
Moreover, condition (2.7) ensures that scanning curves originating from arbitrary points
on ∂Him or ∂Hdr remain in H.
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The question arises how to choose and construct a function H that gives scanning
curves close to experimental data and satisfies (2.7) for mathematical consistency. We
present a construction that is based on the experiment of Morrow and Harris [11]. Their
results for drainage and imbibition are shown in Figure 3.
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Figure 3: Scanning curves: (a) experimental drainage (b) experimental imbibition (both
after Morrow and Harris [11]).

Here the variables are as in [11]: the saturation is unscaled (0 < Swr < Sw < 1− Sar)
and the pressure (suction) is in cm of water. In the construction of H we use the same
variables to get a meaningful comparison. We propose for H the form:

H(Sw) = α(Sw)

∫ Sw

Sref

max

{
−dPim
dSw

(Sw),−dPdr
dSw

(Sw)

}
dS, (2.8)
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u
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∂Hdr

∂Him

Figure 4: Scanning curves based on (2.8)
and (2.9).

for Sw > Sref , where Sref is chosen close to
Swr (in fact Pim(Sref) = 35) and Pim and
Pdr are taken from the experiment. Clearly
if α(Sw) ≥ 1 and dα

dSw
(Sw) ≥ 0, then (2.7) is

satisfied. With trial and error we found that

α(Sw) = 2

(
1 +

1

5
S5
w

)
, (2.9)

gives a good approximation to both drainage
and imbibition. The scanning curves shown in
Figure 4 result from u = constant − H(Sw),
where the constant is defined by the intersec-
tion point with ∂Him or ∂Hdr.
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The H obtained this way is a close match to the experiments. Having explicit expressions
for Pim and Pdr, for instance the van Genuchten expressions, would result in a (semi)
explicit expression for H.

Remark 1 For simplicity one could consider dH
dSw

(Sw) := 1
δ

(is constant) for some δ > 0.
Then the scanning curves are described by the straight lines:

du

dSw
= −1

δ
. (2.10)

By the same argument as above, one would need for each 0 < Sw ≤ 1

1

δ
≥ max

{
−dPim
dSw

(Sw),−dPdr
dSw

(Sw)

}
, (2.11)

to ensure inequality (2.7). However this would unrealistically restrict the range of satura-
tions for which the scanning curves remain in H.

Beliave and Hassanizadeh [2] were the first to derive the extended playtype hysteresis
closure relationship. Using thermodynamical arguments they obtained an expression in
the inverse form of (2.2): see [2, eq. 35]. In our notation it translates into:

u ∈ P+(Sw)− P−(Sw) · sign

[(
1− C dP

c
0

dSw
(Sw)

)
∂tSw + C∂tu

]
, (2.12)

where C > 0 is a constant and P c
0 is a reference curve between Pim and Pdr that intersects

all scanning curves. For example P c
0 could be P+. The authors argued, using experimental

data, that the term CP c′
0 (Sw) has roughly 10% contribution in expression (2.12). Also

they pointed out that C → 0 corresponds to the playtype hysteresis model. As C−1(1−
C
dP c

0

dSw
(Sw)) > 0 for each 0 < Sw ≤ 1, one could write,

dH

dSw
(Sw) := C−1 − dP c

0

dSw
(Sw). (2.13)

to put (2.12) in the form of (2.2). Note however that the reference pressure P c
0 does not

necessarily satisfy condition (2.7).
Extension of playtype hysteresis model by inclusion of non-vertical scanning curves has

been hypothesized also in context of numerical analysis. For example, in [3], authors use
non-vertical approximations to vertical scanning curves as the original playtype hysteresis
model posses difficulties for convergence. Similarly in [10], non-vertical scanning curves
have been introduced to regularize the sign function for numerical experiments.

Remark 2 Because of the appearance of the term ∂tu in (2.2), the extended playtype
hysteresis model requires initial conditions both in pressure and saturation. This is in
contrast to the playtype hysteresis where an initial condition in saturation only, is required.
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3 Redistribution

Following Philip [15] , Raats & van Duijn [19] and Pop et al [18] we make the effect of
hysteresis explicit in the redistribution case. We show that the extended playtype hys-
teresis as described by (2.2), with H(Sw) satisfying (2.7) covers all cases of redistribution.
This is one of the main purposes of the paper.

3.1 General set up

Consider a horizontal porous column of infinite extent, directed along the x-axis. In the
column the flow is one dimensional and describes the redistribution of fluids. We shall
restrict ourselves to the case of unsaturated flow, with water as the wetting phase and air
as the non-wetting phase. The variables to be determined are the water saturation Sw and
pressure u. For brevity we drop the subscript w from the notation. Let R− = {x < 0} and
R+ = {x > 0} denote respectively the left and right half of the column. The governing
equations are Richards equation (1.3) along with closure relation (2.2):

∂tS + ∂xF = 0, for x ∈ R, t > 0, (3.1)

F = k(S)∂xu for x ∈ R, t > 0, (3.2)

u ∈ P+(S)− P−(S) · sign(∂tH(S) + ∂tu). (3.3)

The halves R− and R+ have constant, but different, initial saturation and pressure at
t = 0. We impose

S(x, 0) =

{
Sl for x ∈ R−

Sr for x ∈ R+;
(3.4)

and

u(x, 0) =

{
ul for x ∈ R−,

ur for x ∈ R+.
(3.5)

Throughout this paper we assume that the functions k, Pim, Pdr and H are smooth and
satisfy the structural properties:

(A. 1) k(0) = 0; k(S), dk
dS

(S) > 0 for 0 < S ≤ 1 with k(1) <∞.

(A. 2) Pdr(S) > Pim(S) > 0 if 0 < S < 1 with Pdr(1) ≥ Pim(1) = 0.

(A. 3) dPim

dS
(S), dPdr

dS
(S) < 0 for 0 < S < 1.

(A. 4) H satisfies (2.7).
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For the initial conditions (3.4) and (3.5) to be consistent with expression (3.3) we must
impose,

Pim(Si) ≤ ui ≤ Pdr(Si) for i = l, r. (3.6)

In this and later sections we use the notation,

Definition 2 El := (Sl, ul) and Er = (Sr, ur).

Thus in terms of Definitions 1 and 2, condition (3.6) reads: El, Er ∈ H ∪ ∂Him ∪ ∂Hdr.
Since El 6= Er, a solution of (3.1)-(3.5) is expected to have a discontinuous saturation
at x = 0. Only in exceptional cases the saturation is continuous across x = 0. But
mass conservation and momentum conservation requires the flux F and the pressure u to
be continuous. Thus the strategy is to solve (3.1)-(3.3) separately for R− and for R+,
subject to (3.4) and (3.5) and then to match possible solutions so that flux and pressure
are continuous at x = 0. Such solutions will be either in the imbibition state or in the
drianage state in R− and R+. Thus in addition to (3.1)-(3.5) we shall explicitly use

u(0−, t) = u(0+, t),

F (0−, t) = F (0+, t), (3.7)

for each t > 0. Here we use the notation f(0±) = lim
x↑↓0

f(x).

3.2 Possible initial conditions

Let Er ∈ ∂Hdr, El ∈ ∂Him and let ul > ur. Since this implies Sl < Sr one expects that
water flows from the wet half column to the dry half column. This is called “conventional
flow”. It is described by Philip in his classical paper [15].

u

S

u0,1

u0,2

Er

El,2

El,1

H

∂Him

∂Hdr

Scanning curves
Figure 5: (green) Redistribution according to
Philip [15] yielding “conventional” flow; (cyan)
redistribution according to Raats & van Duijn
yielding “unconventional” flow. The arrows in-
dicate the direction of increasing x.

He found that in this case the right half column (R+) is in the drainage state, with (S, u)
following a trajectory on ∂Hdr, and the left half column (R−) is in the imbibition state,
with (S, u) following a trajectory on ∂Him. These trajectories are connected at x = 0 by
a horizontal jump in the (S, u) plane where u = u0,1 ∈ (ur, ul). This value is uniquely
chosen so that the flux is continuous. The behavior is sketched in the (S, u) plane in
Figure 5.
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However it was later realized and pointed out (Raats & van Duijn [19]) that this
construction fails for ul < ur. Then one has to use the scanning curves emerging from
the points El and Er as in Figure 5. With these scanning curves one follows the same
procedure. But now the left half is in the drainage state and becomes drier, while the
right half is in imbibition state and becomes wetter. This is called “unconventional flow”
because additionally if Sl < Sr then counterintuitively water flows from the dry half to
the wet half. Using the Maulem model, Heinen & Raats [8] demonstrated numerically
that this type of redistribution can indeed occur.

Going one step further one can question what happens when Ei ∈ H (i = l, r).
Although redistribution results arising from interfacial area models [18] are available for
general pressure and saturation initial conditions, they do not specify any directions in the
induced Pc-Sw curves. Thus they can not describe hysteretic redistribution in the broadest
sense. This is the same reason why redistribution results for heterogeneous semi-infinite
blocks [23] cannot be extended to cover hysteretic domains.

Remark 3 In the extended playtype model, the primary scanning curves are described by
equation (2.3). On such curves in H one can, in principle, go back and forth: i.e. the
same scanning curves are used for drainage and imbibition. Hence no secondary scanning
curves are generated. However, this is not an obstacle for horizontal redistribution, as the
right/left half of the column can only be in one state: either drainage or imbibition.

4 Self-Similar solutions

4.1 Preliminaries

Because the initial conditions are piecewise constant, one can reduce the system of partial
differential equations (3.1)-(3.5) to a system of ordinary differential equations by intro-
ducing the similarity transformation:

S(x, t) = S(η), u(x, t) = u(η), F (x, t) = F (η)

where η =
x√
t
, −∞ < η <∞.

(4.1)

Substituting (4.1) into (3.1)-(3.3) and using initial conditions (3.4)-(3.5) one obtains the
boundary value problem (P): (we will use primes to denote differentiation with respect
to η)

(P)



η

2
S ′ = F ′, F = k(S)u′ for η ∈ R/{0} (4.2)

u ∈ P+(S)− P−(S) · sign [−η(H(S) + u)′] (4.3)

(S(η), u(η))→ El as η → −∞ (4.4)

(S(η), u(η))→ Er as η →∞. (4.5)
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Here flux F has been redefined: it is
√
t times the original flux. To obtain (4.3) we used

sign [∂t(H(S) + u)] = sign
[
− η

2t
(H(S) + u)′

]
= sign [−η(H(S) + u)′] .

In problem (P) the pressure u and the flux F are continuous. Integrating by parts the
first equation in (4.2), the flux continuity implies that ηS(η) is continuous as well. Hence
the saturation S can only be discontinuous at η = 0.

When discussing the solutions of Problem (P) we shall represent them as trajectories
{(S(η), u(η)) : −∞ < η < ∞} in the (S, u) plane. The trajectories run from El (as
η → −∞) to Er (as η → ∞). In the figures below the arrows indicate the direction of
increasing η.

Remark 4 The smoothness of the coefficients in (4.2)-(4.5) implies that the functions
(S, F, u) are smooth when η 6= 0 and the equations are satisfied classically except at points
where (S, u) moves from one of the sets H, ∂Him, ∂Hdr to another.

u

S
1

El

H

∂Him

∂Hdr

Figure 6: Possible solutions of Problem (P)
emerging from El ∈ ∂Him. The arrows indicate
increasing η.

u

S
1

El

∂Him

Reversal point

Figure 7: Switch from imbibition to
scanning curve.

We first consider all possible solutions in R−, that satisfy boundary conditions (4.4). We
distinguish the following three cases:

Case 1. El ∈ ∂Him (i.e. ul = Pim(Sl))

Then there are four possibilities, see Figure 6.

1.1 (S(η), u(η)) = El for all η < 0;

1.2 (S(η), u(η)) ∈ ∂Him and S ′(η) > 0 for all η < 0;

1.3 (S(η), u(η)) ∈ H and S ′(η) < 0 for all η < 0. This implies (see equation (2.3)),

H(S(η)) + u(η) = H(Sl) + ul for all η < 0;

12



1.4 There exists η0 < 0 so that

(S(η), u(η)) ∈ H and S ′(η) < 0 for −∞ < η < η0,

(S(η), u(η)) ∈ ∂Hdr and S ′(η) < 0 for η0 ≤ η < 0.

One may wonder why in Case 1.2 the trajectory stays on ∂Him for all η < 0. Suppose
it does not. Then there exists a reversal point η∗ < 0 at which the trajectory switches
from the imbibition curve to a scanning curve, as in Figure 7. Since S ′(η) > 0 for
−∞ < η < η∗, it follows from (4.2) that F ′(η) < 0 for −∞ < η < η∗. Using F (−∞) = 0,

we have F (η∗) < 0. But this would imply u′(η∗) = F (η∗)
k(S(η∗))

< 0, contradicting the reversal
of direction at η∗.

This argument can be used repeatedly to show that S ′(η) cannot change its sign in
R− which eliminates all other possibilities except the ones presented in Case 1.

Case 2. El ∈ H (i.e. Pim(Sl) < ul < Pdr(Sl))

Now there are three possibilities, see Figure 8.

2.1 (S(η), u(η)) = El for all η < 0;

2.2 (S(η), u(η)) ∈ H and S ′(η) ≶ 0 for
all η < 0. Again this implies

H(S(η)) + u(η) = H(Sl) + ul

for all η < 0;

u

S
1

El
H

∂Him

∂Hdr

Figure 8: Possible solutions of Problem (P)
emerging from El ∈ H.

2.3 There exists η0 < 0 so that

(S(η), u(η)) ∈ H for −∞ < η < η0,

and either (S(η), u(η)) ∈ ∂Him for η0 ≤ η < 0 and S ′(η) > 0 for all −∞ < η < 0,
or (S(η), u(η)) ∈ ∂Hdr for η0 ≤ η < 0 and S ′(η) < 0 for all −∞ < η < 0.

Case 3. El ∈ ∂Hdr (i.e. ul = Pdr(Sl))

As in Case 1 there are four possibilities, see Figure 9.
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3.1 (S(η), u(η)) = El for all η < 0;

3.2 (S(η), u(η)) ∈ ∂Hdr and S ′(η) < 0
for all η < 0;

3.3 (S(η), u(η)) ∈ H and S ′(η) > 0 for
all η < 0, again giving

H(S(η)) + u(η) = H(Sl) + ul

for all η < 0;

u

S
1

El
H

∂Him

∂Hdr

Figure 9: Possible solutions of Problem (P)
emerging from El ∈ ∂Hdr.

3.4 There exists η0 < 0 so that

(S(η), u(η)) ∈ H and S ′(η) > 0 for −∞ < η < η0,

(S(η), u(η)) ∈ ∂Him and S ′(η) > 0 for η0 ≤ η < 0.

A similar distinction of possible solutions can be made with respect to Er. We omit the
details. So far we have shown how the piecewise solutions can be in R− and R+. To
combine the solutions of two half columns we present one final observation.

Sign of F

Except for the trivial case S(η) = Sl for η < 0 and S(η) = Sr for η > 0 (implying that
F (η) = 0 for all −∞ < η <∞) we observe that the sign of S ′(η) is either strictly positive
or strictly negative in the half columns R− and R+. We now show that this implies that
the flux F cannot change its sign in the whole column: either F (η) > 0 or F (η) < 0 for
all −∞ < η <∞.

Suppose S ′(η) < 0 for η < 0. Then (4.2) implies F ′(η) > 0 for η < 0. Using this
and the flux F (−∞) = 0 we find F (η) > 0 for all η < 0. In particular, by continuity of
the flux, F (0) > 0. This observation, the fact that F ′(η) has a fixed sign for η > 0 and
F (∞) = 0 imply F (η) > 0 for all η > 0. A similar argument is used when S ′(η) > 0 for

η < 0. Since ur − ul = ∫∞−∞ u′ = ∫∞−∞
F (η)
k(S(η))

we conclude

4.1 If ur > ul then F (η) > 0 and u′(η) > 0 for all η ∈ R.

4.2 If ur < ul then F (η) < 0 and u′(η) < 0 for all η ∈ R.

The cases discussed above for El, and likewise for Er, are the building blocks in the
construction of the full solution. This is discussed in the next subsection.
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Remark 5 Redistribution and playtype hysteresis: With playtype hysteresis the
expression (1.5) is used. Since no time derivative of pressure is involved, one has for
redistribution an initial saturation only given by (3.4). In case of ‘unconditional’ flow, as
suggested in [19], the (S, u) profile will lie on scanning curves for x 6= 0 which means for
playtype hysteresis model S will be constant for x < 0 and x > 0. Using this result in
(3.1) we get that, F (x, t) is constant for all x ∈ R and t > 0. Since F (±∞, t) = 0 (any
other value would give a unbounded pressure in ±∞ from (3.2)) we have F (x, t) = 0 for
all x ∈ R and t > 0, meaning that the pressure u = u0 = constant for all x ∈ R. This
observation has the following consequence:

u

S
1

H

∂Him

∂Hdr

Sl Sr

Figure 10: Possible solutions with play-
type hysteresis.

If Pim(Sl) ≤ Pdr(Sr), then any horizontal
connection is possible as indicated in Fig-
ure 10. The corresponding saturation profile
is ‘frozen’ in the sense that:

S(x, t) =

{
Sl for x < 0

Sr for x > 0
(4.6)

for all t > 0. And the pressure is a unde-
termined constant u0 as long as Pim(Sl) ≤
u0 ≤ Pdr(Sr). If however Pim(Sl) ≥ Pdr(Sr)
then the solution is given by classical Philip
construction.

Interestingly, the saturation profile remains frozen even when the domain is finite. If
the domain is [−1, 1] and Neumann conditions F (±1, t) = 0 (no flow) are imposed at the
boundaries for t > 0, then by the same argument on can get frozen saturations as given
in (4.6).

4.2 Construction for Er ∈ ∂Hdr, El ∈ ∂Him

We use the building blocks (cases and sub-cases from Section 4.1) to construct the full
solution of problem (P) for given El and Er. With reference to Figure 11 we fix a point
Er ∈ ∂Hdr and let S∗ be such that Pim(S∗) = ur. Further the curve H(S)+u = H(Sr)+ur
intersects ∂Him at S = S∗. Clearly 0 < S∗ < S∗ < 1. Below we consider five typical
positions for El with respect to the given Er. It is relatively straightforward to check that
the constructions, presented below, are the only ones allowed based on our discussions in
Section 4.1.

(i) 0 < Sl < S∗. This is the classical Philip redistribution. In terms of Section 4.1 we
have Case 1.2 for El and a similar case for Er. The exact value of u = u0,1 at η = 0,
where the saturation jumps, needs to be determined from the flux continuity.
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(ii) Sl = S∗. Special case where no flow occurs and the system is in equilibrium. Here
the flux F (η) = 0 for all η ∈ R. It is Case 1.1 for El and Case 3.1 for Er.

(iii) S∗ < Sl < S∗. This is unconventional flow since the dry (left) half column becomes
drier and the wet (right) half column wetter, if Sl < Sr. Here (S(η), u(η)) ∈ H for
all η ∈ R. It is Case 1.3 for El and similar for Er. As before, the value of u = u0,3
at η = 0 follows from flux continuity.

(iv) Sl = S∗. As in (iii), but now {(S(η), u(η)) : η ∈ R} belongs to a single scanning
curve. Here the saturation is continuous at η = 0.

(v) S∗ < Sl < 1. This is a rather complicated case. Depending on the position of El
with respect to Er three connections (i.e. solutions) are possible. One is shown in
Figure 11 where (S(η), u(η)) ∈ H for all η ∈ R. This situation relates to the Case 1.3
for El and similar for Er. But there are also connections possible using part of ∂Hdr

(Case 1.4 for El) or part of ∂Him (case similar to 3.4 for Er). These constructions
will be discussed in detail in Section 4.3. The corresponding saturation profiles are
sketched in Figure 12.

u

S
0 1

Er

El,1

El,2

El,3
El,4 El,5

S∗ S∗

u0,1

u0,5

u0,3

Pdr
Pim

ul,1 > ur (Philip case)
ul,2 = ur (Equilibrium)
ul,3 < ur, S∗ < Sl,3 < S∗
ul,3 < ur, Sl,4 = S∗

ul,3 < ur, Sl,5 > S∗

Figure 11: Redistribution scenarios for fixed Er ∈ ∂Hdr.

In [18] and [23] mathematical aspects of the Philip redistribution (Case (i)) are con-
sidered. Before analyzing the other cases in detail, observe that for the extended model
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(S(η), u(η)) ∈ H implies thatH(S(η))+u(η) is constant which means that u′ = −dH
dS

(S)S ′.
Substituting this in (4.2) we get:

η

2
S ′ + (DH(S)S ′)′ = 0, (4.7)

if (S(η), u(η)) ∈ H, where

DH := k(S)
dH

dS
(S). (4.8)

Figure 12: Saturation profiles for 0 < Sl < 1 when Er ∈ ∂Hdr is fixed and El ∈ ∂Him.

Case (iii) and (iv) are covered by (4.7) and (4.8) for η ∈ R, subject to boundary conditions
S(−∞) = Sl and S(+∞) = Sr. Case (iv) is a governed by the general theory in [24]
whereas for Case (iii) we need to recall some of the arguments from [18, 23, 24]. To show
how to construct the solutions in general, let us briefly consider Case (iii). In this case
(S(η), u(η)) ∈ H for η ∈ R and so for the pressure we have:

u = (H(Sl) + ul)−H(S) in R−, (4.9)

u = (H(Sr) + ur)−H(S) in R+. (4.10)

Then consider the sub-problems

(P−)


η

2
S ′ + (DH(S)S ′)′ = 0 on R−, (4.11)

S(−∞) = Sl, S(0−) = S− < Sl, (4.12)

u satisfies (4.9); (4.13)

and

(P+)


η

2
S ′ + (DH(S)S ′)′ = 0 on R+, (4.14)

S(0+) = S+ > Sr, S(∞) = Sr, (4.15)

u satisfies (4.10). (4.16)

In these problems the saturation S− and S+ will be chosen so that the pressure u and the
flux F = −DH(S)S ′ are continuous across η = 0. From (4.9) and (4.10) it follows that

u(0) = H(Sl) + ul −H(S−) = H(Sr) + ur −H(S+) (4.17)
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S−

u(0)

Smin Sl

ul

ur

S+

u(0)

SmaxSr

ul

ur

Figure 13: Graphical representation of (4.17). Note that since H satisfies (2.7), H(S)
strictly increases with S.

The algebraic conditions imply that if u(0) ranges from ul to ur, then S− ranges from Sl
to Smin < Sl and S+ from Smax > Sr to Sr. Boundary value problems like (P−) and (P+)
have been studied in detail in [24]. There it is shown that the flux at η = 0± depends
continuously and monotonically on the boundary saturation S±. Denoting the flux at
η = 0± by,

F+(S+) := F (η = 0+;S+), (4.18)

F−(S−) := F (η = 0−;S−), (4.19)

then F+(S+) is continuous and strictly increasing for Sr ≤ S+ ≤ Smax with F+(Sr) = 0,
and F−(S−) is continuous and strictly decreasing for Smin ≤ S− ≤ Sl with F−(Sl) = 0.
Writing the fluxes as functions of u(0) we have:

• F+(ur) = 0 and F+(u(0)) is positive, continuous
and strictly decreasing for ul ≤ u(0) ≤ ur.

• F−(ul) = 0 and F−(u(0)) is positive, continuous
and strictly increasing for ul ≤ u(0) ≤ ur.

Hence there exists a unique pressure u(0) = u0 where
the fluxes intersect, as in Figure 14. This pressure
uniquely determines saturations S+ and S− by (4.17).
Taking the composite function of solutions of (P−)
and (P+) completes the construction of Case (iii).

u(0)

F
(0
)

F
−

F
+

ul

u0

ur

Figure 14: Intersection of fluxes
yielding the unique pressure u(0) =
u0.

4.3 Construction for arbitrary El and Er

For redistribution positive and negative directions are interchangeable. Therefore without
loss of generality we may assume

ul < ur. (4.20)
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Again we fix Er, but this time Er ∈ H∪∂Him∪∂Hdr. With assumption (4.20) we can sort
out all typical cases based on where El is located. For this purpose, and with reference
to Figure 15, the sets H1, H2 and H3 are introduced. Let S∗ and S∗ be defined as before
and let the curve H(S) + u = H(Pdr

−1(ur)) + ur intersect u = Pim(S∗) at S = S†. The
formal definitions are:

u

S
0 1

Er

El,1 El,2

El,3

ur

S∗ S∗ S†

u0,3

u0,2
u0,1

Pdr
Pim

Region H1

Region H2

Region H3

El,1 ∈ H1 (Case A)
El,2 ∈ H2 (Case B(b))
El,3 ∈ H3 (Case C(c))

Figure 15: The redistribution scenario for general cases.

Definition 3

H1 = {(S, u) : 0 < S < 1,max{Pim(S), Pim(S∗)} ≤ u ≤ min{ur, H(Pdr
−1(ur)) + ur −H(S)}},

H2 = {(S, u) : 0 < S < 1,max{Pim(S∗), H(Pdr
−1(ur)) + ur −H(S)} ≤ u ≤ Pdr(S)},

H3 = {(S, u) : 0 < S < 1, Pim(S) ≤ u ≤ min{Pim(S∗), Pdr(S)}}.

Accordingly we distinguish

4.3.1 Case A: El ∈ H1

This situation is similar to Case (iii) in Section 4.2. Here (S(η), u(η)) ∈ H1 ∩ H for all
η ∈ R. Hence one uses Problems (P−) and (P+) to determine the saturations S− and
S+ and the pressure u(0) for which the flux is continuous at η = 0. Figure 15 shows the
trajectory running from El = El,1 to Er. It is comprised of (part of) the scanning curve
through El,1 and (part of) the scanning curve through Er. At η = 0 is the horizontal
switch where u(0) = u0,1.
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u

S
1

Er

El

u0
(Ŝ, û)

∂Hdr

(a)

u(0)

F

ul urûu0

F−F+

(b)

u(0)

F

ul urû

F−

F+

(c)

Figure 16: (a) Possible switch with ul < u0 < û; (b) Intersection of fluxes; (c) no
intersection with F+(û) > F−(û).

4.3.2 Case B: El ∈ H2

For left states in this set there are two possibilities. One is as described above for El ∈ H1,
that is (S(η), u(η)) ∈ H for all η ∈ R. We call this possibility ‘Case B(a)’. The other
possibility is more involved and needs further attention. It occurs when El is close to
∂Hdr. Let Ŝ denote the saturation at which the scanning curve through El intersects
∂Hdr, and let û := Pdr(Ŝ) be the corresponding pressure. Then for Ŝ ≤ S ≤ Sl,

u = H(Sl) + ul −H(S). (4.21)

Now suppose, as in Figure 16(a), that there is a switch from the scanning curve through
El to the scanning curve through Er. Then (4.9) holds with Ŝ < S− < Sl and in terms
of the fluxes one would have a unique intersection at u(0) = u0 satisfying ul < u0 < û
(Figure 16(b)). But what if F+(û) > F−(û) as in Figure 16(c)? Then the construction
fails. We call this case: Case B(b).

To resolve it one needs to follow u = Pdr(S) for S < Ŝ. This gives in the left column
the pressure saturation relation,

u =

{
H(Sl) + ul −H(S) for Ŝ < S ≤ Sl,

Pdr(S) for S ≤ Ŝ.
(4.22)

In the right hand column (R+) relation (4.10) still holds. This leads to the same problem
(P+) in (R+), but to a modified problem in R−:

(P̂−)


η

2
S ′ + (D̂(S)S ′)′ = 0 in R−,

S(−∞) = Sl, S(0−) = S− < Sl,

u satisfies (4.22) in R−;
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where

D̂(S) =


k(S)

dH

dS
(S) for Ŝ < S ≤ Sl

−k(S)
dPdr
dS

(S) for S ≤ Ŝ
.

Here the diffusivity D̂ is (in general) discontinuous at Ŝ.
But the results in [24] only require boundedness of the dif-
fusivity. Thus with the notation of Section 4.2 (where we
use F̂− to denote the flux in problem (P̂−)), we have that
F̂−(S−) is strictly decreasing and continuous for S− < Sl
with F̂−(Sl) = 0. In terms of the pressure u(0), the flux is
strictly increasing and continuous for ul ≤ u(0) ≤ ur with
F̂−(ul) = 0. Thus, as in Figure 17, the fluxes F̂− and F+

intersect at a unique pressure u(0) = u0. The composite
function of the solution of (P̂−) and (P+) describe the case
of redistribution.

u(0)

F

ul urû u0

F−

F̂−

F+

Figure 17: Intersection of
the fluxes with F̂− and F+

S 1

u

0

Pdr

Pim

(S, u) case B(b)
Er

ur

H3

H1

u0,2

El,2

S−

ŜS+

H2

(a) (S, u) trajectories for case B(b)

η0

S(η), η < 0
S(η), η > 0
u(η) (scaled)

û

η0

S+

Sl,2

Ŝ
S−

u0,2

ul,2

ur

Sr

(b) u and S vs. η for case
B(b)

Figure 18: Behaviour of saturation S and pressure u between El,2 and Er.

Figure 18(a) shows the trajectory running from El = El,2 to Er. It is composed
of (part of) the scanning curve through El,2, part of ∂Hdr and then (part of) scanning
curve through Er. The horizontal segment or switch is at η = 0 when u(0) = u0,2. The
corresponding saturation and pressure are sketched in Figure 18(b) as functions of η. Due
to the discontinuity in D̂(S) at S = Ŝ, the saturation has a kink at S = Ŝ corresponding
to η = η0 (η0 is defined in Case 2.3, Section 4.1). The pressure has a kink at η = 0 due
to the jump in saturation.
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4.3.3 Case C: El ∈ H3

There are two arrangements, denoted by Case C(a) and Case C(b), that are similar to
the Cases B(a) and B(b) respectively. But in this set one has ul < Pim(S∗), implying that
a third type of construction is possible where (part of) the two scanning curves, ∂Hdr as
well as ∂Him are being used. We call this ‘Case C(c)’.

Let u∗ := Pim(S∗). Case C(c) arises if

F+(u = u∗) < F̂−(u = u∗), (4.23)

where the fluxes F+ and F̂− are defined in the description
of previous cases. If (4.23) holds, then the fluxes cannot
intersect when u∗ < u(0) < ur, see Figure 19. To re-
solve this situation one needs to modify Problem (P+) by
including Pim, similar to the definition of Problem (P̂−).
The remaining argument is omitted since it is almost iden-
tical to the argument used for El ∈ H2. Figure 15 shows
the trajectory running from El = El,3 to Er.

u(0)

F

ul uru∗

F̂−

F+

û

Figure 19: Non-
intersection of the
fluxes when El ∈ H3.

5 Numerical study

In this section we present a numerical approach for the redistribution problem and use
our theoretical findings to classify and validate the computational results.
For sufficiently large (dimensionless) W > 0 we consider the initial-boundary value prob-
lem (compare (3.1)-(3.5))

∂tS + ∂xF = 0 for |x| < W, t > 0, (5.1)

F = k(S)∂xu for |x| < W, t > 0, (5.2)

u ∈ P+(S)− P−(S) · sign(∂tH(S) + ∂tu); (5.3)

with

S(x, 0) =

{
Sl for −W < x < 0,

Sr for 0 < x < W,
(5.4)

u(x, 0) =

{
ul for −W < x < 0,

ur for 0 < x < W,
(5.5)

and
F (±W, t) = 0 for t > 0. (5.6)
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For sufficiently small time t, the zero-flux boundary conditions (5.6) have a negligible
influence on the redistribution process. Hence, for small t, a solution of (5.1)-(5.6) behaves
as if the domain is unbounded and is close to the self-similar solutions discussed in this
paper. We will reveal all typical cases.

5.1 Numerical scheme

First thing is to replace the sign(·) graph in (5.3) by a strictly increasing smooth function
Gε satisfying:

• dGε
dζ

> 0 in R such that dGε
dζ

(0) = 1
ε

and lim
ε→0
Gε(ζ) = sign(ζ) for ζ 6= 0.

• lim
ζ→±∞

dGε
dζ

(ζ) = γε for some constant γ > 0 and for each ε > 0.

These properties allow us to define the inverse Φε = G−1ε , so that (5.3) can be written as:

∂tH(S) + ∂tu = Φε

(
P+(S)− u
P−(S)

)
. (5.7)

Next we introduce the variable:

v := H(S) + u, with S = H−1(v − u), (5.8)

and the function

Ψε(u, v) := Φε

(
P+(H−1(v − u))− u
P−(H−1(v − u))

)
. (5.9)

In terms of u, v and Ψε, equations (5.1)-(5.3) are transformed into

∂tu =
dH

dS
(H−1(v − u))∂x

(
k(H−1(v − u))∂xu

)
+ Ψε(u, v), (5.10)

∂tv = Ψε(u, v), (5.11)

for |x| < W and t > 0. Hence we have written (5.1)-(5.3) as a coupled system consisting
of a parabolic equation for the pressure u and an ordinary differential equation for v. This
type of splitting is well-known in the mathematical literature, for instance see [22].

Let the time interval [0, T ] be divided into N intervals of width ∆t (T = N∆t) and
let wn be the variable w at t = n∆t, with 1 ≤ n ≤ N . We calculate vn from the explicit
time-discrete form of (5.11) (v0(x) = v(x, 0) = H(S(x, 0)) + u(x, 0)):

vn = vn−1 + ∆tΨε(un−1, vn−1), for 1 ≤ n ≤ N. (5.12)
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We want to solve (5.10) implicitly for stability. For this, the equation (5.10) needs to be
linearized. We use a L-scheme [17] type linearization technique along with inner iterations
to solve for un. This scheme is defined by (for i = 1, 2, ....)

(1 + L)uin −∆t
dH

dS
(H−1(vn − ui−1n ))∂x

(
k(H−1(vn − ui−1n ))∂xu

i
n

)
= Lui−1n + ∆tΨε(u

i−1
n , vn) + un−1, (5.13)

with u0n = un−1. Here uin is the ith iteration of the nth time step. If assumptions (A.1)-
(A.4) are satisfied and if ∂xu, ∂uΨε and ∂vΨε are bounded, then the scheme converges
for L sufficiently large and for ∆t sufficiently small [17]. In (5.13) we use finite differ-
ences for spatial discretization and the whole scheme was implemented in Matlab. In the
computations we use

W = 100, ∆x = 0.1, ∆t = 0.001 and L = 1.

5.2 Numerical results

The numerical results are obtained for

k(S) = S2 and (for simplicity) H(S) =
S

δ
with δ =

1

40
.

For Pdr and Pim we took somewhat artificial expressions in order to visualize all possible
cases:

Pim(S) =
1

5

(
1

S
− 1

)
+

2

5
(1− S)2 and Pdr(S) =

(
1

S
− 1

)
+ 6(1− S)2.

Taking realistic (van Genuchten) expressions would make some of the cases hard to dis-
tinguish. Finally we use for Φε the expression

Φε(ζ) =



3

√
ε

γ
+

1

γε
(ζ − 1) for ζ > 1

εζ√
1− (1− (ε2γ)

2
3 )ζ2

for ζ ∈ [−1, 1]

− 3

√
ε

γ
+

1

γε
(ζ + 1) for ζ < −1

,

where ε = 10−4 (fixed). Observe that Φe is continuously differentiable in R. The value of
γ can be chosen small as long as (S, u) ∈ H (then γ = 1), but needs a large value when
(S, u) is on ∂Him or on ∂Hdr.

Given the size of the domain (W = 100) we would show the computational results at
t = 1. This is sufficiently small so that the zero-flux boundary conditions have no influence
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on the redistribution process. We visualize the results as trajectories in the (S, u) plane
(i.e. (S(x, t), u(x, t)) where x runs from −W to W ) and as profiles of x = η = x√

t=1
.

S
0.2 0.4 0.6 0.8 1

u

0

1

2

3

4

5
Er ∈ ∂Hdr, El ∈ ∂Him

Sl,1 = 0.30

Sl,2 = 0.52

Sl,3 = 0.60

Sr = 0.45

(a) (S, u) profiles

η

-50 0 50

S

0.3

0.6

Er ∈ ∂Hdr, El ∈ ∂Him

Sl,1 = 0.30

Sl,2 = 0.52

Sl,3 = 0.60

Sr = 0.45

(b) S vs. η profiles

Figure 20: Numerical results for Er ∈ ∂Hdr fixed and El ∈ ∂Him variable, at t = 1.
Here Sr = 0.45 and Sl,1 = 0.30 (unconventional flow); Sl,2 = 0.52 = S∗ (saturation is
continuous) and Sl,3 = 0.60 (conventional flow corresponding to Case C(a)).

Figure 20 shows results where Er ∈ ∂Hdr is fixed and where El ∈ ∂Him is varied. Note
that the green trajectory represents unconventional flow because the trajectory moves to
the left when leaving El and when entering Er. This means that the dry half column
becomes drier and the wet half column becomes wetter.

S

0 0.2 0.4 0.6 0.8 1

u

0

1
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Case A
Case B(b)
Case C(c)
Philip

ur

(a) (S, u) profiles

η

-50 0 50

S

0.3

0.6

Case A
Case B(b)
Case C(c)
Philip

(b) S vs. η profiles

Figure 21: Numerical results for El, Er ∈ H ∪ ∂Him ∪ ∂Hdr, where ur = 3 is fixed. With
reference to Section 4 we have Case A: Sr = 0.4, El = (0.35, 2); Case B(b): Sr = 0.25,
El = (0.65, 1); Case C(c): Sr = 0.15, El = (0.8, 0.3); Philip: Sr = 0.075, El = (0.9, 0.17).
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Figure 21 shows results for El, Er ∈ H ∪ ∂Him ∪ ∂Hdr. Here we took γ = 100 to get
convergence of the iterations in (5.13). The cases discussed in Section 4 are accurately
recovered by the computations. This validates the analysis and explains the complex
behaviour of the computed saturation and pressure. The agreement is excellent.

6 Conclusion

In this paper we discussed different hysteresis models for multiphase flow through porous
media. To incorporate the effect of non-vertical scanning curves in a simple closed form,
we proposed an extension to the playtype hysteresis model and showed that this model
resembles the experimental scanning curves accurately. We outlined different properties
of the model and discussed available physical and numerical justifications for the model.

After this we investigated horizontal redistribution in an infinite coloumn in the con-
text of hysteresis. In this problem, the two halves of the infinite horizontal porous col-
umn have different but constant initial saturation and pressure conditions that causes
redistribution to occur. It was pointed out that existing models cannot give a complete
description of the redistribution phenomenon. The extended hysteresis model was used
to analyze the problem and the resulting system of equations was simplified using a sim-
ilarity transformation. By distinguishing all possible cases and then using the flux and
pressure continuity criterion repeatedly, we constructed unique solutions for the redis-
tribution problem. In fact, we showed that redistribution will always take place, even
for unconventional cases, if the initial pressure condition is different in the two halves.
Moreover, we categorized all possible scenarios of redistribution into different cases.

Finally, a numerical scheme was proposed for the regularized non-linear system of
equations arising from the extended model that converges irrespective of initial guesses.
Numerical results from the scheme corroborated with our analytical findings.
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