
Parallel­in­time high­order
multiderivative IMEX solvers

J. Schütz, D. Seal and J. Zeifang

UHasselt Computational Mathematics Preprint
Nr. UP­21­01

Jan. 19th, 2021



Noname manuscript No.
(will be inserted by the editor)

Parallel-in-time high-order multiderivative IMEX
solvers
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Abstract In this work, we present a novel class of parallelizable high-order
time integration schemes for the approximate solution of additive ODEs. The
methods achieve high order through a combination of a suitable quadrature
formula involving multiple derivatives of the ODE’s right-hand side and a
predictor-corrector ansatz. The latter approach is designed in such a way that
parallelism in time is made possible. We present thorough analysis as well as
numerical results that showcase scaling opportunities of methods from this
class of solvers.
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1 Introduction

In this work, we consider numerical approximations of nonlinear differential
equations of the form

w′(t) = Φ(w) ≡ ΦI(w) + ΦE(w), t ∈ (0, Tend), (1)

w(0) = w0.
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It is assumed that the right-hand side Φ is split into the contributions ΦI

(‘stiff’) and ΦE (‘non-stiff’), to account for different scales in the solution.
The rationale is that the term ΦI will be treated implicitly to obtain a stable
method, while the term ΦE will be treated explicitly, typically for efficiency
reasons by reducing the complexity of the algebraic solves required to address
the implicit terms per time step.

Differential equations that can be put into this form arise frequently, of-
ten resulting from the discretization of singularly perturbed partial differential
equations. Some examples include problems in meteorology [25], geophysics [8],
aerodynamics [11,26,45], molecular dynamics [23] and many more. The list is
by no means exhaustive. Here, we assume a splitting has already been per-
formed. Our goal is to develop a high-order implicit-explicit (IMEX) method
that lends itself to time-parallelism.

At the core of this work is the novel discretization method of Eq. 1 devel-
oped in [40]. To the best of the authors’ knowledge, this method is, together
with the very recent publication [3], the first one to combine the IMEX (im-
plicit/explicit, see, e.g., [5,6,9,37,32]) and the multiderivative paradigms [4,
14,16,31,44,42]. In this context, the term multiderivative refers to the fact
that higher derivatives of the unknown solution w are used in the numeri-
cal method. While more established methods (Runge-Kutta, Adams methods,
backward differentiation formulas (BDF) and the like) rely on only evaluating
ΦE and ΦI, multiderivative methods also take the temporal derivatives into
account. To be more precise, in this work, we use two derivatives, i.e., also the
quantities1

.

ΦI(w) := Φ′I(w)Φ(w), and
.

ΦE(w) := Φ′E(w)Φ(w)

are taken into account. Note that there holds w′′(t) =
.

Φ(w) ≡
.

ΦI(w) +
.

ΦE(w).
This has of course the potential to increase the order of consistency without
adding more stages or steps, respectively. The limitation to two derivatives is
only for the ease of presentation. The method developed in [40] has already
been extended to cope with higher derivatives [20]; and also in the context of
this present work, this is easily possible.

There are three unique features to consider for the class of methods pre-
sented here:

– The methods we present use a predictor-corrector strategy for increasing
the overall order of accuracy. This means that in each timestep, a predicted
value (we will indicate values corresponding to the predictor with [0]), as
well as several corrector steps (indicated with [k], 1 ≤ k ≤ kmax) are com-
puted. Here, kmax is a user-defined parameter that defines the maximum
number of corrections in a single time step. Similiar to deferred correction,
or DC-type methods (cf. [13,21,36] and the references therein), the cor-
rected steps pick up an order of accuracy each time, until some maximum
accuracy is reached based on the underlying quadrature rule.

1 The dot here (·) refers to the time derivative d/dt, whereas the prime (′) refers to the
Jacobian of the vector valued ΦI and ΦE.
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– The methods we construct are derived from two-derivative Runge-Kutta
methods, however, they are modified in such a way that they can be applied
to any implicit-explicit (IMEX) splitting Φ(w) = ΦI(w)+ΦE(w) of the
ODE. This ultimately leads to the fact that the methods are not one-step,
but two-step methods, with a very mild dependency on the previous step.
As there are multiple stages involved, this leads to general linear methods
with associated convergence theory [12], but we have higher derivatives of
the unknown involved in our analysis.

– The methods we produce can all leverage parallel-in-time implementa-
tions to leverage distributed or multicore computer architectures.

The ability to parallelize an ODE solver in time has become more and
more important in recent years with the number of processors available grow-
ing constantly. Because of the causality principle, parallelization in time poses
different challenges then parallelization in space. For an overview of tempo-
rally parallel methods, we refer to Gander’s work [24] and the very recent
overview article by Ong and Schroder [35]. Also the website [1] is a beautiful
source of information on the topic. Temporally parallel methods can be cast
into different classes. The scheme we present in this work uses the concept of
pipelining, i.e., the information and data flow is directed in such a way that
the correction iterations can be put on different processors. We have been
inspired by the RIDC (revisionist integral deferred correction) schemes [15,
17,18], however, similar ideas have been around for a long time, see [34]. The
essence of pipelining is that, given one has enough processors at one’s disposal,
the higher order achieved through the corrections can be obtained in roughly
the same wallclock-time that it takes to compute the lower-order predictor. In
our case, the predictor’s convergence order is two, while the corrections can
increase this order up to the order of the underlying Runge-Kutta quadrature.
In our examples, this is four, six and eight, respectively, but conceptually, the
order is not limited to this.

The paper is organized as follows: In Sec. 2, we describe the underlying
algorithm in detail and introduce the necessary notation. Thereafter, in Sec. 3,
we analyze stability and convergence of the method through writing it in a
one-step fashion. The method is inherently time-parallel, which is laid out
in Sec. 4. Also, two alternative approaches are shown and later compared.
In Sec. 5 we show numerical results for well-known test cases. We find some
improvements that one can make to the numerical algorithm described earlier;
these are shown in Sec. 6. Subsequently, scaling results are presented. As usual,
the last section, Sec. 7 offers conclusion and outlook.

2 Numerical algorithm

We start with setting the notation that is used in this work. For expository
purposes, we work with a fixed timestep ∆t, and therefore with a fixed total
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number of timesteps, denoted by N , we must have

∆t :=
Tend
N

.

The discrete time levels are defined as

tn := n∆t, 0 ≤ n ≤ N.
Note that the uniform timestep we assume here is not necessary in practical
computations, but it simplifies the analysis. Throughout the whole publica-
tion, we assume that Φ and the split functions ΦI, ΦE and the solution w
are sufficiently smooth to warrant picking up high-order accuracy from the
numerical method. Formally, we make the following assumption:

Assumption 1 All occuring functions Φ, ΦI, ΦE and their temporal deriva-

tives
.

Φ,
.

ΦI,
.

ΦE are assumed to be smooth and Lipschitz continuous.

In this work, we are interested in multiderivative Runge-Kutta methods.
These are a relatively straightforward extension of well-known Runge-Kutta
methods that include extra derivatives of the right hand side function [42,
Definition 1]). To set notation, we include a full definition of a two-derivative
Runge-Kutta method. Higher derivatives can be included by including more
terms in the expansion for each of the stages.

Definition 1 Let wn denote an approximate solution to w at point tn, and
let wn,l, 1 ≤ l ≤ s denote the stage values to be computed. A two-derivative
Runge-Kutta method is any method that can be cast as

wn,l := wn +∆t

s∑
j=1

B
(1)
lj Φ(wn,j) +∆t2

s∑
j=1

B
(2)
lj

.

Φ(wn,j), 1 ≤ l ≤ s,

and update given by

wn+1 = wn +∆t

s∑
j=1

b
(1)
j Φ(wn,j) +∆t2

s∑
j=1

b
(2)
j

.

Φ(wn,j),

where the B(1), B(2), b(1), and b(2) are the Butcher tableaux that define the

scheme. We say the method is globally stiffly accurate if b
(1)
j = B

(1)
sj and

b
(2)
j = B

(2)
sj , i.e., the last stage defines the update:

wn+1 := wn,s.

Note that this is a fully coupled system of (potentially nonlinear) equations
whenever the tableaux are not lower triangular. In this form, the Runge-Kutta
method is hence typically not suited for high-dimensional ODEs, nonetheless,
they can serve as excellent background methods for creating more efficient
solvers.

Of particular note are the two-derivative Runge-Kutta collocation meth-
ods. These methods are derived by fitting a Hermite-Birkhoff polynomial in-
terpolant through the time instances given by c∆t and integrating the result.
In this work, we use equidistant collocation points, which implies:
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– the method is of order q, with q = 2s being twice the number of stages
(hence, number of elements in c);

– the stage order is also q;
– the last stage is equal to the update step, which corresponds to the globally

stiffly accurate or first-same-as-last property already known in standard
Runge-Kutta methods [10,27,28] and will have an impact on asymptotic
properties of the method [39].

Example 1 (Two-derivative Hermite-Birkhoff collocation methods) In this work,
we use the following two-derivative Runge-Kutta methods:

– A fourth-order method (q = 4) with two stages (s = 2, one being fully
explicit), which exactly corresponds to the method used in [40]:

c =

(
0
1

)
, B(1) =

(
0 0

1
2

1
2

)
, B(2) =

(
0 0

1
12
−1
12

)
. (2)

– A sixth-order method (q = 6) with three stages (s = 3, one being fully
explicit), as also used in [41]:

c =

0
1
2
1

 , B(1) =

 0 0 0

101
480

8
30

55
2400

7
30

16
30

7
30

 , B(2) =

 0 0 0

65
4800 − 25

600 − 25
8000

5
300 0 − 5

300

 . (3)

– An eigth-order method (q = 8) with four stages (s = 4, one being fully
explicit):

c =


0

1
3

2
3

1

 , B(1) =


0 0 0 0

6893
54432

313
2016

89
2016

397
54432

223
1701

20
63

13
63

20
1701

31
224

81
224

81
224

31
224

 , (4)

B(2) =


0 0 0 0

1283
272160 − 851

30240 − 269
30240 − 163

272160

43
8505 − 16

945 − 19
945 − 8

8505

19
3360 − 9

1120
9

1120 − 19
3360

 . (5)

We choose to use the above-mentioned class of methods with equispaced
abscissa for the sake of a clearer presentation of results. Other multiderivative
Runge-Kutta methods could also be used, of course with the necessary modi-
fications. Higher derivatives can also be incorporated as an alternative option
to further increase the overall order.

With each Runge-Kutta method, there is an underlying quadrature rule
connected to the solver. That is, given the quantities φj , 1 ≤ j ≤ s, we define



6 Jochen Schütz et al.

the “quadrature rule” as the multiderivative Runge-Kutta flux update, given
by

Il(φ1, . . . φs) := ∆t
s∑
j=1

B
(1)
lj φ

j +∆t2
s∑
j=1

B
(2)
lj

.

φ
j
.

These terms are precisely the terms required to produce each stage in the
Runge-Kutta method. They may or may not be high order quantities, unless
further assumptions are made about the solver. In the case of the Hermite-
Birkhoff-type approach, they are of higher order:

Lemma 1 For each Hermite-Birkhoff Runge-Kutta method, there holds,∫ tn+1

tn
Φ(w(t))dt = Il (Φ(w(tn + c1∆t)), . . . , Φ(w(tn + cs∆t))) +O(∆tq+1).

Proof This is due to the construction: The Hermite-Birkhoff polynomial is of
order 2s − 1 = q − 1, which gives an integral approximation of order q + 1.
(Note that the length of the integration area is ∆t.)

ut

In the sequel, we exploit precisely this quadrature to extend the method
shown in [40] to higher orders and parallelism in time. Before we actually
define the algorithm, let us clarify the notation used. The algorithm to be
presented relies on the approximated quantities:

wn,[k],l ≈ w(tn + cl∆t), 0 ≤ n ≤ N, 0 ≤ k ≤ kmax, 1 ≤ l ≤ s. (6)

Here, n is the usual discrete time level, and the l refers to the stages that are
present within the Runge-Kutta method. The index k is a parameter that is
associated to ‘correction’ steps (to be explained below). The final index kmax is
a fixed parameter chosen by the user to describe the total number of iterations
sought. For non-stiff problems, it is typically dictated by the maximum order
that can be reached, while for stiff problems, it can be advantageous to use a
larger kmax to overcome convergence issues [40], or even allow the Algorithm
to choose this adaptively.

Finally, we make the abbreviations

Φn,[k],l := Φ
(
wn,[k],l

)
, Φ

n,[k],l
I := ΦI

(
wn,[k],l

)
, Φ

n,[k],l
E := ΦE

(
wn,[k],l

)
,

to simplify the notation.
We are now ready to formulate the following algorithm. Given the Butcher

tableaux B(1) and B(2) and the time instances c, (e.g., any of the methods from
Example 1), the Hermite-Birkhoff Predictor Corrector method is as follows:

Algorithm 1 (HBPC(q, kmax,)) To advance the solution to Eq. (1) from
time level tn to time level tn+1, fill the values wn,[0],l using a second-order
IMEX-Taylor method:
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1. Predict. Solve the following expression for wn,[0],l and 1 ≤ l ≤ s:

wn,[0],l := wn−1,[0],s + cl∆t
(
Φ
n,[0],l
I + Φ

n−1,[0],s
E

)
+

(cl∆t)
2

2

(
.

Φ
n−1,[0],s
E −

.

Φ
n,[0],l

I

)
.

(7)

Subsequently:
2. Correct. Solve the following for wn,[k+1],l, for each 2 ≤ l ≤ s and each

0 ≤ k < kmax:

wn,[k+1],1 := wn−1,[k+2],s ,

wn,[k+1],l := wn−1,[k+2],s

+∆t
(
Φ
n,[k+1],l
I − Φn,[k],lI

)
− ∆t2

2

(
.

Φ
n,[k+1],l

I −
.

Φ
n,[k],l

I

)
+ Il(Φn,[k],0, Φn,[k],1, . . . , Φn,[k],s).

(8)

In order to close the recursion, if k = kmax − 1, then replace each of the
k + 2 with kmax.

3. Update. In order to preserve the first-same-as-last property, we put

wn+1 := wn,[kmax],s.

Finally, to seed initial conditions for this solver, we define

w−1,[k],s := w0, 0 ≤ k ≤ kmax.

Note that the starting value of k = 0 denotes a straightforward second-
order IMEX-Taylor scheme; each k > 0 represents a corrected version thereof,
taking into account the quadrature rule obtained from the Runge-Kutta scheme.
The reasoning is that with each additional correction, we see one extra order
of convergence until the maximal order of the Runge-Kutta method, q, has
been found.

Remark 1 The difference between this algorithm and our previous one found
in [40] lies in the highlighted red terms:{

wn−1,[0],s, Φ
n−1,[0],s
E ,

.

Φ
n−1,[0],s
E , wn−1,[k+2],s

}
.

In our original work each of these would have been evaluated at wn. Here,
we work with different iterate numbers. This potent modification makes
it possible to parallelize the method in time without sacrificing the
order of accuracy. The idea that will be layed out in this publication is very
similar to – and in fact inspired by – the strategy proposed in [15,17].

Remark 2 Please note that Alg. 1 is not a Runge-Kutta method.
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Remark 3 There is no implicitness in the Runge-Kutta quadrature Il. The

only implicitness is in the difference of the ΦI and
.

ΦI. This term is used to
introduce the necessary stability for stiff problems.

In the next three sections we present a thorough analysis of this solver
followed by a discussion of a parallization strategy and then numerical results.
In Section 6, we suggest an alternative formulation that provides a low-storage
alternative and even better scaling results.

3 Convergence analysis

Due to the changes made in the algorithm in comparison to the one proposed
in [40], this is no longer a one-step multiderivative time integrator, but a
general linear method. It has both a multistage as well as a multistep flavour,
and we need to follow the convergence analysis outlined in the seminal work
by Butcher [12] to conduct our analysis. To ease the presentation, we will in
the sequel assume that we are treating a scalar differential equation, i.e., we
postulate that

Φ : R→ R .

We start by rewriting Alg. 1 to make it more accessible to a convergence
analysis. Define the vector Y n+1 ∈ Rs·(kmax+1) consisting of all stages and all
correction steps at time instance tn = n∆t, n > 0, i.e.,

Y n+1 :=



wn,[0],1

:
wn,[0],s

wn,[1],1

:
wn,[1],s

:
wn,[kmax],s


∈ Rs·(kmax+1) .

Note that we have made a shift in the n for a clearer exposition. For n = 0,
we define Y 0 to be the vector with entries consisting of the solution at time
t = 0:

Y 0 :=

w0

:
w0

 ∈ Rs·(kmax+1) .

Then, we can write the time integrator from Alg. 1 in a “one-step-fashion” as

Y n+1 = AY n +∆t
(
BEΦE(Y n+1) +BIΦI(Y

n+1)
)

+
∆t2

2

(
B̃E

.

ΦE(Y n+1) + B̃I
.

ΦI(Y
n+1)

)
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for matrices A, BI , BE , B̃E and B̃I in Rs·(kmax+1)×s·(kmax+1).
In the sequel, we use the well-known inf-norm ‖ · ‖∞ for both matrices and

vectors. For the sake of readability, we write ‖ · ‖ instead of ‖ · ‖∞. That is, for
v ∈ Rκ, we define ‖v‖ := max1≤i≤κ |vi|; for matrices C ∈ Rκ×κ, there holds

‖C‖ := sup
v∈Rκ

‖Cv‖
‖v‖ .

Lemma 2 The matrix A is power-bound by one, i.e., for each n ∈ N, there
holds

‖An‖ ≤ 1.

Proof Define the matrix E ∈ Rs×s that is zero except for the last column,
which is filled with ones, i.e.,

E =


0 0 · · · 0 1
0 0 · · · 0 1
...

...
...

...
0 0 · · · 0 1

 .

Then, A is given as the block matrix

A =



E 0 0 0 · · · 0 0
0 0 E 0 · · · 0 0
0 0 0 E · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · E 0
0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E


. (9)

There holds ‖Av‖ ≤ ‖v‖, which can be seen due to the fact that for each
1 ≤ i ≤ s · (kmax + 1), there is a 1 ≤ j ≤ s · (kmax + 1) such that (Av)i = vj .
This concludes the proof.

ut
Corollary 1 There exists a constant C ∈ R such that for each j ∈ N≥0, there
holds

‖AjBE‖ ≤ C, ‖AjBI‖ ≤ C, ‖AjB̃E‖ ≤ C, ‖AjB̃I‖ ≤ C.
Similarly to [12], we define the vector Wn as the vector of the exact solutions
at time instant tn, i.e.,

Wn+1 :=


w(tn + c1∆t)

:
w(tn + cs∆t)
w(tn + c1∆t)

:
w(tn + cs∆t)

 ∈ Rs·(kmax+1), n ≥ 0.
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We define W 0 := Y 0. For a convergence analysis, we are interested in the
error, or the differnce between the approximate and the exact solution: Zn :=
Y n −Wn. This quantity fulfills the following time-discrete equation:

Zn ≡ Y n −Wn

=AZn−1 +∆tBE (ΦE(Y n)− ΦE(Wn)) +∆tBI (ΦI(Y
n)− ΦI(W

n))

+
∆t2

2
B̃E

( .

ΦE(Y n)−
.

ΦE(Wn)
)

+
∆t2

2
B̃I

( .

ΦI(Y
n)−

.

ΦI(W
n)
)

+ En,

(10)

with En the local consistency error

En := AWn−1 +∆t (BEΦE(Wn) +BIΦI(W
n))

+
∆t2

2

(
B̃E

.

ΦE(Wn) + B̃I
.

ΦI(W
n)
)
−Wn.

As in [40], we can prove that the local consistency error at correction level
k is given by O

(
∆tmin{2+k,q}+1

)
. For k = 0, this is straightforward – this is

second-order IMEX-Taylor. For k > 0, techniques as in [40] (and long known
to the spectral deferred correction (SDC) community, see, e.g., [21]) can be
employed.

Lemma 3 Subdivide En into kmax +1 blocks of size s each; call the individual
blocks En,[k], 0 ≤ k ≤ kmax. Then, there holds

En,[k] = O(∆tmin{2+k,q}+1).

Proof The proof goes along the same lines as in [40] and is hence omitted.
ut

The following lemma, although straightforward to prove, is of utmost impor-
tance to the convergence analysis.

Lemma 4 The recursion for Zn given in (10) can be explicitly written as:

Zn =∆t
n−1∑
j=0

AjBE
(
ΦE(Y n−j)− ΦE(Wn−j)

)
+∆t

n−1∑
j=0

AjBI
(
ΦI(Y

n−j)− ΦI(W
n−j)

)
+
∆t2

2

n−1∑
j=0

AjB̃E

( .

ΦE(Y n−j)−
.

ΦE(Wn−j)
)

+
∆t2

2

n−1∑
j=0

AjB̃I

( .

ΦI(Y
n−j)−

.

ΦI(W
n−j)

)

+
n−1∑
j=0

AjEn−j .

(11)
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Proof This can be easily proved using (10) and an induction over n. Note that
one has to take into account that Z0 = 0 by definition.

ut
In order to show convergence, we need the following result on the analytical

solution to a linear recursion equation:

Lemma 5 Consider the following linear recursion:

xn = α(x0 + . . .+ xn−1) + βn, n ≥ 1, (12)

with α, βn ∈ R given for all n ∈ N. (As indicated, βn is allowed to depend on
n, while α is not.) Also x0 is supposed to be known. The analytical solution to
this recursion is given by

xn = α(α+ 1)n−1x0 +
n−1∑
j=1

βjα(1 + α)n−j−1 + βn. (13)

Proof We proceed by induction. For n = 1, we have x1 = αx0 + β1, which
agrees with formula (13). Now assume that (13) is correct for all n < N .
Then, there holds:

xN = α
N−1∑
n=0

xn

= αx0 + α
N−1∑
n=1

α(α+ 1)n−1x0 +
n−1∑
j=1

βjα(1 + α)n−j−1 + βn

+ βN

= αx0 + α

N−1∑
n=1

α(α+ 1)n−1x0︸ ︷︷ ︸
=:I

+α

N−1∑
n=1

n−1∑
j=1

βjα(1 + α)n−j−1 + α

N−1∑
n=1

βn︸ ︷︷ ︸
=:II

+βN .

We compute the terms separately:

I = αx0

(
1 +

N−2∑
n=0

α(α+ 1)n

)
= αx0

(
1 + α

(α+ 1)N−1 − 1

α

)
= αx0(α+ 1)N−1.

Now for II, there holds via a switching of the summation that

II = α
N−1∑
n=1

n−1∑
j=1

βjα(1 + α)n−j−1 + α
N−1∑
n=1

βn

= α
N−2∑
j=1

βj

N−1∑
n=j+1

α(1 + α)n−j−1 + α
N−1∑
n=1

βn

= α
N−2∑
j=1

βj
(
(1 + α)N−j−1 − 1

)
+ α

N−1∑
n=1

βn = α
N−1∑
j=1

βj(1 + α)N−j−1.
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All together, this shows that also xN can be formed according to (13). The
statement is hence true.

ut

Using the above results, we can immediately show that the method is
second-order convergent:

Theorem 1 Given that ∆t is sufficiently small, and given the assumptions
on the functions Φ, ΦI and ΦE as done in Assumption 1, there is a constant
C such that

Zn ≤ C∆t2,

and hence, the method is second-order convergent.

Proof Note that due to Corollary 1, we can estimate terms like ‖AjBE‖ against
fixed constants. Using the expression (11), we can hence compute

‖Zn‖ ≤ ∆tLΦE

n−1∑
j=0

‖AjBE‖‖Zn−j‖+∆tLΦI

n−1∑
j=0

‖AjBI‖‖Zn−j‖

+
∆t2

2
L .
ΦE

n−1∑
j=0

‖AjB̃E‖‖Zn−j‖+
∆t2

2
L .
ΦI

n−1∑
j=0

‖AjB̃I‖‖Zn−j‖

+

n−1∑
j=0

‖AjEn−j‖

≤ C∆t
n−1∑
j=0

‖Zn−j‖+
n−1∑
j=0

‖En−j‖.

Given that C∆t is smaller than one, we get the inequality

‖Zn‖ ≤ C∆t
n−1∑
j=1

‖Zn−j‖+
n−1∑
j=0

‖En−j‖,

with another constant C that does not depend on ∆t or N . Note that summa-
tion of the first term begins at j = 1. Now there holds that ‖Zn‖ ≤ εn, with
ε0 = 0 and εn, n > 0, defined as

εn = C∆t(ε0 + . . .+ εn−1) +

n−1∑
j=0

‖En−j‖.

This is exactly of form (12), and has hence the analytical solution

εn =
n−1∑
j=1

C∆t

(
j−1∑
k=0

‖En−j‖
)

(1 + C∆t)n−j−1 +
n−1∑
j=0

‖En−j‖.
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We can estimate (1 + C∆t)n−j−1 against eCTend , and because of La. 3, there
then holds that

εn ≤ C∆t2.

Note that the property
∑j−1
k=0 ‖En−j‖ can be estimated against C∆t2. Note

also that constants are subject to change. They do however never depend on
N or ∆t.

ut
Second order convergence is of course not completely what we expect from

Alg. 1. In the following, we explore the nature of the higher orders in some
more detail.

Remark 4 The structure of the matrix A as given in (9) is very interesting:
it “pushes elements in vectors downwards.” To facilitate the understanding of
the following analysis, we show different exponents of A. Obviously, A0 = Id,
the identiy matrix, and A1 is given in (9). There holds, always given that kmax

is large enough:

A2 =



E 0 0 0 0 · · · 0 0 0
0 0 0 E 0 · · · 0 0 0
0 0 0 0 E · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · E 0 0
0 0 0 0 0 · · · 0 E 0
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E


, A3 =



E 0 0 0 0 · · · 0 0 0
0 0 0 0 E · · · 0 0 0
0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · E 0 0
0 0 0 0 0 · · · 0 E 0
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E


, . . .

Eventually, there is a limit matrix A∞, given as

A∞ =



E 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E
0 0 0 0 0 · · · 0 0 E


.

More formally, we have Aj = A∞ for all j ≥ kmax−1. This structure is impor-
tant, because it significantly simplifies the convergence analysis. Essentially,
it states that most contributions to the overall error come from higher correc-
tions. Intuitively, this is desirable, because higher corrections are supposed to
have smaller error contributions, at least asymptotically.
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Lemma 6 Subdivide Zn into kmax+1 blocks of size s each, similarly to La. 3.
Define εnk , 0 ≤ k ≤ kmax to be the infinity-norm of the k−th block. For n = 0,
there is no error, and hence

ε0k = 0, 0 ≤ k ≤ kmax.

Furthermore, for k = 0, the underlying consistency analysis is trivial, and
hence εn0 can be bound by a positive constant C times ∆t2, i.e.,

εn0 ≤ C∆t2, 1 ≤ n ≤ N.
The constant C depends of course on the analytical solution, the fluxes Φ,
the initial conditions w0 and the like, but it does not depend on ∆t or n.
Furthermore, there is a constant C such that there holds for 1 ≤ k < kmax and
1 ≤ n ≤ N :

εnk ≤ C∆t
(
εnk + εnk−1

)
+ C∆t

n−1∑
j=1

kmax∑
h=k

εn−jh + C∆tmin{2+k,q}, (14)

εnkmax
≤ C∆t

n−1∑
j=0

(
εn−jkmax−1 + εn−jkmax

)
+ C∆tmin{2+kmax,q}. (15)

Remark 5 Before proving this lemma, we point out a couple of salient features:

– Note that εnkmax
has a global (i.e., over all n) dependence on εnkmax−1, while

all the other εnk do not have this kind of dependence on εnk−1.
– We have chosen to take the same constant C for both the expression of
εn0 as well as for all the terms in the inequality for εnk . This can be done
without loss of generality, as we take the largest of all these constants.

Proof To prove (14), we consider the analytical expression of Zn given in (11).

Let us first treat the last term in (11),
∑n−1
j=0 A

jEn−j . Due to La. 3, we know

that there is a constant C such that En−j,[k] ≤ C∆tmin{2+k,q}+1. There holdsn−1∑
j=0

AjEn−j

[k]

≤ NC∆tmin{2+k,q}+1 ≤ TendC∆tmin{2+k,q}.

By (·)[k], we denote the k−the block of a vector, again, 0 ≤ k ≤ kmax. We
have used the fact that ∆t = Tend

N and that Aj “pushes elements downwards,”
so there will be no ∆t contributions of lower orders than the ones given here.
This explains why we carefully chose the red terms in Alg. 1 the way we did.

In a similar way, we treat the other terms. They can all be handled alike,
so we only consider the term

∆t
n−1∑
j=0

AjBI

(
ΦI(Y

n−j)− ΦI(W
n−j)

)

=∆tBI

(
ΦI(Y

n)− ΦI(W
n)
)

+∆t
n−1∑
j=1

AjBI

(
ΦI(Y

n−j)− ΦI(W
n−j)

)
.
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Note that the first term couples errors at correction level k − 1 to those of k.
Estimated, this gives, independent of whether k = kmax or not, a contribution
of

C∆t
(
εnk + εnk−1

)
.

For k < kmax, due to the peculiar structure of Aj , AjBI remains a block-
matrix; on the k−th block-row, only two blocks are filled.2 The block-columns
thereof are j and j+1, with j ≥ k. A generous estimate yields the contribution

C∆t
n−1∑
j=1

kmax∑
h=k

εn−jh .

(In fact, for j ≥ kmax − 1, the block columns are kmax − 1 and kmax, so
sharper estimates could be used.) For k = kmax, the non-zero block-columns
are kmax − 1 and kmax. This then gives the contribution

C∆t

n−1∑
j=1

(
εn−jkmax−1 + εn−jkmax

)
.

This yields the desired result.

ut

We do not have a proof for the following statement, which is why we
formulate it as a proposition.

Proposition 1 From the results in La. 6, we conjecture that the method is
convergent with the k−dependent orders. That is, we postulate that each of the
correction steps satisfy

enk = O
(
∆tmin{2+k,q}

)
, k < kmax,

and that the final correction step satisfies

enkmax
= O

(
∆tmin{1+kmax,q}

)
, k = kmax.

Remark 6 Please note that the last correction step does not increase the order.
This is different to the behavior of the algorithm in [40]; it is a consequence
of the fact that we have modified the values at time level tn to make the
algorithm ready for parallelism.

2 Let us clarify what we mean by block-rows and block-columns: The matrices we are
dealing with here are of size s · (kmax +1)×s · (kmax +1). They can hence be subdivided into
(kmax + 1)2 blocks of size s× s. According to the notation in Alg. 1, we begin counting by
k = 0. Block-row k means hence in the big matrix the rows from k(s+1)+1 to (k+1)(s+1).
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Remark 7 Although we only present numerical results that support Propo-
sition 1 – and we only know from Thm. 1 that the method is at-least sec-
ond order convergent – we can very well see the underlying structure from
Eqs. (14)-(15): For k < kmax, εnk essentially possesses the contributions∆tεnk−1,

∆t
∑n−1
j=1

∑kmax

h=k ε
n−j
h and∆tmin{2+k,q}. (We have neglected the constants here.)

If we assume that for increasing k, the order in ∆t of εnk would also increase or

at least not decrease, the contribution ∆t
∑n−1
j=1

∑kmax

h=k ε
n−j
h scales as O(εnk ).

Furthermore, if the order between εnk and εnk−1 differs by one, then ∆tεnk−1
scales again as εnk . The final constant term ∆tmin{2+k,q} then gives the overall
order.

4 Parallel implementation

The method presented in Alg. 1 has been carefully designed in such a way that
it can be implemented in a parallel setting. The ideas we use are similar to
the ones shown in [17] – and in fact, the much older ideas presented in [34] –
and are roughly based on the fact that dependencies are chosen in such a way
that pipelining becomes possible. The following observations are key to being
able to parallelize this solver:

– The predictor, i.e., the values wn,[0],l that correspond to zeroth iteration
number k = 0, do not depend on the values of any other correction step.
They only depend on the final value wn−1,[0],s obtained by the predictor
in the previous time step.

– For 1 ≤ k < kmax, the (k)−th corrector step, i.e., the values wn,[k],l, depend
on the (k − 1)-st corrector step at time level n, as well as on the next
correction at the previous time step, wn−1,[k+1],s.

– The (kmax)-th corrector step, wn,[kmax],l depends only on the (kmax − 1)-st
corrector step at time level n as well as the final correction at the previous
time level, wn−1,[kmax],s.

These dependencies are illustrated in more detail on the left hand side of
Fig. 1. On the x−axis, the time instances n, n+ 1, . . ., are indicated, while on
the y−axis, the correction iterates k and the predictor (k = 0) are sketched.
The circles at position (n, k) correspond to the computation of wn,[k],l for all
1 ≤ l ≤ s. Circles with the same number on it can be computed in parallel,
while those with a higher number have to wait for those with a lower number
to finish. The arrows indicate direct dependencies, required for the calculation
of wn,[k],l. Given the dependencies, it also makes sense to always group the
correction iterates 2k and 2k+1 on the same process, since one would otherwise
create idle processor time. In addition, in order to use computational resources
as efficiently as possible, we also do this for the predictor, so the predictor
(k = 0) is grouped together with the first correction iterate k = 1, which would
strictly speaking not be necessary. Red arrows then imply communication over
processes. Note that communication is always unidirectional. For comparison,
the dependencies of the original serial algorithm from [40] are visualized in the
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Fig. 1 Detailed view on the dependencies of the parallelization flavors. Here we include
an illustrative example with a total of four time steps and kmax = 5 total iterations. On
the x−axis, time instances n, n + 1, . . . are indicated, while on the y−axis, the correction
iterates k and the predictor (k = 0) are sketched. The circles at position (n, k) correspond
to the computation of wn,[k],l for all 1 ≤ l ≤ s. Circles with the same number on it can
be computed in parallel, while those with a higher number have to wait for those with a
lower number to finish. The arrows indicate direct dependencies required for the calculation
of wn,[k],l, with red arrows indicating that communication between processors is needed.
Left: Higher order parallel-in-time MD scheme. Middle: Original serial algorithm proposed
in [40]. Right: Low order parallel-in-time MD scheme, enabling the use of more processors.

center of Fig. 1. One can clearly see that without the modifications proposed in
Alg. 1, the predictor and all correction steps depend on the (kmax)-th iteration
at time level n− 1.

The High-Order Parallel (HO-Parallel) version is designed to deliver paral-
lel speedup while retaining high-order accuracy. This is the method described
in Alg. 1, but here we describe one such grouping of processors that yields a
parallel solver. Theoretically, this speedup can be estimated as follows: Denote
the number of timesteps again by N . The unparallelized algorithm has to per-
form N · (kmax +1) operation blocks (the computation of wn,[k],l for given n, k
and for all 1 ≤ l ≤ s). Each process in the parallelized version has to perform
2N operations, and the last process has to wait kmax − 1 cycles before it can
start. This gives, neglecting all other sources of imbalance and overhead such
as communication and the like, a maximum theoretical speedup of

N · (kmax + 1)

2N + kmax − 1
→ kmax + 1

2
, N →∞. (16)

Please note that this is the speedup in comparison to letting the algorithm
run in its unparallelized version, it is not the theoretical speedup in comparison
to the underlying Runge-Kutta method, as is done, e.g., in [22]. This speedup
is harder to determine, in particular in the IMEX setting that we follow here,
because it depends on the convergence of the correction iterates as well as on
the (nonlinear) algebraic solves, which can differ tremendously from the fully
implicit Runge-Kutta method and the semi-implicit correction iterates used
here.
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Grouping the processors has the obvious disadvantage that it reduces the
parallelization capabilities, and therefore if attaining parallel speed is of chief
concern, we suggest the Low-Order Parallel (LO-Parallel) method described
in the right frame of Fig. 1. In short, the basic idea is to dedicate an entire
process to each correction step and let each correction run completely indepen-
dent from the other corrections insofar as they need to wait for the previous
correction to finish in a queue like fashion. That is, the LO-Parallel version
changes the red terms in Alg. 1 from wn−1,[k+2],s to wn−1,[k+1],s:

wn,[k+1],1 := wn−1,[k+1],s,

wn,[k+1],l := wn−1,[k+1],s

+∆t
(
Φ
n,[k+1],l
I − Φn,[k],lI

)
− ∆t2

2

(
.

Φ
n,[k+1],l

I −
.

Φ
n,[k],l

I

)
+ Il(Φn,[k],0, Φn,[k],1, . . . , Φn,[k],s).

(17)

This means that on correction iterate k+ 1, we only take the previous (k)−th
correction iterate into account, and not as in the novel algorithm, the (k+2)-nd
iterate. Provided we lag each of the corrections sufficiently through a startup
procedure, then each of the correctors can follow up and clean up the previous
iterate at the same cost of the predictor. In comparison to the serial evaluation
of Alg. 1, the speedup would be

N · (kmax + 1)

N + (kmax + 1)
→ kmax + 1, N →∞ (18)

under ideal circumstances. Unfortunately, this modfification reduces the over-
all method to a second-order method, and therefore we do not recommend this
LO-Parallel strategy unless parallelization is of utmost importance.

5 Numerical results

In this section, we first experimentally validate the theoretical findings of Sec. 3
with sample scalar ODE test cases. Here, we show that the desired orders of
accuracy are reached after the predictor and each of the correction steps. We
then increase the complexity of our test cases to systems and stiff problems.
There we study the influence of choosing one of the algorithms presented in
Fig. 1. It is shown that the modifications of the original algorithm from [40]
described in Alg. 1 only have a small influence on the obtained solution. Finally,
it is shown that the proposed method converges to the limiting Runge-Kutta
method given in Def. 1 even for very stiff problems.

5.1 ODE for Convergence Testing

We start by considering a scalar model problem

w′(t) = −w− 5
2 , w0 = 1, (19)
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to validate the order of convergence of the introduced methods. The analytical

solution of this ODE is w(t) =
(
− 7

2 t+ w
7/2
0

)2/7
; the error is evaluated at

Tend = 0.25. For this test problem we introduce an artificial IMEX splitting
via

ΦE(w) = αw′(t), ΦI(w) = (1− α)w′(t),

for α = 0.2.
Fig. 2 shows the convergence of the fourth-, sixth- and eighth-order schemes

after all correction steps. The figure shows that the predictor step is second
order accurate and the correction steps increase the order of accuracy succes-
sively. With kmax = 3 fourth order of accuracy is achievable and one can note
that the last two correction steps are always of the same order. Increasing kmax

shows that with each correction step the scheme picks up one order of accuracy
- until the maximum order defined by the quadrature rule is reached. Hence,
the maximum achievable order is min(kmax + 1, accuracy of quadrature rule),
see also Prop. 1.

5.2 Pareschi-Russo Problem

Next, we consider the model problem introduced by Pareschi and Russo (PR) [37]
to additionally consider the ability of treating stiff ODEs with the novel
method. The system of ODEs is given by

w′1(t) = −w2, w′2(t) = w1 +
sin(w1)− w2

ε
, w0 =

(π
2
, 1
)
, (20)

and is computed until Tend = 5. To account for the stiff behavior, similar as
it is done in [37], we split the problem into a non-stiff, explicitly treated part
ΦE and a stiff, implicitly treated part ΦI

ΦE =

(
−w2

w1

)
, ΦI =

1

ε

(
0

sin(w1)− w2

)
.

We use this test problem to investigate the modifications of Alg. 1 compared to
the original one in [40] and the straight-forward, but low-order parallelization
variant. For an overview on the three different algorithms see Fig. 1.

In order to investigate the different behaviors for stiff and non-stiff prob-
lems, ε in Eq. (20) is varied from ε = 1 to ε = 10−3. The comparison is done for
all three quadrature rules described in Eq. (2)–(4). A fixed kmax = 9 is used.
In Fig. 3 the results of the calculations are summarized. One can clearly see
that the parallel low-order scheme is always second order accurate, regardless
of the equipped quadrature rule and stiffness of the problem (orange lines).
Additionally, the error of the parallel-low order scheme is always higher than
with the other schemes. Considering the high-order parallel and the original
serial scheme, the figure shows that the modifications introduced in Alg. 1
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Fig. 2 Error of the iterates of the parallel IMEX-MD schemes for the simple ODE problem

w′ = −w− 5
2 , see Eq. (19). The error is computed at Tend = 0.25. Different Runge-Kutta

tables and kmax = 3 (left) and kmax = 9 (right) are used.

compared to the original algorithm only slightly influence the obtained er-
ror and have no effect on the achieved order (compare red and green lines).
Nevertheless, some differences between Alg. 1 and the original algorithm are
present, mostly showing up for large timesteps and non-stiff problems. Here,
the original algorithm gives slightly better results. This is most probably due
to the very few timesteps used for large ∆t (the coarsest resolution uses only
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Fig. 3 Error for Pareschi-Russo IMEX problem [37], see Eq. (20), at Tend = 5 with 4th

(top), 6th (middle) and 8th (bottom) order IMEX-MD scheme with kmax = 9 with different
stiffness parameters ε ∈ {100, 10−2, 10−3}.

four timesteps). Differently to the original algorithm, the information of the
last corrector step has not yet reached the first corrector step in those settings,
see Fig. 1 for illustration. This reduces the accuracy of the algorithm if only a
few timesteps are performed. Moreover, in the original algorithm a better wn

is used for all steps k 6= kmax what naturally has a favorable influence on the
solution.

One can see that while for the fourth order scheme no order reduction can
be observed for stiff problems, HBPC(6, kmax) and HBPC(8, kmax) show order
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Fig. 4 Influence of kmax iterations on error of PR-IMEX problem with ε = 10−3 for
Alg. 1 with 6th order (left) and 8th order (right) quadrature formula. Limit denotes the
corresponding sixth- or eigth-order Runge-Kutta method as given in Def. 1.

reduction for an increasing stiffness. In [40] it has been shown, that increasing
the number of correction steps can cure this problem. Therefore, we perform
a convergence study with respect to the number of correction steps kmax for
the stiffest setting ε = 10−3 with HBPC(6, kmax) and HBPC(8, kmax). Fig. 4
shows how the increase of corrector steps improves the accuracy of the obtained
results. It is shown numerically that for an increasing kmax, the predictor-
corrector scheme described in Alg. 1 converges towards the limit method, i.e.
the fully coupled two-derivative Runge-Kutta method, see Def. 1.

Summarizing, the presented simulations of the PR problem show that the
modifications of the predictor-corrector scheme from [40] described in Alg. 1
have only a slight influence on the solution quality. Using the straightforward
possibility to parallelize the scheme (Fig. 1 right) is clearly inferior to the
original method and Alg. 1 even for stiff problems. Moreover, for the high
order methods, it gets obvious that for stiff problems it can be beneficial to
increase the number of corrector steps kmax.

5.3 Van-der-Pol Equation

The van-der-Pol equation (vdP) allows us to study the convergence properties
for very stiff problems in more detail. It is given by

w′1(t) = w2, w′2(t) =
(1− w2

1)w2 − w1

ε
, w0 =

(
2,
−2

3
+

10

81
ε

)
, (21)

with Tend = 0.5. Again, we split the equation into a non-stiff explicitly treated
part ΦE and a stiff, implicitly treated part ΦI via

ΦE =

(
w2

0

)
, ΦI =

1

ε

(
0

(1− w2
1)w2 − w1

)
.
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We use this test problem to study the convergence properties with a typical
number of correction steps one would use for practical applications for stiff and
non-stiff problems. The calculations are performed on one Intel skylake node
with 36 cores. We compare calculations with using all processors on the node
(kmax = 71), to half the number of the processors on the node (kmax = 35).
We choose the minimum number of iterations to obtain the desired order for
non-stiff problems, (kmax = 3, kmax = 5 and kmax = 7, respectively for the 4th,
6th and 8th order method). Similar to the previously performed evaluations
with the PR test problem, we compare the obtained results with kmax → ∞
and the limiting method from Def. 1.

In order to compute the limiting method as kmax → ∞, we compare the
numerical errors w.r.t. the exact solution of simulations with kmax and kmax/2.
If the relative difference between those two errors differs by more than 1%, kmax

is increased by a factor of two and the calculation is repeated. That means,
repeat the simulation with 2kmax if∣∣∣(‖w − wh‖2)kmax

− (‖w − wh‖2|)kmax/2

∣∣∣
(‖w − wh‖2)kmax

> 0.01,

else use the solution with corresponding kmax as the “converged” solution.
With this investigation we can experimentally show that our method converges
towards the limiting Runge-Kutta method, i.e. the algorithm does not diverge.

Remark 8 Note that a similar strategy can be pursued to obtain an adaptation
criterion for the IMEX-MD scheme. Since the exact solution is not known for
general problems, one could think about evaluating the change of the numerical
solution after each iteration. If the iterates do not differ more than a user-
defined threshold, no further correction steps are performed. Also timestep
adaptation could be taken into account. We leave the detailed analysis of an
adaptation of Alg. 1 in this direction to future investigations.

In Fig. 5 the results of the simulation are summarized for the 6th-order
method. For an increasing stiffness, order reduction can be observed. This
can, at least partially, be cured by increasing the number of correction steps;
perfect convergence cannot be observed. This is consistent with the limiting
method and one can see that with kmax →∞ the limiting method is reached.
The results also extend to the 4th- and 8th-order scheme (not shown here for
the sake of brevity): small values of kmax produce order reduction for some
regimes. The effect can be mitigated by increasing the number of iterates with
kmax → ∞. For the 4th-order limiting-scheme, order reduction is completely
ruled out, which is not the case for 6th and 8th-order schemes.

6 Improved algorithm and scaling results

Given the flexibility of the solver, there are several opportunities to enhance
the proposed Alg. 1. In this subsection, we present one such variation that
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Fig. 5 Error for van-der-Pol equation at Tend = 0.5 of simulations with HBPC(6, kmax).
Orders 4 and 6 are omitted for brevity, but show similar behavior. In each image, we increase
the level of stiffness of the problem by shrinking ε, and in each frame we consider the impact
of increasing the total number of correction steps kmax. The last picture (second on the
second line) shows the results of solving the fully coupled limiting Runge-Kutta method,
(cf. Def. 1). The first image on the second line shows the numerically determined limit if
kmax →∞. This is in excellent agreement with the underlying Runge-Kutta method in the
right frame, as we expect to be the case when the iterates converge.

improves the accuracy and scalability of the solver by making a total of two
modifications:

– Improved predictor. The predictor in Alg. 1 is completely independent of
the correction steps, as the used initial condition is given by the previously
computed predictor results. A minor modification would be to use the more
accurate result from the first (or higher) correction from the previous time
step. This is advantageous whenever the main computational load lies on
the predictor. This could happen, e.g., if the number of Newton iterations
for the predictor is higher than for the corrector, which is often observed
in practice. Moreover, the predictor could, in principle, be leveraged as
the cornerstone for adaptive timestepping, which is crucial for many large-
scale applications. Based on our observations, we find we can accomplish
this and have a predictor that is overall third-order accurete in time, which
reduces the total number of corrections required.

– Improved quadrature. The l−th stage of the (k)-th corrector with l > 1
uses a quadrature rule Il in Alg. 1 that is still fully computed with values
from correction step k, although for ι < l, the values wn,[k+1],ι are readily
available. If we consider a Gauss-Seidel type approach, similar to the one
found in [19], we change this so that in Il, we replace wn,[k],ι by wn,[k+1],ι
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for ι < l. Here, we show that that this not only leads to a more accurate
scheme, but it is also lower storage.

We formalize the proposed changes to Alg. 1 as its own algorithm.

Algorithm 2 (HBPC*(q, kmax,)) To advance the solution to Eq. (1) in time,
we compute values wn,[k],l. The meaning of the parameters n, k and l is ex-
plained in Eq. (6) and thereafter. To account for the initial conditions, define

w−1,[k],s := w0.

First, the values wn,[0],l are filled using a straightforward second-order IMEX-
Taylor method with an improved initial condition.

1. Predict. Solve the following expression for wn,[0],l and 1 ≤ l ≤ s:

wn,[0],l := wn−1,[1],s

+ cl∆t
(
Φ
n,[0],l
I + Φ

n−1,[1],s
E

)
+

(cl∆t)
2

2

(
.

Φ
n−1,[1],s
E −

.

Φ
n,[0],l

I

)
.

(22)

The modified terms (wn−1,[1],s, Φ
n−1,[1],s
E , and

.

Φ
n−1,[1],s
E , marked in blue)

simply use one higher iterate than the one found in Alg. 1. This makes the
predictor third-order accurate due to its improved local truncation error.

2. Correct. Next, the correction steps take place to fill the values of wn,[k],l

for 1 ≤ k ≤ kmax. Solve the following for wn,[k+1],l, for each 2 ≤ l ≤ s and
each 0 ≤ k < kmax:

wn,[k+1],1 := wn−1,[k+2],s,

wn,[k+1],l := wn−1,[k+2],s

+∆t
(
Φ
n,[k+1],l
I − Φn,[k],lI

)
− ∆t2

2

(
.

Φ
n,[k+1],l

I −
.

Φ
n,[k],l

I

)
+ Il(Φn,[k+1],0, . . . , Φn,[k+1],l−1, Φn,[k],l, . . . , Φn,[k],s)

(23)

The red term(s) (wn−1,[k+2],s) are the same modified values we implemented
in Alg. 1. The blue terms Φn,[k+1],0, . . . , Φn,[k+1],l−1 are evaluated at iterate
k + 1 instead of k. This produces smaller errors and requires less storage.
Again, if k = kmax−1, then the k+2 in the red terms are replaced by kmax

in order to close the recursion.
3. Update. In order to retain a first-same-as-last property, we update the

solution with

wn+1 := wn,[kmax],s.

The parallelization strategy suggested in Fig. 1 remains largely unaltered due
to the suggested grouping. Given that the first thread operates on both the
k = 0 and the k = 1 iterates, the predictor simply draws information from the
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k = 1 iterate instead of the k = 0 iterate. The corrector also remains unaltered
- in fact there is slightly looser coupling given that the quadrature rule uses
information that is being updated.

In the following, we explore the impact of the further modifications to
the algorithm numerically. We find that in most cases the modified algorithm
behaves better than the standard one. Scaling results are therefore given on
the basis of Alg. 2 only.

6.1 Influence of the modifications

We study the influence of the two modifications with previously considered
Pareschi-Russo problem (Eq. (20)) with ε = 1. In Fig. 6 the results with
Alg. 1 and the modified Alg. 2 are compared side-by-side. Although the mod-
ification in the predictor and the corrector are presented simultaneously, we
carry out a separated analysis of both changes in order to highlight the indi-
vidual influence.

We make the following observations concerning the additional modifica-
tions:

– Modification of the predictor. The modification of the predictor has
the drawback that the predictor loses its independence from the correction
steps as it now uses the solution of the first corrector step as the solution
at tn. In Fig. 6 we see the influence of modifying the predictor step: the
predictor’s order of accuracy is increased from second to third order. This
results in an additional order of the following correction steps, of course
only until the maximum achievable order is reached. For the 6th- and 8th-
order method we additionally observe improvements in the error found
after the last iteration.

– Modification of the corrector. The primary advantage in the modifi-
cation in the corrector is that less overall storage is required for the solver.
Simply put, as the stage values of the previous iteration are replaced with
the stage values from the current iteration k+1, no additional storage array
for the old stage values is required. Moreover, potentially better values are
used for the quadrature rule. We call this modification “Gauß-Seidel style”
as “better” information is used as soon as it is available [38]. Note that
similar ideas have been pursued for an integral deferred correction method
in [19].

In Fig. 6 we can also observe the influence of using the Gauß-Seidel style
corrector by comparing the iterates to each other. The improved quadra-
ture significantly decreased the error. This effect is especially visible for large
timesteps since each correction step improves the solution with O(∆t) (of
course only until the maximum order of convergence is reached). Although
not shown here, this effect is even more pronounced for stiff problems. More-
over, the required amount of Newton iterations is significantly reduced for
such cases that require large timesteps. This could certainly be beneficial for
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Fig. 6 Error for Pareschi-Russo IMEX problem [37] with ε = 1 at Tend = 5 with our
IMEX-MD schemes. We use a fixed kmax = 9 for all the simulations. We display the impact
of increasing the iterate number k and the fact that each additional correction improves the
overall order of accuracy by one, save the final one. We compare side-by-side the analytically
investigated Alg. 1 (Left column) and the modified Alg. 2 (Right column). The modifications
made for Alg. 2 increase the order of the predictor and therefore the following correction steps
by one until the maximum order of convergence is reached. Moreover, the errors especially
for large timesteps are significantly reduced with Alg. 2.
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multiscale problems. Hence, using values of the predictor that are “one cor-
rection step better” as soon as they are available facilitates the solution of the
non-linear problem and at the same time allows for more accurate results.

6.2 Parallel performance

We use the improved Alg. 2 to test the parallel performance of the proposed
method. In order to do this, we run Alg. 2 in both serial and parallel settings.
The method is implemented in MATLAB using the parallel computing toolbox
[33]. Calculations are done on one Intel skylake node with 2 Xeon Gold 6140
CPUs@2.3 GHz, with 18 cores each, provided by the Vlaams Supercomputing
Centrum (VSC). The algorithm necessitates the solution of a non-linear system
of equations

F (w̃) := f(w̃)− rhs = 0,

with

w̃ = wn,[0],l, f(w̃) = wn,[0],l − cl∆t
(
Φ
n,[0],l
I

)
+

(cl∆t)
2

2

(
.

Φ
n,[0],l

I

)
,

rhs = wn−1,[1],s + cl∆t
(
Φ
n−1,[1],s
E

)
+

(cl∆t)
2

2

(
.

Φ
n−1,[1],s
E

)
,

for the predictor and

w̃ = wn,[k+1],l, f(w̃) = wn,[k+1],l −∆t
(
Φ
n,[k+1],l
I

)
+
∆t2

2

(
.

Φ
n,[k+1],l

I

)
,

rhs = wn−1,[k+2],s −∆t
(
Φ
n,[k],l
I

)
+
∆t2

2

(
.

Φ
n,[k],l

I

)
+ Il,

for the corrector. We choose to solve this using a damped Newton’s method
with starting point w̃0 = wn−1,[1],s for the predictor and w̃0 = wn−1,[k+2],s for
the corrector. We define a relative convergence criterion of

‖F (w̃)‖2
‖F (w̃0)‖2

≤ εNewton = 10−6

and an absolute convergence criterion of ‖F (w̃)‖2 ≤ ε′Newton = 10−14. A max-
imum of 1000 iterations is allowed. Starting with a damping factor of 1, the
damping factor is halved if one Newton step’s residual exceeds 0.9 times the
previous Newton step’s residual. If none of the convergence criteria is met
after 1000 iterations, we mark the solver as converged. Typically, when this
happens it is then due to machine accuracy, and not to a lack of convergence
for Newton’s method.

The hierarchical structure of the method allows us to improve the iterative
scheme by replacing the initial w̃ with wn,[k],l for the correction steps. This
improves the starting point of Newton’s method and can reduce the amount
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HBPC*(6, kmax) (orange) and HBPC*(8, kmax) (green) with the more efficient Alg. 2. Black

line indicates theoretically achievable speed-up
N·(kmax+1)
2N+kmax−1

.

of Newton iterations. We could also think about replacing w̃0 with wn,[k],l.
This would have an influence on the results presented below. Nevertheless,
we observe that these changes do not significantly alter the reported results.
Hence, we can only conclude that the proposed method is quite robust against
such algorithmic variants.

The results regarding speed-up are reported in Fig. 7 for an increasing num-
ber of correction steps kmax and hence also an increasing number of processors
ranging from #procs = 2 (kmax = 3) to #procs = 36 (kmax = 71). We choose
a non-stiff (PR-IMEX with ε = 1) and a stiff (vdP-IMEX with ε = 10−3)
problem to see if this has an influence on the parallel performance. All cal-
culations are done with the 4th, 6th and 8th order method. The figure shows
that the achieved speed-ups are quite similar for both considered problems,
but differently for the three different quadrature rules: with HBPC*(8, kmax)
the highest speed-up can be achieved. This is most probably caused by the
more ‘processor-local’ work due to the more stages compared to the other con-
sidered schemes. As the communication introduces some overhead, the scaling
properties of the algorithm are increased by performing more processor-local
operations for an almost similar amount of communication. This is a typi-
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Fig. 8 Required amount of Newton iterations for different correction steps (grouped by the
processor on which they are performed) and two selected test setups (left: PR-IMEX with
ε = 1; right: vdP-IMEX with ε = 10−3) over the number of timesteps.

cal observation made when parallelizing numerical methods. It has, e.g., also
been observed for high-order discontinuous Galerkin methods where a bet-
ter parallel performance can be achieved if higher order ansatz polynomials
are chosen as they increase the amount of processor-local work [29]. As the
parallel performance results are almost the same for the stiff and non-stiff
problem, we anticipate that the obtained performance gain is transferable to
other problems.

One can see that if too few timesteps are used, no speed-up is achieved and
a deceleration of the simulation is obtained. This can be caused by the overhead
introduced by establishing the communication. Nevertheless, if more timesteps
are used, a significant speed-up can be achieved with the proposed paralleliza-
tion strategy. Considering for example the case with 36 processors (kmax = 71),
one can achieve a speed-up of up to a factor of ≈ 13 for HBPC*(8, kmax), ≈ 11
for HBPC*(6, kmax) and up to ≈ 8 for HBPC*(4, kmax). These values are in
the same range as reported in the review paper by Ong and Schroder [35]. In
terms of their paper, our method belongs to the class of direct time-parallel
methods.

The maximum theoretical speed-up is not achieved for all cases. There can
be two reasons for this: First, the overhead introduced by the communication
slows down the computations. Second, the processor-local work is distributed
unevenly. The first point is strongly influenced by the current implementation
and architecture and is therefore beyond the scope of this work. To gain more
insight into the amount of processor-local work we consider the amount of
Newton iterations performed by each processor.

In Fig. 8 the Newton iterations on the first 6 and the last processor are
shown for the HBPC*(8, kmax) scheme for the non-stiff PR-IMEX problem
and the stiff vdP-IMEX equation. It is shown that the required amount of it-
erations decreases with an increasing index of the correction step, i.e. with the
index of the processor. Especially the first processor which is responsible for
the predictor and the first corrector step requires significantly more iterations
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than the other processors. This trend is even enhanced for the considered stiff
problem. To cure this imbalance one can either think about a different distri-
bution of the processors than presented in Fig. 1, or a termination criterion
for Newton’s method depending on the current index of the correction step.

6.3 Arenstorf Orbit

Finally, we use the Arenstorf orbit problem [27,36] for further illustration of
the proposed method’s capabilities. The Arenstorf orbit problem describes a
three body problem, where the movement of a light object is influenced by
two heavy objects. This can, for example, be a satellite being influenced by
two planets. The problem is actually a second-order differential equation, here
formulated as a system of first-order ODEs:

w′ =


w3

w4

w1 + 2w4 − µ′w1+µ
D1
− µw1−µ′

D2

w2 − 2w3 − µ′ w2

D1
− µw2

D2

 .

Here, we have defined

D1 :=
(
(w1 + µ)2 + w2

2

) 3
2 , D2 :=

(
(w1 − µ′)2 + w2

2

) 3
2 ,

µ := 0.012277471, µ′ := 1− µ,

and the initial conditions

w0 = (0.994, 0, 0, − 2.001585106379)
T
.

Although there is no multi-scale character of the problem, we artificially split
the equation into an explicit and an implicit part. For that purpose, all parts
of the equation which are divided by D1 or D2 are simply treated implicitly,
the remaining parts are treated explicitly.

The solution is a closed orbit with a period of 17.065216560159. Similar
to [36], we choose 105 equidistant timesteps to simulate one period of the prob-
lem. We choose the HBPC*(8, kmax) method with Alg. 2 for our calculations,
which results in an error after one period of ‖w − w0‖2 = 1.7818 · 10−9 for
kmax = 71.

In Fig. 9 the solution of w1 and w2 for the Arenstorf orbit problem is
shown. One can see that after one period, the initial condition is reached with
good accuracy and a periodic orbit is obtained. With kmax = 71, and hence
choosing 36 processors, the speed-up is ≈ 14.

To obtain a comparison in a “real-world” setting we consider the scenario of
having a serial code and one performs 7 correction steps, what is a reasonable
kmax for the 8th order method. Having now the possibility to use a parallel
scheme on one compute node with 36 processors, one might use kmax = 71.
Comparing those two computing times, one still obtains a speed-up of ≈ 1.5
and at the same time a potentially better solution.
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−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

w1

w
2

Arenstorf orbit problem, HBPC*(8, 71)

Fig. 9 Solution of the Arenstorf orbit problem for the two spatial variables. 105 timesteps
of the 8th order IMEX-MD scheme described in Alg. 2 are used to simulate one period.

As a very last example, we consider the Arenstorf orbit problem with rela-
tively few timesteps, N = 5,000. (Note that in this work, we only use timesteps
that are uniformly spaced. The Arenstorf orbit is an example of a difficult
problem that asks for adaptive timestepping, which is beyond the scope of
this work.) We use the 8th order scheme and kmax = 7. In Fig. 10 we plot the
orbits for the predictor and the last correction step, once for Alg. 1 (left) and
once for Alg. 2 (right). All other parameters are exactly the same. It is clear
that at least the predictor of Alg. 1 is rather useless here, and also the last
correction value is not a closed orbit. On the other hand, the modifications
done in Alg. 2 lead to a better solution, where both predictor and the last
correction step are, in the ‘eyeball-norm’, closed orbits. This once again shows
the superiority of Alg. 2 over its more straightforward counterpart.

7 Conclusions and outlook

In this work, we have developed a novel IMEX solvers for the numerical treat-
ment of ODEs that operate on multiple derivatives of the ODE’s flux function.
The algorithm has been specifically designed to be

– of high-order (we showed results until order eight, higher orders are easily
achievable by increasing the number of collocation points or the number of
derivatives used),

– and parallelizable in time.

There are two flavors of the method, one (Alg. 1) is a softer modification to
our previous result [40] that is more ammenable to analysis, and the second
one (Alg. 2) is more storage efficient and has better scaling results. We have
shown numerical results demonstrating the behavior of the algorithms. In the
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Fig. 10 Solution of the Arenstorf orbit problem for the two spatial variables. A total of
N = 5,000 timesteps of the 8th order IMEX-MD scheme described in Alg. 1 (left) and in
Alg. 2 (right) are used to simulate until final time T = 17.065216560159, which should
correspond to one period. The improved algorithm produces something that is close to what
is expected to be a closed orbit, whereas the first algorithm is far from the exact solution,
with the predictor being wildly off.

light of [35], the scaling results seem to be very much in line with other state-
of-the-art methods.

There are multiple important open areas that need to be addressed with
future work. The most accessible problem to consider would be to increase
the total number of derivatives used, or work on different integration points c.
Of notable interest would be to explore collocation solvers described in Ex. 1
constructed from the so-called Gauss-Turan-type [43] quadrature rules. These
solvers would ideally offer low-storage alternatives to the present solvers. Next,
it would be interesting to explore versions of this solver that make use of arbi-
trary multiderivative Runge-Kutta methods, not of the collocation variety. In
addition, it is imperative that we further explore implementations for PDEs.
To date, multiderivative methods have largely been sidelined, even though
they can outperform lauded and highly optimized MATLAB routines such as
the builtin ode15s (cf. [2] for one such case study). One reason for this lack
of broader interest is arguably the difficult computation of the second (and
third, ...) derivatives in practical applications. For some ODEs stemming from
a semi-discrete PDE, this can be done rather elegantly [30], but for many, it is
a tedious task, which requires leveraging Lax-Wendroff type time discretiza-
tions. We therefore suggest exploring the possibilities of using finite-difference
approximations, as done in [7,46] in the context of explicit Taylor methods. It
is not yet clear how this interacts with the stability properties of the overall
method, in particular for highly stiff problems, as these type of discretizations
require fully discrete stability analyses, but is certainly worth looking into.
Furthermore, the extension and testing of this time-stepping option to the
classical IMEX application areas remains to be explored.
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40. Schütz, J., Seal, D.: An asymptotic preserving semi-implicit multiderivative solver. Ap-

plied Numerical Mathematics 160, 84–101 (2021)
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