
Dynamic and weighted
stabilizations of the L­scheme

applied to a phase­field model for
fracture propagation

C. Engwer, I.S. Pop, T. Wick

UHasselt Computational Mathematics Preprint
Nr. UP­19­13

Dec. 15, 2019



Dynamic and weighted stabilizations of the
L-scheme applied to a phase-field model for
fracture propagation

Christian Engwer, Iuliu Sorin Pop, Thomas Wick

Abstract We consider a phase-field fracture propagation model, which consists of
two (nonlinear) coupled partial differential equations. The first equation describes the
displacement evolution, and the second is a smoothed indicator variable, describing
the crack position. We propose an iterative scheme, the so-called L-scheme, with a
dynamic update of the stabilization parameters during the iterations. Our algorithmic
improvements are substantiated with two numerical tests. The dynamic adjustments
of the stabilization parameters lead to a significant reduction of iteration numbers in
comparison to constant stabilization values.

1 Introduction

This work is an extension of [3] in which an L-type iterative scheme (see [5, 8])
with stabilizing parameters for solving phase-field fracture problems was proposed.
In [3], the stabilization parameters were chosen as constants throughout an entire
computation. With these choices, the convergence of the scheme has been proven
rigorously. The resulting approach performs well in the sense that an unlimited
number of iterations compared to a truncated scheme yields the same numerical
solution. The results were validated by investigating the load-displacements curves.
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Moreover, the robustness of the scheme w.r.t. spatial mesh refinement was shown.
Nonetheless, the iteration numbers (for an unlimited number of iterations) remained
high.

In this work, we propose and compare two extensions of the aforementioned
scheme. First, we update the L scheme parameters dynamically. Second, we use an
adaptive weight depending on the fracture location inside the domain. For the latter
idea, we use the phase-field variable to weight L locally.

The outline of this work is as follows: In Section 2 the model is stated whereas
Section 3 presents the dynamic choice of the stablization parameters. In Section 4,
we present two numerical tests to study the performance of the proposed scheme.

2 The phase-field fracture model

We consider an elliptic problem stemming from the crack propagation model pro-
posed in [3].Ω ⊂ Rd is a d-dimensional, polygonal and bounded domain.We use the
spaces W1,∞(Ω), containing functions having essentially bounded weak derivatives
in any direction, and H1

0 (Ω) containing functions vanishing at the boundary of Ω (in
the sense of traces) and having square integrable weak derivatives. (·, ·) stands for the
L2(Ω) inner product. For the ease of writing we use the notationsV := (H1

0 (Ω))
d and

W := W1,∞(Ω). The vector-valued displacements are denoted by u. For modeling
fracture propagation in Ω, a phase field variable ϕ is used. This approximates the
characteristic function of the intact region of Ω. Written in weak form, we solve the
following problems iteratively

• Problem 1i: Given (ui−1, ϕi−1) ∈ V ×W , find ui ∈ V s.t. for all v ∈ V

au(ui, v) := Lu(ui − ui−1, v) +
(
g(ϕi−1)σ+(ui), e(v)

)
+

(
σ−(ui), e(v)

)
= 0. (1)

• Problem 2i: Given (ϕi−1, ui, ϕ̄) ∈ W × V ×W , find ϕi ∈ W s.t. for all ψ ∈ W

aϕ(ϕi, ψ) := Lϕ(ϕi − ϕi−1, ψ) + Gcε(∇ϕi,∇ψ) −
Gc

ε
(1 − ϕi, ψ)

+ (1 − κ)(ϕiσ+(ui) : e(ui), ψ) + (Ξ + γ[ϕi − ϕ̄]+, ψ) = 0. (2)

In case of convergence, the first terms in the above are vanishing, and the limit pair
(u, ϕ) ∈ V×W solves a time discrete counterpart of themodel in [3], if ϕ̄ is interpreted
as the phase field at the previous time step. In this context, withΞ ∈ L2(Ω) and γ > 0,
the last term in (2) is the augmented Lagrangian penalization proposed in [9] for the
irreversibility constraint of the fracture propagation.

Furthermore, in the above, ε is a (small) phase-field regularization parameter,
Gc > 0 is the critical elastic energy restitution rate, and 0 < κ � 1 is a regularization
parameter used to avoid the degeneracy of the elastic energy. The latter is similar
to replacing the fracture with a softer material. Next, g(ϕ) := (1 − κ)ϕ2 + κ is the
degradation function, and e := 1

2 (∇u + ∇uT ) is the strain tensor.
The stress tensor in the above is split into a tensile and compressive part,
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σ+ := 2µse+ + λs[tr(e)]+I, σ− := 2µs(e − e+) + λs
(
tr(e) − [tr(e)]+

)
I,

where [·]+ stands for the positive cut of the argument. Further, e+ = PΛ+PT , with P
being the matrix containing the unit eigenvectors corresponding to the eigenvalues
of the strain tensor e. In particular, for d = 2 one has P = [v1, v2] and

Λ+ := Λ+(u) :=
(
[λ1(u)]+ 0

0 [λ2(u)]+
)
.

3 The L-scheme with dynamic updates of the stabilization
parameters

The iteration (1)-(2) is essentially the scheme proposed in [3], in which the stabiliza-
tion parameters Lu and Lϕ are taken constant. To improve the convergence behaviour
of the scheme, we propose a dynamic update of these parameters.

Dynamic update at each iteration / constant in space: The iteration discussed
in [3] uses constant parameters Lu and Lϕ . With this choice, the convergence has
been proved rigorously. However, the number of iterations can remain high. High
iteration numbers for phase-field fracture problems were also reported in [4, 10]. To
improve the efficiency, we suggest in this work to update Lu and Lϕ at each iteration
i:

Li = a(i)Li−1, where Li := Lu,i = Lϕ,i .

Inspired by numerical continuation methods in e.g. [1], one would naturally choose
a large L0 and a(i) := a < 1 to obtain a decreasing sequence L0 > L1 > L2 > . . .,
updated until a lower bound L− is reached. However, this seems not to be a good
choice in phase-field fracture since the system does not have a unique solution.
Consequently, with increasing i the iterations would oscillate in approaching one or
another solution, and the algorithm convergence deteriorates. For this reason, we
propose the other way around: the closer the iteration is to some solution, the larger
the stabilization parameters is chosen, so that the iterations remain close to this
solution. We choose a(i) := a > 1, yielding L0 < L1 < L2 < . . . up to a maximal
L∗.

On the specific choice of the parameters: A possible choice for a is a(i) := 5i
(i = 0, 1, 2, . . .), while L0 := 10−10. This heuristic choice and may be improved
by using the solution within the iteration procedure, or a-posteriori error estimates
for the iteration error. Moreover, a(i) := 5i is motivated as follows. Higher values
greater than 5 would emphasize too much the stablization. On the other hand, too low
values, do not lead to any significant enhancement of the convergence behaviour. We
substantiate these claims by also using a(i) = 10i and a(i) = 20i in our computations.

Dynamic update using the iteration: An extension of the strategy is to adapt the
L-scheme parameters in space by using the phase-field variable ϕn,i−1. We still take
Li = aLi−1, but now a := a(i, ϕn,i−1). Away from the fracture, we have ϕ ≈ 1 and
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essentially only the elasticity component (2) is being solved. On the other hand, the
stabilization is important in the fracture region, for which we take

Li = a(i, ϕi−1)Li−1, with a(i, ϕi−1) := (1 − ϕi−1)a.

Recalling that the fracture is characterised by ϕ ≈ 0, it becomes clear that the
stabilization parameters are acting mainly in the fracture region. Finally, to improve
further the convergence behaviour of the scheme we adapt Ξ at each iteration. In this
case we take Ξi = Ξi−1 + γ[ϕi−1 − ϕ̄]+.

Algorithm 1 Dynamic variant of the L-scheme for a phase-field fracture
Choose γ > 0, a > 1, as well as Ξ0 and L0. Set i = 0.
repeat

Let i = i + 1;
Solve the two problems, namely

Solve the nonlinear elasticity problem in (1)
Solve the nonlinear phase-field problem in (2)

Update Li = aLi−1

Update Ξi = Ξi−1 + γ[ϕi − ϕ̄]+
until

max{ ‖au (ui, v) ‖, ‖aϕ (ϕi, ψ) ‖/v ∈ V, ψ ∈W } ≤ TOL,

The final algorithm: The algorithm is based on the iterative procedure for phase-
field fracture originally proposed in [9]. Therein, the inequality constraint is realized
by an augmented Lagrangian iteration. Within this loop we update the L scheme
parameters too. The resulting is sketched in Algorithm 3, in which TOL = 10−6 is
taken, and L = Lu = Lϕ .

Remark 1 For the solution of both nonlinear subproblems (1) and (2), we use a
monotonicity-based Newton method (details see e.g., in [10]) with the tolerance
10−8. Inside Newton’s method, we solve the linear systems with a direct solver.

4 Numerical tests

We consider two test examples. Details for the first test van be found in [7]. The
setup of the second test can be found for instance in [6]. Both examples were already
computed in [3] and the results therein are compared to the ones obtained here. The
scheme is implemented in a code based on the deal.II library [2].

Single edge notched shear test: The configuration is shown in Figure 1. Specifi-
cally, we use µs = 80.77 kN/mm2, λs = 121.15 kN/mm2, and Gc = 2.7 N/mm. The
crack growth is driven by a non-homogeneous Dirichlet condition for the displace-
ment field on Γtop, the top boundary of B . We increase the displacement on Γtop over
time, namely we apply non-homogeneous Dirichlet conditions:
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Fig. 1 Examples 1 and 2. The following conditions are prescribed: on the left and right boundaries,
uy = 0 mm and traction-free in x-direction. On the bottom part, ux = uy = 0 mm. On Γtop, uy =
0 mm and ux is as stated in (3). Finally, the lower part of the slit is fixed in y-direction, i.e., uy =
0 mm. Right: Asymmetric notched three point bending test. The three holes have each a diameter
of 0.5. All units are in mm.

Fig. 2 Examples 1 and 2. Numerical solutions on the finest meshes and at the end time. The cracks
are displayed in dark blue color.

ux = tū, ū = 1 mm/s, (3)

where t denotes the current loading time. Furthermore, we set κ = 10−10 [mm] and
ε = 2h [mm]. We evaluate the surface load vector on the Γtop as

τ = (Fx, Fy) :=
∫
Γtop

σ(u)ν ds, (4)

with normal vector ν, and we are particularly interested in the shear force Fx . Three
different meshes with 1024 (Ref. 4), 4096 (Ref. 5) and 16384 (Ref. 6) elements are
observed in order to show the robustness of the proposed schemes. The results are
shown in Figure 6.

Our findings are summarized in Figure 3. The numerical solutions for all four
different strategies for choosing L are practically identical, only the number of
iterations being different. Here, L = 0 and L = 1e − 2 denote tests in which
L = Lu = Lϕ are taken constant throughout the entire computation. The newly
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proposed dynamic versions are denoted by L dynamic and L dyn. weighted. We
observe a significant reduction in the computational cost when using the dynamic
L-schemes. The maximum number of iterations is 21 for both the weighted version
and the spatially-constant L-scheme. This number is reduced to 12 iterations using
a = 20 while the accuracy only slightly changes.
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Fig. 3 Example 1. Comparison of dynamic L updates, the weighted version, and constant L.
Left: number of iterations. Right: load-displacement curves.
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Fig. 4 Example 1. Comparison of different a for the dynamic L scheme.
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Asymmetrically notched three point bending test: The configuration is shown
in Figure 1 (right). The initial mesh is 3, 4 and 5 times uniformly refined, yielding
3 904, 15 616 and 62 464 mesh elements with the minimal mesh size parameter
h3 = 0.135, h4 = 0.066 and h5 = 0.033. As material parameters, we use µs =
8 kN/mm2, λs = 12 kN/mm2, and Gc = 1 × 10−3 kN/mm. Furthermore, we set
k = 10−10h[mm] and ε = 2h.

Figure 5 presents the number of iterations and the load-displacement curves.
The number of iterations is decreasing from 500 (in the figures cut to 100) for the
classical L-scheme, to a maximum of 25 when using the dynamic updates. The
choice of weighting does not seem to have a significant influence on the number
of iterations though. The crack starts growing a bit later when using the dynamic
updates, which can be inferred from the right plot in Figure 5. Thus, the stabilization
parameters have a slight influence on the physical solution. This can be explained in
the following way. In regions where ϕ = 0 the solution component u is not uniquely
defined. This leads to a sub-optimal convergence behaviour of the L-scheme. With
the dynamic L-scheme we regain uniqueness, but at the cost of a slightly modified
physical problem.
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Fig. 5 Example 2: Left: The number of iterations for the different schemes; the results for L = 0
and L = 1e − 2 are taken from [3]. Right: The load-displacement curves; a slight difference can be
observed in the results, indicating that the dynamic updates lead to a slight delay in the prediction
of the starting time for the fracture growth.
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Fig. 6 Examples 1 and 2 for the dynamic L scheme using a = 5; three different mesh levels are
used in order to verify the robustness of the proposed scheme. The results indicate that the mesh
size does not influence the number of the iterations.



8 Christian Engwer, Iuliu Sorin Pop, Thomas Wick

Remark 2 Noteworthy, the number of iterations for the dynamic L-scheme is robust
with respect to the mesh refinement, as shown in Figure 6. This is in line with the
analysis in [3, 5, 8], where it is proved that the convergence rate does not depend on
the spatial discretization.
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