universitel
»p NASSElt

UHasselt Computational Mathematics Preprint Series

Klaus Kaiser and Jochen Schutz

A high-order method for weakly
compressible flows

UHasselt Computational Mathematics Preprint Nr. UP-16-06

August 22, 2008



A high-order method for weakly compressible flows

Klaus Kaiser*, Jochen Schiitz

August 22, 2008

In this work, we introduce an IMEX discontinuous Galerkin solver for the weakly compress-
ible isentropic Euler equations. The splitting needed for the IMEX temporal integration is based
on the recently introduced reference solution splitting [I, 2], which makes use of the incom-
pressible solution. We show that the resulting algorithm is asymptotically consistent (with the
asymptotic being Mach number to zero) and asymptotic preserving, and we observe that it is
asymptotically stable and asymptotically accurate. Furthermore, we give a systematic way of com-
puting an approximate reference solution by considering the discrete limit method as a potential
discretization. The final algorithm is shown to work well on a series of weakly-compressible test
cases.
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1. Introduction

In this work, we consider the (weakly-)compressible isentropic Euler equations [3, 4] in dimensionless form,

pt+ V- (pu) =0

1
(pu)t—i-V-(pu@u)—l—E%Vp:O. M)

The wave speeds in normal direction n of this (assumed two-dimensional) problem are

AM=u-n and )\2,3:u~n:tg, (2)
€

which means that there is a convective and two acoustic waves. In what follows, we assume that the reference
Mach number ¢ is small, i.e., ¢ < 1, which physically means that the solution is a small disturbance of the
incompressible solution. Indeed, it can be shown that under suitable requirements on initial and boundary
data (“well-preparedness”), there is convergence of (p, pu) towards its incompressible counterpart as € — 0,
see [5, 6, 7]. Furthermore, it is obvious that this problem constitutes a singularly perturbed equation in e,
as the equations change type in the limit.

Due to the change of type as € — 0, the equations get extremely stiff and therefore it is highly non-trivial
to design efficient and stable algorithms. Explicit-in-time solving techniques have the drawback that they
lead to a CFL condition in which the time step size At must be proportional to (at least) eAz, where Az
is a measure for the spatial grid size. If it is not the goal to accurately resolve all the features, but only
to resolve the convective part of the flow, this condition is extremely restrictive, and a so called convective
CFL condition

AL S [lufAx (3)



is preferable. Fully implicit-in-time methods, on the other hand, which are stable under such a CFL
condition, tend to add too much spurious diffusion [3].

In the past few years, so called IMEX splitting schemes got more and more popular for solving compressible
flow problems, especially for low Mach numbers, see e.g. [9, 10, 11, 12, 13, 14, 15,16, 17, 18] and the references
therein. Optimally, such a scheme should be designed in a way that slow waves are handled with an explicit
(thus efficient) and fast waves are handled with an implicit (thus stable) method. Of course such a strict
splitting of waves is only possible in the linear one-dimensional case [19], and therefore, a suitable splitting
for the nonlinear case has to be defined very carefully.

Over the past few years, many famous splittings for the Euler equations at low Mach number have
been designed, beginning by the ground-breaking work of Klein [I1]. For a non-exhaustive list, we refer
to [9, 11, 13] and the references therein. However, many of those splittings have their shortcomings. It
has been reported [20] that Klein’s splitting seems to be unstable in some instances. (Which, however,
does not include Klein’s original algorithm, which is based on a semi discrete decoupling of the pressure.)
Furthermore, all of the mentioned splittings need a physical intuition and are not directly extendable to
other singularly perturbed differential equations.

To partly overcome these shortcomings, we have over the past few years developed a new type of splitting
that is based on the ¢ = 0 (“incompressible”) solution of the problem. The splitting, see Sec. 4, is generic in
the sense that it can in principle be applied to any type of singularly perturbed equation, including singularly
perturbed ODEs [1] and of course the Euler equations [2]. Related ideas have already been published earlier,
for the shallow water equations in [9, 21] and for kinetic equations in [22], a stability analysis of the splitting
has been done in [20] and [23].

In [1], we have applied the splitting idea to singularly perturbed ordinary differential equations with
high-order IMEX discretizations, namely IMEX linear multistep methods [24, 25, 26] and IMEX Runge-
Kutta methods [27, 28, 29, 30, 31, 32, 33]. In [2], we have applied the splitting idea to a low-order finite
volume scheme for the isentropic Euler equation. In both publications, we have seen that the newly developed
splitting can be highly advantageous. This present work is a 'natural’ extension of those previous works: We
combine a high-order-in-time IMEX Runge-Kutta scheme with a high-order-in-space discontinuous Galerkin
(DG) method (see [34, 35, 36, 37, 38] for classical DG and [39, 40, 41] for IMEX DG) using the newly
developed splitting. In this work, we show, partly analytically, partly numerically, that this particular
IMEX DG method that we develop here fulfills the following properties:

o It is asymptotically consistent (AC), which means that its € — 0 limit is a consistent discretization of
the corresponding incompressible equations. Furthermore, we numerically show that it is asymptotic
preserving, which means that the limit algorithm is stable [12, 13, 11].

o It is asymptotically stable (AS), which means that the restriction on At does not depend on e, but
only on Az, so we can work with a convective CFL condition (3).

o It is asymptotically accurate (AA), which means that the method delivers the desired convergence
order independently of € [15, 16].

In particular this last property is somewhat peculiar, because if it is not fulfilled, a high-order method is
arguably useless for the ¢ < 1 case.

This paper is organized as follows: We introduce the equations and some examples in Sec. 2. The
definitions concerning the asymptotic behavior are introduced in Sec. 3, followed by the presentation of
the splitting in Sec. 4 and the fully discrete method in Sec. 5. Asymptotic properties of this method are
analyzed in Sec. 6. As usually, the paper ultimately gives some conclusion and outlook in the last Sec. 7.



2. Governing equations and examples

In this section, we introduce the underlying equations, and we discuss some appropriate numerical examples.

2.1. Underlying equation

Let Q C R? be a two-dimensional domain, and consider the isentropic Euler equations as in (1), with p € R
density and u = (u,v)” € R? velocity in x— and y—direction, respectively. p denotes pressure given for
polytropic fluids as p(p) = kp? with a k > 0 and a v > 1. Note that the reference Mach number ¢ is given
by

Vol

where u* and p* are the corresponding reference values for velocity and density, respectively. The isentropic
Euler equations can directly be rewritten as a conservation law in divergence form

wi 4+ V- f¢(w) =0 with w = <pf;> and fC(w) := (pu ® up—::%p . Id) . (4)

Id denotes the two dimensional identity matrix. Computing the eigenvalues of 9y f¢ - n gives the charac-
teristic wave speeds

AM=u-n and )\2,3:u~n:tg, (2)
€

where ¢ denotes the speed of sound of the system. Obvisouly, these eigenvalues are on different scales w.r.t.
€. Scales can be best understood by considering an asymptotic expansion of every quantity, namely

w = W) +EW() + 62’117(2) + 0(63). (5)

Inserting this expansion into the isentropic Euler equations (1), collecting all terms in power of € and taking
the limit ¢ — 0 formally leads to the incompressible Euler equations

p(o) = const >0, V-ug) =0,

\Y
(w(o))e + V- (u) @uy) + —— =
P(0)

or, in conservation form,

Diag(1,...,1,0)w; + V- fl(w) =0  with w:= (u(o)) and flw) = (

The existence of a limit necessitates the use of specially designed initial data, see e.g. [5, 0, 7], which we
introduce in the sequel for the isentropic Euler equations:

Definition 1 (Well prepared initial conditions). We call initial data w for the compressible equation well

prepared if they can be represented by an asymptotic expansion as in (5) and fulfill

p° = const +0(?), V-u’ = 0O(e).

Well prepared initial data, together with sufficient smoothness, guarantee the convergence of the solution as
e—0 /5]
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Figure 1: Initial density and z—velocity for € = 1. Left two images: p° and u® of Expl. 1. Right two images:
pY and u® of Expl. 2.

Remark 1. The solution w gy plays an important role in the development of our splitting, see Sec. 4. To
simplify the notation of the proofs, we will from now on denote it as Wyer, i.€.,

Wyef = 'w(o)

Other reference solutions wy.es might be possible, the investigation of this is subject to future research; we do
not consider this in further detail here.

2.2. Examples

In the following, we discuss several examples that we are going to use in the numerical results section. For all
the examples, we use the domain 2 = [0, 1] x [0, 1], and we assume periodic boundary conditions to neglect
the possible influence of effects due to boundary conditions. The focus is on examples that are sufficiently
smooth for all e. A quite well-known test case can be found in [11, 13] for the isentropic Euler equations,
but no exact solution is known. Another example is given in Bispen et al. in [9] and is also used in [2].
Contrary to the first example, this one has a known solution which is unfortunately not smooth enough
(only C'). Therefore, we derive a third example, motivated by the second one, which is in C°.

Example 1 (Periodic flow [11, 13]). The periodic flow is given by a pressure function p(p) = p? and periodic
wiatial conditions, shown in Fig. 1 on the left,

pla.0) =1+ sin(2n(o + y)sin(2a(e + ). (o) = (Gnors ).

This example has been defined in [11, 13]. Unfortunately, we do not know an analytical solution for this
example. An exact solution is known to the second example:

Example 2 (Traveling vortex). The traveling vortex is given by a pressure function p(p) = % p? and periodic
wniatial conditions, shown in Fig. 1 on the right,

2
o(2,7,0) = 110 + &2 (f) 5(re) ((re) — k(r)),

w(z,y,0) = <0(')6> 4 15(1 + cos(re))8(re) <Eg‘i Bé%) .
where

1 1
k(r) := 2cos(r) + 2rsin(r) + 3 cos(2r) + i sin(2r) + ZTQ,

re(z,y) = 477\/(33 - 0_5)2 T (y— 0.5)27 5(r) = {1 r<m

0 otherwise
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Figure 2: Second derivative of the first velocity component of the initial conditions of the traveling vortex
2
example for a fixed x and variable y, i.e. g—yQuo (%, y)

This example was introduced by Bispen et al. in [9], based on [17]. Note that earlier work used periodic
boundary conditions in one and absorbing boundary conditions in the other direction. An analytic solution
is available and given by

p(x,y,t) = p(x — 0.6t,y,0), wu(z,y,t)=u(x—0.6t,y,0),

thus the vortex is transported in z—direction with a velocity of 0.6.

Considering the second derivative in y-direction of the velocity ug for a fixed value z, one can see a
jump in the derivative, see Fig. 2. This means that the function is not more than one time continuously
differentiable, making it not the perfect candidate in a high-order setting. We therefore consider the third
example:

Example 3 (High-order vortex). The high-order vortex is given by a pressure function p(p) = p? and

2
periodic initial conditions
1 2 . 2 1
p(x,y,0) = 2 + 250,000> {26“A"” —Ei(z;) <3
) b 9 0

otherwise

1
1/2 1—y> edr <3
ulz, 70 = + 500 2 ’ 2 )
(@,9,0) (0) <$—§ 0 otherwise

where 1 := \/(ZU - %)2 + (y — %)2 and Ar = 1r? — i

This example has been derived for this work by considering a radial symmetric ansatz function for density
and an ansatz function that represents a rotation for velocity. The solution is a transport of the vortex in
z-direction, i.e.

1 1
p(x7y)t):p<$_2t7y70>7 u(xvyat):u<x_2t7y70>

The high-order vortex can be seen as a high-order extension of Bispen et al.’s work. Note that the vortex
is defined with the help of the exponential integral function

T et
Fi(z) = / “at.

This exponential integral function is, among others, implemented in the boost package [18, 19], which is
used in the implementation.



Figure 3: Initial velocity field of the high-order traveling vortex example. Left the initial velocity u? in
z-direction and right the initial velocity v° in y-direction.

3. Desired asymptotic behavior

The goal of the current work is to devise a high-order numerical method for weakly compressible flows.
Obviously, the behavior of the method as € — 0 is therefore of special interest. In this section, we review
appropriate definitions of asymptotic consistency, a term coined by Jin, see, e.g., [1 1, 13, 16, 44] and others.
As we are dealing with a high-order method, we have reformulated some of those properties to fit to the
underlying setting in the following definition.

Definition 2 (Asymptotic properties). e A numerical method is called asymptotically consistent (AC),
see e.g. [//], if its lowest order expansion is a consistent discretization of the limit equation.

e A numerical method is called asymptotic preserving (AP ), see e.g. [/2, /3, //], if it is asymptotically
consistent and if the limit (“c = 07) method is a stable discretization of the limit equation (6).

o A numerical method is called asymptotically stable (AS), see e.g. [9], if the numerical solution
obtained under a convective CFL condition (3) can be bounded by the initial conditions independently

of €.

o A numerical method is called asymptotically accurate (AA), see e.g. [/5, /0], if the numerical solution
converges towards the exact solution with the correct convergence order for a range of discretization
parameters that is independently of €. The latter means that the phenomenon of order reduction
[50, 51] does not occur.

e A numerical method is called asymptotically optimal (AO) if it is asymptotically consistent, asymp-
totically stable and asymptotically accurate.

4. The RS-IMEX splitting

As already pointed out in the introduction, the choice of a splitting of the convective flux function f¢ is a
core ingredient to obtain a stable and efficient numerical method. This work relies on the recently introduced
RS-IMEX splitting, see [, 2, 20]. To introduce the splitting and the basic ideas, we start by considering
the simplest of all IMEX frameworks, the IMEX-Euler semi discretization. Applied to (4) with a splitting
of the convective flux into

£ (w) = £ (w) + FC(w), (8)
yields

w"t —w" + AtV - (F(w”“) + ,]:E(w”)) =0. 9)



Note that f© is the part that is treated implicitly, while f© is the part that is treated explicitly. In the
following the upper index n of w™ corresponds to the numerical solution - with respect to time - at time
instance

t" i=n- At

(Uniform time slabs are not a necessity.) To obtain the splitting, the RS-IMEX idea is to linearize the
flux function £ around a precomputed or exactly given reference solution wyer for the implicit part. This
reference solution is given in Rem. 1 for the isentropic Euler equations. For a more detailed derivation of
the RS-IMEX splitting we refer to [, 2]. Let us note that similar splitting ideas have also been used in [22]
for the stiff collision operator of kinetic equations and in [9, 21] for a perturbation around the lake at rest
of the shallow water equations. More formally the RS-IMEX splitting is given in the following definition.

Definition 3 (RS-IMEX). The RS-IMEX splitting is defined by

fc<w) = fc(wref> + 8’w,fc(wref) ' (w - wref)a
O (w) = £ (w) — fC(w) = fC(w) — FO(Wret) — O FE (Wret) - (W — Wret),

where wiyes denotes the reference solution, given in Rem. 1. OwfC denotes the Jacobian of f€, fC is
handled implicitly and f€ is handled explicitly.
By the definition of the splitting one can directly obtain that the implicit part is linear and therefore

the resulting system can be solved efficiently by a linear solution technique. Note that, although the idea
stems from a linearization, there is no first-order linearization error of the flux, because remaining terms are

collected in f¢. Applying the definition of £ given in (4), one can directly compute the flux functions f¢
and f¢ for the isentropic Euler equations.

Definition 4 (RS-IMEX splitting for the isentropic Euler equations). The RS-IMEX splitting for the is-
tentropic Fuler equations is given by

ﬁ(p,pu)=< 1 " )

P(U — Ure) @ (U — Urer) + 25 (P(P) — P(pret) — P'(pret) (P — pret)) - 1d

o = . )
PP —PUref @ Uref + PU Q) Uref + PUref @ U + 5% (p(pref) + p/(pref>(p - pref)) Id )
Remark 2. Note that the RS-IMEX splitting idea as given in Def. 3 can directly be extended to a wide
range of different equations. Howewver, the best way to compute the reference solution, if it is not given
analytically, is not directly clear and depends on the given equation and the used numerical method, see Sec.
6 for more details in the given setting. Furthermore, it is not imminent that this splitting always yields a
stable method.

Remark 3. 1. The eigenvalues in the two-dimensional case of awfc('w) -n of are given by

0
A= 2(u_uref)T 'n
(u - uref)T

2. The in magnitude largest eigenvalues of the Jacobian of the implicit part are in O (%)

We can conclude two different things from Rem. 3. First, the stiffness of the equation is completely hidden
in the implicit part. Second, if we take the limit ¢ — 0 and assume that the solution and the reference
solution will eventually coincide, the explicit part vanishes.



5. The IMEX DG method

In the previous section we briefly presented the RS-IMEX splitting idea in the context of an IMEX-Euler
discretization, see (9). The extension to higher-order methods is evident, methods of choise are, e.g., high-

order IMEX Runge-Kutta methods [27, 28, 29, 30, 31, 32, 33] or high-order IMEX linear multistep methods
[24, 25, 26]. High-order temporal integration has to be coupled to a high-order spatial discretization,
e.g. one could use spectral volume [52, 53], spectral difference [51] or discontinuous Galerkin methods

[34, 35, 36, 37, 38]. The method of choice for this work is a combination of a high-order IMEX Runge-Kutta
method with a high-order discontinuous Galerkin discretization, yielding an IMEX DG method [39, 40, 41].

5.1. Preliminary definitions

We assume that €2 is divided into non-overlapping cells 2 as
ne
U@ =9 and QnQ=0 Vk#i
k=1

The boundary of the cell € is denoted by 02 and nj denotes the corresponding outward normal vector.
For a value of x € 0Q, we define the interior (I) and exterior (E) value, respectively, of a function o by

or(z) == lim o(x — dng) and op(x) = lm o(z+ dnyg). (10)
0<6—0 0<6—0
If a boundary is considered independently of a specific cell, we can in a similar way define a value of o; and
or based on an arbitrary, but fixed direction of edge normal vectors. On domain Q with triangulation {4}
we define a broken polynomial space by

‘/q:: {UELQ(Q) : ’UI EPq(Qk)Vk‘zl,...,ne},

2

where P, (€y,) are all polynomial functions with maximum degree g on cell €. Of course an adaptive choice
of ¢ is possible. To also take time into account, we assume that the temporal domain is given by [0, 7] with
T € R*. This time domain is split into N time instance t" = nAt,

0="<.. . <t"<...<tVN=T.

5.2. Discontinuous Galerkin method for compressible flows

Following the common steps [35], a DG discretization of (1) is given in the following definition:

Definition 5 (DG). We seek the function wa, € qu which fulfills

/ (waz), - pda — fC('wa) -Vdr + / h(wr Az, WE Az)p - nds =0,
Q Qs a0y,

where h denotes the numerical fluz function, for all functions ¢ € V, on every cell Q. (Reminder: It is
FC(w) € R¥2, q is polynomial degree of ansatz functions.)

This variational formulation is continuous with respect to the time variable and discrete with respect to
the spatial variable. In the following, a lower index Ax denotes a spatial discretization. There are many
possible choices for a numerical flux function, but, as we observed in [2] and also as described by Bispen
et al. in [9], the choice of the numerical flux function affects the asymptotic consistency. At this instance



we keep the choice of the numerical flux function rather general and consider the following class of fluxes in
viscosity form:

h(wr,wg) = % (fC(UJ[) + fc(wE)) + %Diag (a1,...,aq) (wr —wEg) - n, (11)

where every equation can be stabilized with its own stabilization coefficient «;, ¢ = 1,...,d. Note that
choosing the maximal absolute eigenvalue as the stabilization coefficient for every equation, i.e. a; = «; for
i,7 = 1...d, results in the Rusanov numerical flux function (also called local Lax-Friedrichs numerical flux
function) [55]. The choice of the stabilization coefficients is done in Sec. 6.

5.3. Discontinuous Galerkin method for incompressible flows

The RS-IMEX approach is based on the reference solution, which is in fact the solution of the limit equation
(7). Compared with its compressible counterpart, one equation is replaced by the algebraic (w.r.t. to time)
equation

V-u=0.

In order to discretize this equation we use a similar variational formulation as before and stabilize this
equation in the quasi-pressure p(y). This results in the following method.

Definition 6. We seek the function wa, € V;]d which fulfills

Diag (1,...,1,0) - / (waAz), - pda — f](wAm) -Vedr + / h(wr Az, WE Az)p - ds =0,
QL o o0,

for all functions ¢ € V,; on every cell Q. h is again a numerical flur function as in (11) with £C replaced
by f1 and with a different choice for the stabilization coefficients. (Details in Sec. 6.)

Note that since the pressure p(o) only occurs with its spatial derivative, it is not unique. Therefore we
assume that the pressure is mean value free, i.e.,

/ peydz =0.
Q

To enforce this we perform a pressure correction after every time step in order to neglect possible mean
values.

Remark 4. In principle, we could also use a method off-the-shelf for the incompressible equation, see, e.g.,
[56]. The reason why we favour the method given above will be clarified in Thm. 2. Roughly speaking, the
method presented in Def. 0, equipped with suitable time integration, is the ¢ = 0 limit of the method in Def.
5, again equipped with time integration.

5.4. IMEX Runge-Kutta methods

In Sec. 4 we have presented the RS-IMEX approach which splits the flux function ¢ into an explicit

part, denoted by f¢, and an implicit part, denoted with fC. Here, we extend the IMEX-Euler to IMEX
Runge-Kutta methods, see e.g. [27].

In this work we do not consider an arbitrary IMEX Runge-Kutta method, we restrict ourselves to a
(relatively large) subclass which we identified as important in our previous work [1]. The following remark
clarifies the methods we use.



Remark 5. 1. We only consider IMEX Runge-Kutta methods which are globally stiffly accurate (GSA),
see e.g. [28]. In short this is fulfilled if the update step is equal to the last internal stage of the Runge-
Kutta method. This corresponds to the first same as last property for an explicit and the stiffly accurate
property for an implicit Runge-Kutta method. As our system is autonomous, the IMEX Runge-Kutta
methods are fully defined by the two Butcher tableaux A and A.

2. We only consider IMEX Runge-Kutta methods where the implicit matrix A is a lower triangular one,
such that in every internal stage only one implicit variable occurs.

3. We only consider IMEX Runge-Kutta methods of type A or type CK. This is given if the implicit
matriz A is invertible (type A) or the first entry of the implicit matriz equals to 0 and the remaining
submatriz is invertible (type CK). See Def. 7 for more details. For a more detailed classification of
IMEX Runge-Kutta methods we refer to [51].

Consequently, we can define the following s—stage IMEX Runge-Kutta methods used in this work:
Definition 7 (GSA IMEX Runge-Kutta scheme). For every t"t1 =" + At do the following:

1. Fori=1,...,s solve

w™ —w" + At ZA”V £ (w™) +ZA,JV 7w | = o, (12)
Jj=1 j=1

where w™* denotes solution of the i" internal stage.
2. Set w"t! = w™*

The coefficients of the IMEX RK method are given by two Butcher tableaux, the one with overhats referring
to the explicit, the other to the implicit part. Because of our restrictions on the Runge-Kutta method (see
Rem. 5), the implicit coefficient matriz has to fulfill Aj; # 0 fori=2...s. For a type A method, there even
holds ZH £ 0 in addition.

Based on our work in [I], we use the IMEX Runge-Kutta methods presented in Thl. 2, 3, 4 and 5,
originally presented in [27, 28, 32, 33]. A classification of these methods can be seen in Tbl. 1.

‘IMEX—Euler IMEX-DPA-242 IMEX-BPR-353 IMEX-ARK-4A2

Order 1 2 3 4
GSA Yes Yes Yes Yes
Type CK A CK CK

Table 1: Classification of the used IMEX Runge-Kutta methods concerning their order, structure and type.

6. Asymptotic behavior of the numerical method

So far, we have left out the details on the numerical flux function. We will fix those details in this section
in such a way that the method to be presented is asymptotically consistent. Let us begin by giving a short
overview on the notation.

Remark 6 (Notation). 1. An upper index n, e.g., u™, indicates that the quantity is given at time level
t=1t".

10



2. An additional upper index i, e.g., u™", denotes the i’ internal stage of an IMEX Runge-Kutta method.

3. A lower index Az, e.g., ua; denotes a variable which belongs to a discontinuous Galerkin discretiza-
tion.

4. An additional lower index I or E, e.g., ura, denotes the interior or exterior value corresponding to
an edge, see (10).

5. A lower index in brackets (i), e.g., u(;), denotes a variable which belongs to the it component of an
asymptotic expansion, see (5)

6. A lower index ref, e.g., u.f, denotes the reference solution, see Rem. 1

6.1. Asymptotic consistency

As mentioned in Sec. 3, our aim is to develop a method whose ¢ — 0 limit is a consistent discretization
of the limit equation (6). In the following, we prove this property, thereby identifying suitable viscosity
parameters in (11). For the ease of presentation, we work in two steps: As mentioned before the numerical
method is desired to preserve the asymptotic behavior of the corresponding equation. Therefore the limit
numerical method is desired to be a consistent discretization of the limit equation. In the following we prove
this property for two cases:

1. First, we consider the semi discrete (discrete in time) setting.

2. Then, we consider the fully discrete setting, where the DG method is coupled to an IMEX Runge-Kutta
method.

6.1.1. Semi discrete setting

We start by considering the RS-IMEX splitting for the isentropic Euler equation (1) coupled to an IMEX
Runge-Kutta temporal discretization as in (12).

Lemma 1. The internal stage w™' of the RS-IMEX method coupled to an IMEX Runge-Kutta temporal
discretization (see (12)) is asymptotically consistent, if all previous internal stages and the previous time
istance w" are well prepared in the sense of Def. 1 and there holds p?o) = Dref -

Proof. We assume that all the quantities can be represented with an asymptotic expansion as in (5). If
Ai11 = 0, which happens for type CK methods, then the first internal stage is equal to the previous time
instance w’} ;. It is therefore directly well prepared. Therefore, we consider the ith internal stage with
Ay # 0.

Because the numerical density is constant up to O(¢?), we know that its zeroth-order expansion is equal
to the reference density p,er. Therefore, considering the O(s~2) terms of the momentum equation, we obtain

0=V 527 <p(pref) + pl(pref)(p(d) - ,Oref))

50 =92 (ool

<0 :V,o(d).

Thus the limit density is constant in space. Next we consider the O(1) terms of the first equation and
integrate over the whole domain. Using the periodic boundary conditions we get

Pt — pidx = 0.
/Q (0 (0)

11



Since both values are constant in space, we can conclude that p%; is constant in ¢, and therefore it is equal
to pret. Considering again the O(1) terms of the mass equation we now obtain

Z AV - (PU)% =0.
J

Since the previous stages are well prepared, which means that their momentum is solenoidal, we directly
obtain V - (pu)% = 0 if A; # 0. The proof is finalized by the remark that the discrete limit momentum
equation is a consistent discretization of the limit momentum equation. O

Theorem 1. The RS-IMEX method coupled to an IMEX Runge-Kutta temporal discretization as given in
Rem. 5 and Def. 7 is asymptotically consistent if well prepared initial data are used.

Proof. The theorem follows directly from Lem. 1, the well prepared initial data and the GSA property of
the used IMEX Runge-Kutta method. O

A question which arises from the usage of the RS-IMEX splitting is how to compute the limit solution.
In an ideal case this solution is given, but generally we need a numerical method for its computation. It is
useful to compute the limit solution in such a way that it corresponds to the solution of the limit method.

Theorem 2. The limit of the semi discrete method (12) is a discretization that is fully implicit-in-time.

Proof. Upon adding a zero as
prefu( ) ® u( ) prefu(o) ® u(0)7

the limit numerical method reads (see also Def. 4)

i) = (o,
prefu?d; B prefu?o)

—~ 0

—At sz : , n,Jj n,J n,J n,J n,Jj

zj: ! (pref( wig) —upd) @ (i) —upd) + (p(2§ — P’ (Pre) (3} ) : Id)
n7j

ALY AV | | | “0) .
J _pref(u?d‘)j — u?e’g) X (’u,?dg ref) + pref’U,( ’g X u( ) +p (pref)p( ) -Id

J
Now, for the moment, we assume that for all previous internal stages, the numerical solution and the
reference solution coincide. Furthermore, from the asymptotic expansion one concludes
p?é; = p/(prcf)p?gﬂj'
Finally, this simplifies to

0 0 ~ u()
n,t | — n + AtAuV : n,i n, n,i (
prefu(o) pref“(o) —pref(u(d) — ’u’re;f) & (u(d) ref) + Prefu(o) ® u(o) +p( ) -Id

which is a fully implicit discretization of the incompressible equation with additional terms in (u[, (0) — uref)
If therefore u, éf has been computed by the fully implicit method (which amounts to taking only the implicit
part of the IMEX Runge-Kutta method), the two solutions correspond to each other. ]

Remark 7. Theorem 2 is the reason why we discretise the reference solution using a fully implicit scheme.
Similar reasoning also holds true for the fully discrete case, where space is discretised using the discontinuous
Galerkin discretization.
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6.1.2. Fully discrete setting

Here, we consider the fully discrete setting, i.e., temporal discretization with an IMEX Runge-Kutta method
and spatial discretization with a DG method. To clarify the choice of the numerical diffusion coefficients in
(11), we start with the following lemma:

Lemma 2. Let the function oa, € Vy be such that
/ (01,00 — OE.Az)pds =0, VoeVy,Vk=1,...,ne. (13)
oy,

Then, oaz 18 continuous.

Proof. We can choose ¢ = oa, in (13) and obtain
/ (UI,Am - UE,Aw)UI,Ade =0
00y,

on every cell ;. Summing up over the whole domain and rearranging terms leads to

0= Z/ (O'I,A:p - O-E,AI)UI,AwdS = Z /;(O-I,A:v _ UE,Ax)2dS.
k €

oy,
This means that o7 A, = 0 A, and therefore the quantity oa, is continuous over every cell boundary. [

This lemma has a direct consequence for the numerical solution. Namely, if we can show that the numerical
stabilization of one quantity lives on a different scale (with respect to €) than the rest of the corresponding
equation, the ¢ = 0 limit of this quantity is continuous. Since the choice of the implicit stabilization
coefficient « is still open, we are able to influence the continuity of the corresponding limit solution. We
know from Sec. 2 that the limit density is constant up to O(¢2?). Enforcing its continuity therefore makes
sense, which is why we define the numerical viscosity as follows:

Definition 8. We define the numerical stabilization coefficients in (11) as

~ 1 ~
a::Diag<2,1,...,1> and a:=2-¢.
€

Remark 8. e The choice of & is motivated by Rem. 3, as the eigenvalues of O f€(w) - n are in O(e)
if one assumes that u = ues + O(e).

o Let us note that a somewhat similar choice of the artificial viscosity, for the equations in primitive
variables, has been made in [57], motivated by the fundamental work of Turkel [58], who introduced
preconditioning of the time derivative to enhance steady-state computations for low-Mach flows.

With this choice we follow the same steps as for the semi discrete case and start by proving that if all
previous internal stages are well prepared, then the algorithm is also asymptotically consistent.

Lemma 3. The internal stage 'wZ’; of the RS-IMEX DG method with an arbitrary polynomial degree ¢ > 0
and an IMEX Runge-Kutta time integration as given in Rem. 5 and Def. 7 fulfills p?d;Am = pret + O(e?),
and V -u = 0 in a discrete sense, see (14) (i.e., it is well prepared in a discrete sense) if all the previous

internal stages and the previous time instances are also discretely well prepared, and there holds that p's,, =
pret + O(e2).
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Proof. Note that if gl,l = 0 then the first internal stage is equal to the previous time instance w', thus
it is directly well prepared. Therefore we now consider a given 4 such that A4;; # 0. We assume that every

quantity can be expressed by an asymptotic expansion as in (5), e.g.,

T 23 23
( PA ) _( Pre@ ) g PAem) ) L2 PAne) ) Lo,
(Pu) Ay (pu)A:p,(O) (pu)Ar,(l) (P“)Am,@)
Due to the numerical stabilization the only terms in O(¢72) in the momentum equation are the pressure
terms, thus

0 :Ai,i/Q (p(Pref) +p/(pref)(pz7;(o) - Pref)) Vedz
k

~ 1

- Ai,ii /é)Q <p(pref) =+ p/(pref)(P?:Zx,(O) - Pref) + p(pret) + p/(Pref)(pZ:’iAx’(o) - pref)> pndz
k

for every test-function ¢. Note that we have directly used the fact that the initial values and all previous
stages are well prepared. Therefore, there are no explicit contributions. Using integration by parts and
changing signs leads to

0=A4;; /Q \% <p(Pref) + p’(pref)(p’g’;(o) - pref)) pdx
k

~ 1

- AZ,Z§ /89 (p(pref) +p/(pref)(P?:iAI’(0) - Pref) - p(pref) - p/(pref)(pTEL:fo7(0) - pref)) pnds
k

~ . ~ 1 ,
=Aii | VD (pret) Py oy PdT — Aii / P (Pret) (07 A (0) — P8, (0)) PTVS.
Q : 2 Jaq, i =

Due to La. 2 and the choice of the implicit stabilization, which is in O(e72) for the first equation, we know
that p\" (0) 18 continuous over the cell boundary of €. Therefore we obtain

This holds true on every cell ; and for every test-function ¢ and therefore /)Z;,(o) must be a cell-wise
constant. Since it is also continuous it is constant over the whole domain. Similarly, one can also conclude
that pZ’; (1 is constant over the whole domain. Next we consider the O(1) terms of the conservation of mass
equation. Note that, because this part is purely implicit, the reference solution does not occur:

0= /Qk ()02’;(0) - PZI,(O)) pdx

—At) A (/Q P 0)¥an (o) VPdT—
j k

1 n,J n,j n,Jj n,J ) 1 / n,j n,j
- ’ )’ )’ ) d —_ ( 2J —_ J ) d .
2 /{mk ('OA&(O)ULAL(O) T Paz () UE A, 0)) TVPAS T 5 oo, \TAw@) T PEAT(2) ) PO

With the help of periodicity we can now choose ¢ = 1 as the test function and summing over the whole
domain. This leads to

0= (PZ;(O) - sz,m)) €.
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Consequently, pZ’; ) is also constant in time and is equal to p.es because of the requirements on the previous
stages and initial conditions. Considering again conservation of mass, this equation can now be written as

0=— Z Aij </Qk prefuzg;’(o) - Vpdzr— (14)
J

_ N g N > ds — = ( )] _ ) ) d . 15
2/an (prertf o) + Preculla, ) ) mepds 2 Joq, 1A= T PEA@) FE (18)

This is a consistent discretization of V - u = 0 with stabilization terms in pTAL’;’@). This is very similar
to the discretization of the limit equation where the stabilization is in quasi-pressure, since there holds
pZ’; @2 = YK Pret? pZ’i} @) As for the semi discrete case, it is straightforward to see that the limit momentum
equation is a comnsistent discretization of the corresponding equation. Thus the method is asymptotically
consistent with the special choice of the numerical stabilization made in Def. 8. ]

This section is finalized with some remarks:

Remark 9. e The choice of the numerical flur function is essential for the previous theorem. Taking
implicit stabilization coefficients in O(1), periodic boundary conditions and polynomial degree q = 0
results in a method which is not guaranteed to be AC. In [2], this problem has been solved by using a
different type of boundary condition, based on the work of [15]. In [59], this problem is solved by adding
implicit diffusion to the mass equation, which is similar to the choice of the numerical flux functions
presented in this work.

e The discretization method of the reference solution has been left open up to this point. From Thm. 2 we
know that in the semi discrete setting the limit method corresponds to a fully implicit method. The same
holds true - with the same arguments - for the fully discrete setting. The stabilization coefficients for
the divergence equation are chosen as ('ynpreﬂfl)fl for the first and 1 for the remaining equations.
Thereby, we can guarantee that the discrete asymptotic limit and the computed reference solution
coincide.

e Since the solution of the limit method corresponds to the solution of the fully implicit discretization
with the corresponding implicit Runge-Kutta method, the discretization is stable and therefore we can
call our asymptotically consistent method asymptotic preserving.

o The proof of the asymptotic consistency does not rely on the fact that the equations are two-dimensional.
In fact, the three-dimensional case is also covered.

6.2. Asymptotic stability

We have analytically proven that the present method is asymptotically consistent. Thus, the method
is suitable for solving problems in the low Mach regime. It remains to show that the method is also
asymptotically stable. At this moment, we do not have a proof that the method is indeed asymptotically
stable. (For preliminary work in this direction, we refer to the work of Zakerzadeh [23] and Zakerzadeh
and Noelle [20].) Therefore, we investigate its stability based on numerics. More precisely, we consider the
periodic wave example, given in Expl. 1, on a rectangular grid. For several values of At/Az = CFL-max ||u"|
and e, we perform a fixed number of time iterations, in this case 100, for different total polynomial degrees.
If the L? norm increases we state that the numerical method is unstable for this combination. Of course
such a test can only be a rough indication of stability, and not replace a proof.

In Fig. 4 we summarized the results of this analysis. Note that the values At/Ax also correspond to
the advective CFL number, since the numerical example is chosen in such a way that max ||u’|| = 1. For
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CFL - max ||u?|
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the low order (¢ = 0) case, one can see that stability is very pronounced. This is a result of the relatively
large numerical diffusion in the numerical flux. For the higher order case the influence of the numerical
flux function is much less pronounced. There is a threshold in the CFL number below which the method is
stable. Fortunately, this threshold is independent of ¢; it gets smaller with ¢ increasing. (This is of course
for standard DG known quite well [60].) Furthermore, we can observe that for larger €, the method is only
stable for less values of the CFL number. Because with ¢ — 0, the influence of the implicit method gets
more pronounced, this is to be expected.

Remark 10. The given numerical results show that the numerical method is stable for a constant value of
CFL - max ||u®||, independently of €. Therefore we call the method asymptotically stable.

6.3. Asymptotic accuracy

In Sec. 2 we presented two different numerical examples where the exact solution is given, both essentially
depending on a traveling vortex. Because of Subsec. 6.2 we know how to choose the relation CFL - max ||uV|
to obtain a stable numerical method. Since our goal is to compare all results and use a time-restriction
which is also valid for large values of €, we from now on take

At

~— = CFL - max ||[u’|| = 0.05.

Ax
Grids have been generated with quadratic cells, the reference solution is always computed on the same grid
as the forward solution with a fully implicit method. Results are compared using the L'-norm of the error.
Results are presented in the following.

6.3.1. Traveling vortex example

In Fig. 5, convergence of the first, second, third and fourth order (¢ = 0,1,2,3) RS-IMEX DG method is
plotted for different values of ¢ for the traveling vortex of Bispen, as given in Expl. 2. For the low order
case we obtain the correct convergence order. For the first order case, it takes several refinements until the
optimal order is reached. This is most likely due to the relatively large implicit stabilization. The reference
solution for the second order case has a lower accuracy (though the correct convergence order) than the
resulting compressible solution. This observation leads us to the conjecture that the reference solution is
not needed to be computed as accurately as the compressible solution and therefore may be obtained on a
coarser grid or with a lower polynomial degree; a fact that will certainly be exploited in future work.

For the high-order cases we see that the correct convergence order is not attained. This is not a surprise,
because this example is not sufficiently smooth. For the fourth order method and for ¢ = 10~ the method
stalls in converging. We assume that this is due to numerical roundoff errors that occur for high-order
methods more frequently.

6.3.2. High-order example

In Fig. 6, convergence of the high-order vortex (Expl. 3) is shown for different values of ¢ and for different
orders.

We can directly see that nearly all methods show their desired convergence order, just the case ¢ = 2
shows a slightly strange behavior. First of all for € = 1, the method seems to degrade to first order. This
could be a result of the combination of methods or maybe a small instability since we have seen for the
asymptotic stability that the case ¢ = 1 is the most unstable case. Furthermore, the convergence order
of this formally third order method is only ~ 2.7. Since all other methods deliver the desired results, we
believe that this effect is not due to the low Mach number, but unsufficient grid resolution.
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Figure 5: Convergence of the RS-IMEX DG method for traveling vortex
with the IMEX-Euler method (top, left), ¢ = 1 with the IMEX-DPA-242 method (top,right),
g = 2 with the IMEX-BPR-353 method (bottom,left) and ¢ = 3 with the IMEX-ARK-4A2 method
(bottom,right). As an error measure, we chose the L' error between the numerical solution and
the exact solution. The dashed lines give the different optimal convergence order, from first order
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Remark 11. The numerical results show in some sense a biased behavior. While there seems to be no
problem with stability, accuracy can get lost in special cases. What we have seen in the last numerical
example, however, gives rise to the conjecture that the method is indeed asymptotically accurate. This
remains under further investigation.

Remark 12. We have run similar tests for triangular elements. It seems that the shape of the element does
not play a significant role.

7. Conclusion and outlook

In the current paper we have coupled the RS-IMEX splitting with a high-order temporal and spatial dis-
cretization. The resulting method has been shown to be asymptotically consistent, and due to the structure
of the limit method it has been shown that it is asymptotic preserving. Furthermore, numerical results give
rise to the conjecture that the method is asymptotically stable and asymptotically accurate.

The next important steps in the development of the RS-IMEX splitting are inherent. First, a more
detailed stability analysis is desirable to prove analytically that the method is stable under a convective
CFL restriction. Second, the identification of more complex test-cases or equations is useful to test the
method in a large range of settings.

Furthermore, reducing the computational effort is extremely important, especially compared to other
numerical methods given in literature. Therefore our aim is to figure out in which way the reference solution
can be computed the most efficiently, especially if a less accurate reference solution can also be employed.
Another step is the usage of more efficient numerical methods for the implicit part, e.g., the hybridized
discontinuous Galerkin method for spatial discretization (see e.g. [61, 62, 63, 64, 65]).

Finally, and this is somehow more of a long time goal, the identification of several high-order IMEX time
integration methods is needed to obtain a numerical method of order larger than four.
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A. IMEX Runge-Kutta methods

For the sake of completeness, we list the employed Runge-Kutta methods in this appendix section. Note
that for our setting, we only need the Butcher matrices A and A.

0 0j]0 O
0 1|1 O

Table 2: A first order IMEX RK method called IMEX-Euler [27]. Left: implicit A, right: explicit A.
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