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Abstract

In this work, we consider a mathematical model for describing flow in an unsatura-
ted porous medium containing a fracture. Both the flow in the fracture as well as in
the matrix blocks are governed by Richards’ equation coupled by natural transmission
conditions. Using formal asymptotics, we derive upscaled models as the vanishing li-
mit of ε, the ratio of the width and length of the fracture. Our results show that the
ratio of porosities and permeabilities in the fracture to matrix determine, to the leading
order of approximation, the appropriate effective model. In these models the fracture
is a lower dimensional object for which different transversally averaged models are
derived depending on the ratio of the porosities and permeabilities of the fracture and
respective matrix blocks. We obtain a catalogue of effective models which are validated
by numerical computations.

Keywords: Richards’ equation, Fractured porous media, Upscaling, Unsaturated
flow in porous media,
35B27, 35A35, 35J25, 35K65

1. Introduction

Accounting for fractures in a porous medium has been a subject of great interest
due to its wide applications in energy and environmental fields. For example, in the oil
industry, fractures may enhance oil production. On the contrary in carbon sequestra-
tion, they may act as a leakage pathway. A fracture is a thin but long domain embedded
in a porous matrix. Its hydraulic properties such as permeabilities may be drastically
different from the matrix and its influence on the flow behaviour is quite strong [1], for
example a highly permeable fracture network may provide the dominant pathway for

∗Corresponding author: florian.list@uhasselt.be
Email addresses: kundan.kumar@uib.no (Kundan Kumar), sorin.pop@uhasselt.be (Iuliu Sorin

Pop), florin.radu@uib.no (Florin Adrian Radu)

Preprint submitted to Elsevier March 1, 2019



the entire flow in a porous medium. Therefore, fractures or entire fracture networks
must be incorporated in the mathematical models for fluid flow. This is challenging
from the numerical point of view, firstly due to the high geometrical complexity of
fracture networks and secondly, a small aperture to length ratio makes it difficult to
resolve the flow behaviour explicitly through brute force computations.

At the Darcy scale individual fractures look like a plane discontinuity. Viewed
from a close up this thin region is composed of a porous medium though having mar-
kedly different properties from the matrix. To avoid a brute force computation invol-
ving fine scale resolution for the fracture domain, it is appealing to embed fractures
as lower-dimensional manifolds into a higher-dimensional domain (e.g., as lines in a
two-dimensional domain). Thus, a mathematical description of the flow consists of
flow equations in the matrix block coupled to a differential equation on the lower-
dimensional fracture surface. Depending on the hydraulic properties of the fractures
with respect to the matrix, fractures may block or conduct fluid flow. This suggests
that the effective model should distinguish between these two extreme cases. This is
the subject matter of this paper. Herein, we show that there is a variety of models, each
appropriate in a particular range for hydraulic properties of the fracture, that describe
an effective behaviour of the flow in a fractured medium. Our approach yields these
models beginning with a positive fracture width in the limit case where the width pas-
ses to zero. The presented model in this work provides a physically-consistent basis
for discrete fracture modeling approaches (e.g. [15, 54]).

We consider a two-dimensional model for unsaturated fluid flow in a fractured po-
rous medium. For the ease of presentation, the geometry is given by two rectangular
matrix blocks, separated by a single fracture. We assume that the pore space of the
porous medium is filled with a liquid (say water) and air. Provided that the domain
is interconnected and connected to the surface, the assumption that the flow in air is
infinitely mobile is justified, and the air pressure can be set to zero in the full two-phase
model. We model the flow in both the matrix blocks and the fracture with Richards’
equation, implying that the fracture consists of a porous medium as well (e.g. sediment-
filled fractures [28], layered porous media [40]). This yields Richards’ equation for the
liquid phase

∂t(φS (ψ)) − ∇ · (KaK(S (ψ))∇ψ) = f , (1)

as proposed by L. A. Richards in 1931 [49].
Here, ψ denotes the pressure head, φ is porosity of the medium, S is the water satura-
tion, Ka and K stand for the absolute and relative hydraulic conductivity, respectively,
and f is a source or sink term. The water saturation S is a given function of ψ, and
the relative hydraulic conductivity is parametrised as a function of saturation, hence
K = K(S (ψ)). The absolute hydraulic conductivity Ka depends on the soil properties.
For anisotropic media, it is given as a matrix and may in general be a function of time
and spatial co-ordinates. For the ease of notation, we assume Ka is a scalar constant in
each subdomain herein. Note however that the extension of our results to anisotropic
media is straightforward. For simplicity, the gravity is here neglected, but all the results
of this paper can be extended to include it.

Based on experiments, various relationships have been proposed for the S − ψ and
K − S dependencies (see e.g. [26]). Some of the popular ones include van Genuchten–
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Mualem and Brooks–Corey [22, 26]. The parametrisation of the hydraulic relationships
for the fracture may differ from the one for the matrix blocks, describing different
materials in the fracture and the matrix blocks. Richards’ equation is a degenerate
parabolic equation, and its solution typically lacks regularity. Since our approach is
formal, we make generous assumptions on the regularity of the solutions. This excludes
the degenerate cases and assumes smoothness for all the solutions. We refer to [36]
where mathematically rigorous convergence results are obtained for a certain range
of parameters. For readers interested in the results concerning the existence of weak
solutions including the degenerate cases, we refer to [4, 14], and for uniqueness results
we mention e.g. [43].

Without aiming to be exhaustive, but for the sake of completeness we mention work
being done for the numerical discretisation of Richards’ equation and for the fractured
media. Given the low regularity of the solution, and for stability reasons the implicit
Euler scheme is commonly used for the time discretisation [45]. On the other hand,
there are several techniques used for the spatial discretisation. We mention [18, 19, 30]
for finite volume approaches, [6, 48, 57] for mixed finite element methods, and [16, 42]
for continuous or discontinuous Galerkin methods. The implicit discretization leads to
a system of non-linear algebraic equations that is typically solved using Newton appro-
ach or a combination of linearisation and Newton approach [13, 29]. For comparisons
of different linearisation methods, we refer to [35]. Related to this context, since the
medium consists of different homogeneous blocks, domain decomposition methods are
quite appropriate. We refer to [10, 20] for a scheme using the mortar technique [7, 46]
and to [53] for a linear domain decomposition scheme building on the schemes in [33]
(see also [2, 8]). Some of the important works in the numerical methods for solving
multiphase flow in fractured media include [21, 27, 31, 47, 50]. Concerning multiphy-
sics extensions to fractured media that include mechanics we mention [56] for a phase
field model describing the propagation of fluid filled fractures and [23, 24] for static
fractures. For a recent review of current discretisation and modelling approaches used
for flow in fractured media, we refer to [9] and references within. For the dimensional
reduction of the fractures to interfaces, we refer to the works of [11, 20, 37, 38, 39].
For reactive flow upscaling in fractured medium we refer to [5, 17, 44].

This paper has two objectives: first, we derive effective models for the full range
of permeability and porosity scaling (κ ≥ −1, λ ∈ R). Secondly, we show through
numerical computations the validity of the effective models. The resulting model has a
fracture as a one-dimensional line separating the two matrix blocks commonly referred
to as mixed dimensional models. Letting ε stand for the ratio of width and the length
of the fracture, depending on the scaling of the hydraulic conductivity and the porosity
with respect to the ε, different effective models can arise. For example, if the fracture
acts as a fault zone with low permeability, it will block the flow from the matrix. The
fracture pressure then becomes irrelevant and a no-flow boundary condition for the
matrix equations would describe this. In contrast, the fracture can become more per-
meable than the adjacent blocks becoming a preferential flow path. Accordingly, the
equation for the fracture in the effective model can be an interface condition or a dif-
ferential equation. Deriving such discrete fracture-matrix models has attracted quite a
lot of attention recently. Relevant to our work is the formal derivation of fracture flow
models for single phase, and two-phase flow models given in [3, 37]. However, our
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approach is different and we make a comparison with existing approaches in Section
3.2. In contrast to a formal approach here, a rigorous mathematical approach has been
pursued in [36, 38, 39, 44, 55] which deal with single phase flow for a highly perme-
able fracture that corresponds to a particular choice of scalings κ, λ. In [36] rigorous
mathematical convergence results were obtained for the same model but for a restricted
range of parameters. Because of the formal approach, here we are able to obtain the
upscaled model in a wide regime (κ > −1, λ ∈ R). Accordingly, we obtain a catalo-
gue of upscaled models for each considered case, and their domain of validity for the
permeability and porosity values. An extra motivation to pursue this formal approach
is that it allows treating more complex models where one does not have the a priori
estimates to justify the rigorous upscaling. Finally, we remark that only a single planar
fracture in a two-dimensional case is considered. The extension to three dimensions
is straightforward. Extending to a non-planar fracture is more technical as we have to
use the differential geometry framework in order to define surface derivatives and will
involve curvature terms.

The outline and approach of this work are as follows: in Section 2, the coupled
model is formulated in a non-dimensional form, which will be used for the upscaling
where we make an ansatz for the unknown variables as an expansion. Scaling parame-
ters κ and λ are introduced, which account for the scaling of the porosities and hydrau-
lic conductivities with respect to the fracture width. In Section 3, we provide a variety
of effective equations depending on the parameters. Section 4 discusses the formal
asymptotic expansion for the unknown variable and we obtain the effective equations.
This asymptotic expansion is used to reduce the dimensionality of the fracture. Section
5 presents numerical simulations that show the validity of the upscaled models.

2. Model equations and scaling

We formulate the model directly in a dimensionless form. By relating the dimensi-
onal quantities to the reference quantities, the non-dimensional model is derived. For
more details on the non-dimensionalisation, we refer to our paper [36] and to [34].

2.1. Model equations in dimensionless form
We resort to a simple two-dimensional geometry consisting of two square solid

matrix blocks with edge length 1 separated by a fracture of width ε. The geometry is
illustrated in Figure 1.

We assume that the porous medium Ω contains a subset Ω f representing a single
fracture. This divides the flow domain into two disjoint connected matrix subdomains
Ωm1 ,Ωm2 . The subscripts m and f indicate the matrix blocks and the fracture, respecti-
vely. They are defined as

Ωm1 :=
(
−

1
2
−
ε

2
,−
ε

2

)
× (0, 1), Γ1 :=

{
−
ε

2

}
× (0, 1),

Ωm2 :=
(
ε

2
,

1
2

+
ε

2

)
× (0, 1), Γ2 :=

{
ε

2

}
× (0, 1),

Ω f :=
(
−
ε

2
,
ε

2

)
× (0, 1).

(2)
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Figure 1: Dimensionless geometry of the fracture and the surrounding matrix blocks

Here Ωm := Ωm1 ∪Ωm2 and Γ j, j = 1, 2 are the interfaces separating fracture dom-
ain Ω f and matrix block Ωm j . we set ΩT := Ω × (0,T ] for all spatial domains Ω and a
given final time T > 0. Furthermore, ~n is a normal vector pointing from Ωm j into Ω f .
Note that in this dimensionless setting ε is the ratio of width to length of the fracture.

Richards’ equation in the dimensionless form for the matrix blocks reads,

∂tS m(ψεm j
) − ∇ ·

(
Km(S m(ψεm j

))∇ψεm j

)
= f εm j

in ΩT
m j
. (3)

The corresponding equation for the fracture is given by

∂t(εκS f (ψεf )) − ∇ ·
(
ελK f (S f (ψεf ))∇ψ

ε
f

)
= 0 in ΩT

f . (4)

We have used ε superscript to emphasise the dependence of the solution on this
parameter. As already stated before, in the matrix ψεm j

denotes the pressure head, S m

is the water saturation, Km stands for the hydraulic conductivity, and fm j is a source
or sink term. The water saturation S m is a given function of ψεm j

, and the hydraulic
conductivity is parametrised as a function of saturation, hence Km = Km(S (ψεm j

)). For
simplicity, the gravity is here neglected, but all the results of this paper can be extended
to include it. The analogous description is for the fracture equation.

In the above equations (3) and (4), we note the porosity and hydraulic conductivity
scalings in the fracture with respect to that of the matrix. As suggested by the equations,
we have assumed the following scaling for the porosity φ and the hydraulic conductivity
in the fracture and the matrix blocks

φ f

φm
∝ εκ, and

K̄a, f

K̄a,m
∝ ελ, (5)

where κ, λ ∈ R are scaling parameters; K̄a, f and K̄a,m denote the characteristic perme-
abilities in the fracture and the solid matrix, respectively. For the ease of notation, we
take the constants of proportionality to be one for the analysis.
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The transmission conditions on the matrix/fracture interface consist of the con-
tinuity of fluxes and that of pressure. The transmission condition for the normal com-
ponent of the fluxes is

Km(S m(ψεm j
))∇ψεm j

· ~n = ελ K f (S f (ψεf ))∇ψ
ε
f · ~n on ΓT

j . (6)

The continuity of pressure is given by,

ψεm j
= ψεf on ΓT

j . (7)

We will write down the above equations and transmission condition for flux in
mixed form. Introducing vεm j

and vεf as the Darcy flux in matrix blocks and fracture
respectively, for each ε, the dimensionless model is given by

Problem Pε



∂tS m(ψεm j
) + ∇ · vεm j

= fm j in ΩT
m j
,

vεm j
= −Km(S m(ψεm j

))∇ψεm j
in ΩT

m j
,

∂t(εκS f (ψεf )) + ∇ · vεf = f εf in ΩT
f ,

vεf = −ελK f (S f (ψεf ))∇ψ
ε
f in ΩT

f ,

vεm j
· ~n = vεf · ~n on ΓT

j ,

ψεm j
= ψεf on ΓT

j ,

ψερ(0) = ψρ,I in Ωρ.

In words, the model consists of Richards’ equation in the fracture and the matrix
blocks, supplemented with the continuity of flux and pressure as transmission conditi-
ons, and initial conditions. Problem Pε must be complemented with boundary conditi-
ons on the outer boundary. For simplicity, we choose homogeneous Dirichlet boundary
conditions.

Remark 1 (Non-dimensionalisation). The above dimensionless model has been obtai-
ned starting from a dimensional model and choosing reference quantities. Starting
with a simple two-dimensional geometry consisting of two square solid matrix blocks
with edge length L separated by a fracture of width l, we define ε := l

L , that is, the
ratio of the fracture width to its length. We take L as the reference length scale. Since
the pressure is continuous at the interfaces, we define a single reference pressure head
for the entire domain, ψ̄ = L. For the matrix blocks and the fracture, we use different
reference hydraulic conductivities K̄a,m and K̄a, f , respectively. As the reference time
scale, we set

T̄ :=
φmL2

K̄a,mψ̄
=
φmL
K̄a,m

. (8)

Treating the ˆ superscripts as denoting the dimensional quantities, the dimensionless
pressure heads are then given as ψm j = ψ̂m j/L and ψ f = ψ̂ f /L, the dimensionless
time as t = t̂/T̄ , and the final time as T = T̂/T̄ . As regards the source terms, we set
fm j = f̂m j T̄/φm. For more details, we refer to [36]

Remark 2 (Scaling parameters). The scaling parameters κ, λ ∈ R are crucial in de-
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termining effective models in the limit ε → 0. The value of κ determines the storage
capacity of the fracture: for κ < 0, the reference porosity of the fracture increases
for decreasing ε as compared to the reference porosity of the matrix blocks, and for
κ ≤ −1, the fracture maintains its ability to store water as ε approaches zero, as will
be shown later. For κ = 0, no scaling occurs, and for κ > 0, the storage ability of the
fracture decreases for ε → 0 due to the decline of both the fracture volume (assuming
fixed L) and the fracture porosity.

The parameter λ gives the scaling of the conductivities. λ < 0 corresponds to the
case of a highly conductive fracture when compared to the matrix. This means that
the flow through the fracture is more rapid. Whenever λ > 0 the fractures are less
permeable than the blocks. The case λ = 0 means comparable conductivities. The
case λ ≥ 1 corresponds to impermeable fractures, leading in the limit ε→ 0 to models
where the pressures at the matrix block at each side of the fractures are discontinuous.

3. Main result: Catalogue of effective models

Our main result is the derivation of effective models replacing the fracture by an
interface. We provide the effective models for the range (κ, λ) ∈ [−1,∞) × (−∞,∞).

3.1. Effective models

We subdivide the effective models into two major classes of models where the pres-
sure head across the reduced dimensional fracture remains continuous as opposed to
the effective models where the pressure head becomes discontinuous across the frac-
ture. Among the first class, there are models in which the pressure becomes spatially
constant.

3.1.1. Models with continuous pressure
Effective model I consists of the Richards equation in the matrix block subdomains

and the one-dimensional Richards equation in the fracture. It occurs for κ = λ = −1.

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

∂tS f (ψ f ) − ∂y

(
K f (S f (ψ f ))∂yψ f

)
=

[
~qm

]
Γ , on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

ψ f (0) = ψ f ,I , on Γ,

Effective model I

where [
~qm

]
Γ :=

(
Km(S m(ψm1 ))∇ψm1 · ~nm1 + Km(S m(ψm2 ))∇ψm2 · ~nm2

) ∣∣∣
Γ

(9)

is the flux difference between the two solid matrix subdomains acting as a source term
for Richards’ equation in the fracture (note that ~nm1 = −~nm2 ). In this case the fracture
has sufficient permeability to make the pressure therein x-independent. This also im-
plies the continuity of the traces from the matrix side to the fracture pressure. Recall
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that in the ε-scale model, there is continuity of flux. The jump in the flux on the right
hand side in the fracture equation comes from the collapsing of the fracture subdomain
to a one-dimensional object reflecting actually two interfaces.

Further, if the porosity ratio increases less than linearly with the reciprocal fracture
width and the permeability ratio is taken to be reciprocally proportional to the fracture
width, i.e. κ > −1 and λ = −1, one ends up with an effective model consisting of the
Richards equation in the matrix blocks and a stationary elliptic equation in the fracture:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

−∂y

(
K f (S f (ψ f ))∂yψ f

)
=

[
~qm

]
Γ , on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j .

Effective model II

Note that, as before, there is again sufficient permeability in the fracture to ensure
continuity of traces and the fracture pressure. Again, there is a jump of the flux on the
right hand side of the fracture equation. The difference here from Effective model I is
that the storage term vanishes in the limit because of κ being larger than −1.

On the other hand, only the flux term in the fracture vanishes in the limit for κ = −1
and λ ∈ (−1, 1) reducing the model to an ordinary differential equation. This limit case
corresponds to a fracture capable of storing and releasing water from the solid matrix,
but which does not conduct fluid along the fracture. At the same time, continuity of
traces of matrix pressure is retained, both equal to pressure in the fracture.

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

∂tS f (ψ f ) =
[
~qm

]
Γ , on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

ψ f (0) = ψ f ,I , on Γ.

Effective model III

Next, we consider the case when κ > −1 and λ ∈ (−1, 1). As expected, both
the storage term and the flow along the fracture have vanished. In this case, both the
pressure and the flux are continuous on Γ. This behaves as if the fracture as a physical
entity has disappeared.
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∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,[

~qm
]
Γ = 0, on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j .

Effective model IV

As we see from the preceding discussions, κ = −1 and λ = 1 are the critical cases. As
long as λ < 1, there is continuity of the pressures at Γ (in the matrix) and the pressure
in the fracture. Similarly, κ > −1 leads to the storage term dropping in the limit.

3.1.2. Models with discontinuous pressure
If the permeability ratio is proportional to the fracture width, i.e. λ = 1, the pressure

in the effective models becomes discontinuous across the interface. For κ = −1, the
pressure jump is determined by a parabolic differential equation on the spatial domain
(− 1

2 ,
1
2 ), which does no longer represent a physical domain:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

ψm2 − ψm1 =
[
ψ f

]
, on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

ψ f (0) = ψ f ,I , for z ∈
(
−

1
2
,

1
2

)
, y ∈ Γ,

Effective model V

where ψ f solves for each y a parabolic differential equation in a one-dimensional dom-
ain:

∂tS f (ψ f ) − ∂z

(
K f (S f (ψ f ))∂zψ f

)
= 0, for z ∈

(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT ,

ψ f (t,−
1
2
, y) = ψm1 (t, 0, y), for (t, y) ∈ ΓT ,(

K f (S f (ψ f ))∇ψ f

)
(t,−

1
2
, y) · ~n =

(
Km(S m(ψm1 ))∇ψm1

)
(t, 0, y) · ~n, for (t, y) ∈ ΓT ,

ψ f (t,
1
2
, y) = ψm2 (t, 0, y), for (t, y) ∈ ΓT ,(

K f (S f (ψ f ))∇ψ f

)
(t,

1
2
, y) · ~n =

(
Km(S m(ψm2 ))∇ψm2

)
(t, 0, y) · ~n, for (t, y) ∈ ΓT .

Here [
ψ f

]
:= ψ f |z= 1

2
− ψ f |z=− 1

2
. (10)
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Similarly, in the effective model for κ > −1, the solution to a one-dimensional elliptic
problem determines the pressure jump across the interface:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

ψm2 − ψm1 =
[
ψ f

]
, on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

Effective model VI

where ψ f solves

−∂z

(
K f (S f (ψ f ))∂zψ f

)
= 0, for z ∈

(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT ,

ψ f (t,−
1
2
, y) = ψm1 (t, 0, y), for (t, y) ∈ ΓT ,(

K f (S f (ψ f ))∇ψ f

)
(t,−

1
2
, y) · ~n =

(
Km(S m(ψm1 ))∇ψm1

)
(t, 0, y) · ~n, for (t, y) ∈ ΓT ,

ψ f (t,
1
2
, y) = ψm2 (t, 0, y), for (t, y) ∈ ΓT ,(

K f (S f (ψ f ))∇ψ f

)
(t,

1
2
, y) · ~n =

(
Km(S m(ψm2 ))∇ψm2

)
(t, 0, y) · ~n, for (t, y) ∈ ΓT .

If λ > 1, the permeability ratio decreases even faster as ε vanishes. Then we obtain
effective models in which the pressure is discontinuous across the interface, and the
subsolutions in the two solid matrix blocks and the fracture are entirely decoupled
from each other, separated by a no-flow condition:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

∂tS f (ψ f )(t, z, y) = 0, for z ∈
(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT ,

Km(S m(ψm j ))∇ψm j · ~nm j = 0, on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

ψ f (0) = ψ f ,I , for z ∈
(
−

1
2
,

1
2

)
, y ∈ Γ.

Effective model VII

In the above model, which corresponds to κ = −1, the physical quantities are assigned
to the fracture, whereas the fracture is merely a geometrical entity that blocks the flow
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in the effective model for κ > −1:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

Km(S m(ψm j ))∇ψm j · ~nm j = 0, on ΓT ,

ψm j (0) = ψm j,I , on Ωm j .

Effective model VII∗

3.1.3. Models with spatially constant pressure in the fracture
A subclass of models with continuous pressure at the interface is obtained when the

permeability in the fracture becomes so large that any pressure fluctuation is instanta-
neously equalised, that is, the pressure within the fracture becomes constant in the limit
of vanishing fracture width. Note that this cannot occur if the fracture boundary con-
ditions are incompatible with a spatially constant pressure as in the case of Dirichlet
boundary conditions that fix different pressures at the fracture endpoints.
In the case κ = −1 and λ < −1, one gets:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

ψ f (t, y) = ψ f (t), on ΓT ,

∂tS f (ψ f )(t) =

∫ 1

0

[
~qm

]
Γ dy, on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j ,

ψ f (0) = ψ f ,I , on Γ.

Effective model VIII

Since the pressure is spatially constant and continuous in the fracture, the pressure in
the solid matrices at the interface must be spatially constant as well. The ordinary
differential equation for the saturation in the fracture expresses the storage of inflowing
water in the fracture.
For κ > −1 and λ < −1, the storage term in the fracture vanishes and the pressure in
the fracture takes a constant value at each point in time. This value is determined in
such a way that the total flux across the fracture is conserved:

∂tS m(ψm j ) − ∇ ·
(
Km(S m(ψm j ))∇ψm j

)
= fm j , in ΩT

m j
,

ψ f (t, y) = ψ f (t), on ΓT ,∫ 1

0

[
~qm

]
Γ dy = 0, on ΓT ,

ψm j = ψ f , on ΓT ,

ψm j (0) = ψm j,I , on Ωm j .

Effective model IX
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Remark 3. We comment on Effective models V and VI above. Note that the solution in
the fracture depends on z. Also, z = − 1

2 corresponds to the porous matrix domain Ωm1

having the interface at x = 0. Similarly, Ωm2 has the interface at x = 0 with the fracture
domain boundary at z = 1

2 . This is a “two-scale” type of model where the permeability
has the scaling such that the collapsing of the fracture interface is not justified. Similar
models, in the context of reactive flow, are derived in [41]. This is in contrast to the
Effective models I–IV where the solution in the fracture domain is independent of z and
the fracture collapses as an interface. Also the two interfaces from the porous matrix
sides coincide.

3.2. Comparison with existing models

We make a brief comparison with the fracture models that are widely used in
practice (see e.g., [9, 25, 51]). We refer to [37] where similar models are derived
for single phase flow, but the interface conditions are relevant to us (see for example
[3] for the extension to two-phase flow models). The comparison is in two respects:
in terms of derivation of the effective model, and secondly in terms of the final results
obtained.

The derivation in [37] takes place in three steps. First, the Darcy flow equation
along the fracture surface is obtained immediately by considering the flux component
in the tangential direction of the fracture. Second, one integrates the flow equation
along the transverse direction in the fracture subdomain. Using the continuity of fluxes
at the matrix/fracture interfaces, this yields a surface equation with the jump in the
matrix flux term as a source term. Note that the second step yields a fracture equation
in the integral form on the left hand side. The third step is a closure relationship by
postulating a pressure profile in the fracture. This is in contrast with our approach. We
assume a scaling of hydraulic properties on ε and use a formal asymptotic ansatz. But
once the choice of scaling is made, the rest of the steps follow without any additional
assumptions. In particular, our approach does not postulate any closure condition on the
pressure inside the fracture as this is part of the solution. Having an assumed scaling
of fracture permeability on the width allows deducing the pressure profile inside the
fracture. Also we mention that in [37], the closure condition introduces a parameter
in the effective model for the fracture. Here, we have a catalogue of models and no
additional parameter is necessary. Moreover, for several of the regimes considered
here, the derivation is sustained by mathematically rigorous proofs (see [36]).

The interface conditions as derived in [37] (Eqns. (3.18), (3.19) on pp. 1672) read
mutatis mutandis,

−ξvm1 · n1|Γ1 + α fψm1 |Γ1 = −(1 − ξ)vm2 · n2|Γ2 + α fψ f ,

−ξvm2 · n2|Γ1 + α fψm2 |Γ2 = −(1 − ξ)vm1 · n1|Γ1 + α fψ f ,

where we once again emphasise that the above results are derived for a single phase
steady state flow model. Here, α f := K̄a, f /ε = ελ−1K̄a,m and ξ is a parameter introduced
during closure conditions. In terms of ε and rearranging terms we have (modulo a
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constant factor),

ελ−1
(
ψm1 |Γ1 − ψ f

)
= −(1 − ξ)vm2 · n2|Γ2 + ξvm1 · n1|Γ1 ,

ελ−1
(
ψm2 |Γ2 − ψ f

)
= −(1 − ξ)vm1 · n1|Γ1 + ξvm2 · n2|Γ2 .

Now, for λ > 1, and for the choice of ξ = 1, we immediately see that we get a no-flow
boundary condition (compare with the Effective models VII and VII∗ here). On the
other hand, for any value of ξ, for λ < 1, as ε goes to zero, we get ψ1 = ψ f on Γ1 and
ψ2 = ψ f on Γ2 and Γ1, Γ2 collapse on the same surface (compare with Effective models
I–IV). When λ = 1, by postulating a profile inside the fracture (e.g., linear) the above
interface conditions provide an effective equation. Here, this postulate is replaced by a
differential equation inside the fracture to resolve the pressure profile therein.

4. Formal upscaling and derivation of effective models

We perform a formal upscaling for the above system of equations to derive the
effective equations. For the quantities in the subdomain Ωρ, (ρ ∈ {m1,m2, f }), one
makes the following ansatz:

ψεm1
= ψ0

m1
+ εψ1

m1
+ O(ε2),

ψεm2
= ψ0

m2
+ εψ1

m2
+ O(ε2),

ψεf = ψ0
f + εψ1

f + O(ε2),
vεm1

= v0
m1

+ εv1
m1

+ O(ε2),
vεm2

= v0
m2

+ εv1
m2

+ O(ε2).

4.1. The models in matrix blocks Ωm j

We treat the case for j = 1; j = 2 is identical. Inserting the expansion for ψεm1
in

the model equation, we obtain up to an approximation of O(ε2)

∂t(S m(ψ0
m1

+ εψ1
m1

) + ∇ · (v0
m1

+ εv1
m1

) = fm1 in ΩT
m1
,

v0
m1

+ εv1
m1

= −Km(S m(ψ0
m1

+ εψ1
m1

))(∇ψ0
m1

+ εψ1
m1

) in ΩT
m1
.

Equating the respective orders of ε, we obtain up to the leading order (that is up to
O(ε)),

∂t(S m(ψ0
m1

)) + ∇ · v0
m1

= fm1 in ΩT
m1
,

v0
m1

= −Km(S m(ψ0
m1

))∇ψ0
m1

in ΩT
m1
.

For j = 2, the equation is identical:

∂t(S m(ψ0
m2

) + ∇ · v0
m2

= fm2 in ΩT
m2
,

v0
m2

= −Km(S m(ψ0
m2

))∇ψ0
m2

in ΩT
m2
.

Note that this is expected that in the subdomain we retain the same equation.
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4.2. The model in the fracture subdomain Ω f

To treat the fracture equation, first we map the domain Ω f to an ε independent
domain. The coordinate transformation (x, y) 7→ (z = x/ε, y) transforms the domain Ω f

to a fixed domain Ω̃ f := (− 1
2 ,

1
2 )× (0, 1). In terms of (z, y) coordinates, the transformed

equation reads

∂t(εκS f (ψεf )) + (
1
ε
∂zψ

ε
f , ∂yψ

ε
f )

T · vεf = 0 in Ω̃T
f ,

vεf = −ελK f (S f (ψεf ))(
1
ε
∂zψ

ε
f , ∂yψ

ε
f )

T in Ω̃T
f .

We put the two equations together, eliminating vεf , we have,

∂t(εκS f (ψεf )) − ε
λ

(
∂y(K f (S f (ψεf ))∂yψ

ε
f ) +

1
ε2 ∂z(K f (S f (ψεf ))∂zψ

ε
f )
)

= 0 in Ω̃T
f .

Inserting the expansion for ψεf and restricting to the leading order term, we obtain,
up to the accuracy of O(ε)

∂t(εκS f (ψ0
f )) − ε

λ

(
∂y(K f (S f (ψ0

f ))∂yψ
0
f ) +

1
ε2 ∂z(K f (S f (ψ0

f ))∂zψ
0
f )
)

= 0 in Ω̃T
f .

(11)

4.3. The transmission conditions at Γ j

Writing the transmission conditions in the (x, z) co-ordinates, and expanding in
powers of ε, up to O(ε2)

ψ0
m j

+ εψ1
m j

= ψ0
f + εψ1

f at ΓT
j .

Equating the respective powers of ε, and noting the co-ordinate transformation for the
fracture subdomain,

ψ0
m1

(x = 0) = ψ0
f (z = −

1
2

), ψ0
m2

(x = 0) = ψ0
f (z =

1
2

),

ψ1
m1

(x = 0) = ψ1
f (z = −

1
2

), ψ1
m2

(x = 0) = ψ1
f (z =

1
2

).
(12)

Next, we treat the flux term. Inserting the expansion and retaining only the leading
order term, we obtain

−Km(S m(ψ0
m1

))∂xψ
0
m1

(x = 0) = −ελ−1K f (S f (ψ0))∂zψ
0
f (z = −

1
2

)

−Km(S m(ψ0
m2

))∂xψ
0
m2

(x = 0) = −ελ−1K f (S f (ψ0))∂zψ
0
f (z =

1
2

).
(13)

We conclude, for λ > 1

−Km(S m(ψ0
m j

))∂xψ
0
m j

= 0 on ΓT . (14)
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For λ = 1, we have

−Km(S m(ψ0
m1

))∂xψ
0
m1

(x = 0) = −K f (S f (ψ0))∂zψ
0
f (z = −

1
2

),

−Km(S m(ψ0
m2

))∂xψ
0
m2

(x = 0) = −K f (S f (ψ0))∂zψ
0
f (z =

1
2

).

4.4. Derivation of the models

For κ = −1, λ = −1, taking the lower order of ε in (11) gives

∂z(K f (S f (ψ0
f ))∂zψ

0
f ) = 0 in Ω̂T

f ,

which implies,
K f (S f (ψ0

f ))∂zψ
0
f = C.

Now use the interface condition (13) to conclude that, up to order O(ε), K f (S f (ψ0
f ))∂zψ

0
f =

0. Here we have assumed that −Km(S m(ψ0
m j

))∂xψ
0
m j

is an O(1) quantity. Now using the
non-degeneracy of K f , we conclude ∂zψ

0
f = 0, making ψ0

f independent of z. We further
integrate (11) over z = − 1

2 to 1
2 to get,

∫ 1/2

−1/2

(
∂t(S f (ψ0

f )) − ∂y(K f (S f (ψ0
f ))∂yψ

0
f )
)

dz = ε−2
(
(K f (S f (ψ0

f ))∂zψ
0
f )z= 1

2
− (K f (S f (ψ0

f ))∂zψ
0
f )z=− 1

2

)
=

[
~qm

]
Γ ,

where [
~qm

]
Γ :=

(
Km(S m(ψ0

m1
))∇ψ0

m1
· ~nm1 + Km(S m(ψ0

m2
))∇ψ0

m2
· ~nm2

) ∣∣∣
Γ

=
(
Km(S m(ψ0

m2
))∂xψ

0
m2
− Km(S m(ψ0

m1
))∂xψ

0
m1

) ∣∣∣
Γ
,

and we have used the continuity of flux interface condition (13). Finally, using the
z-independence of ψ0

f , we get the equation in the reduced dimension fracture,

∂tS f (ψ0
f ) − ∂y

(
K f (S f (ψ0

f ))∂yψ
0
f

)
=

[
~qm

]
Γ , on ΓT . (15)

Together with (12), and with the boundary conditions and initial conditions inherited
from the original ε model, we get the model termed as Effective model I.

Next, we consider the case when κ ∈ (−1,∞), λ = −1. The only thing that changes
in the above derivation is the storage term. Instead of repeating all the steps, we just
write down the main steps. As before, we obtain∫ 1/2

−1/2

(
εκ+1∂t(S f (ψ0

f )) − ∂y(K f (S f (ψ0
f ))∂yψ

0
f )
)

dz =
[
~qm

]
Γ .

We have used again the continuity of flux at the matrix/fracture interface (13). Finally,
using the z-independence of ψ0

f , and noting that the first term on the left side drops as
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ε vanishes, we get the equation on the fracture surface,

−∂y

(
K f (S f (ψ0

f ))∂yψ
0
f

)
=

[
~qm

]
Γ on ΓT . (16)

Together with (12) and the boundary conditions and initial conditions inherited from
the original ε model, we get the model termed as Effective model II.

For κ = −1, λ ∈ (−1, 1), as before using (13) we obtain K f (S f (ψ0
f ))∂zψ

0
f = 0.

Integrating (11) over (− 1
2 ,

1
2 ) gives∫ 1/2

−1/2

(
∂t(S f (ψ0

f )) − ε
λ+1∂y(K f (S f (ψ0

f ))∂yψ
0
f )
)

dz =
[
~qm

]
Γ ,

and as above we have used the continuity of flux at the matrix/fracture interface (13).
Finally, using the z-independence of ψ0

f , and noting that the second term on the left side
drops as ε vanishes, we get the equation on the fracture surface,

∂tS f (ψ0
f ) =

[
~qm

]
Γ on ΓT . (17)

Together with (12), the boundary conditions and initial conditions inherited from the
original ε model give Effective model III.

The Effective model IV corresponds to κ ∈ (−1,∞), λ ∈ (−1, 1). The arguments are
already covered. For λ ∈ (−1, 1), we use (13) to obtain K f (S f (ψ0

f ))∂zψ
0
f ) = 0, implying

the z-independence of ψ0
f . Again, integrating (11) over (− 1

2 ,
1
2 ) gives∫ 1/2

−1/2

(
εκ+1∂t(S f (ψ0

f )) − ε
λ+1∂y(K f (S f (ψ0

f ))∂yψ
0
f )
)

dz =
[
~qm

]
Γ .

As above we have used the continuity of flux at the matrix/fracture interface (13).
Finally, using the z-independence of ψ0

f , and noting that both the first term and the
second term on the left side drop as ε vanishes, we get the equation in the upscaled
fracture [

~qm
]
Γ = 0.

The other equations are as expected yielding Effective model IV.

Next we treat the case κ = −1, λ = 1. For λ = 1, we have the interface condition,

−Km(S m(ψ0
m1

))∂yψ
0
m1

(x = 0) = −K f (S f (ψ0))∂zψ
0
f (z = −

1
2

),

−Km(S m(ψ0
m2

))∂yψ
0
m2

(x = 0) = −K f (S f (ψ0))∂zψ
0
f (z =

1
2

),
(18)
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giving the flux and the continuity of the pressure

ψ0
m1

(y = 0) = ψ0
f (z = −

1
2

), ψ0
m2

(y = 0) = ψ0
f (z =

1
2

). (19)

In this case, we do not have the flux inside the fracture vanishing as ε goes to zero. This
means that ψ0

f may not be independent of z. Thus, the usual process of integrating as
done in the previous models does not help. On the other hand, the simple co-ordinate
transformation that we have already done for the fracture subdomain already helps in
getting the effective model. The equation in the fracture subdomain reads,

ε−1∂t(S f (ψ0
f )) − ε∂y(K f (S f (ψ0

f ))∂yψ
0
f ) − ε

−1∂z

(
(K f (S f (ψ0

f ))∂zψ
0
f )
)

= 0.

This in the limit provides the fracture equation,

∂t(S f (ψ0
f )) − ∂z

(
(K f (S f (ψ0

f ))∂zψ
0
f )
)

= 0 for z ∈
(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT .

The interface conditions (18) and (19) and the subdomain equation complete the model
derivation.

Next we treat the case κ = (−1,∞), λ = 1. This is the same as the previous model
except for the scaling of κ in the storage term. The interface conditions (18) and (19)
remain the same as in Model V. Again ψ0

f may be dependent on z. Accordingly, the
equation in the fracture subdomain reads

εκ+1∂t(S f (ψ0
f )) − ε

2∂y(K f (S f (ψ0
f ))∂yψ

0
f ) − ∂z

(
(K f (S f (ψ0

f ))∂zψ
0
f )
)

= 0

and in the limit it provides the fracture equation with the first and second term dropping
out,

−∂z

(
(K f (S f (ψ0

f ))∂zψ
0
f )
)

= 0 for z ∈
(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT .

Together with the interface conditions (18) and (19) and retaining the subdomain equa-
tion, this complete the derivation of Effective model VI. The dependency of ψ0

f on t
and y happens via the interface conditions. Recall Remark 3 where we commented
that in the above models (namely V and VI), the fracture model does not collapse in
a reduced dimensional fracture models and one needs to solve a differential equation
inside the fracture subdomain (and not on the surface as done in the Effective models I
– IV). This is a “two-scale” type effect, similar to a cell problem in homogenisation.

In the next two models, the permeability in the fracture is sufficiently low so that
the fracture acts as a barrier. We will jointly treat the cases when κ = −1, λ ∈ (1,∞)
and κ ∈ (−1,∞), λ ∈ (1,∞). The difference between the two cases is the scaling
of the storage term and as we have seen before, the storage term will not survive in
the latter case. Both of these cases are straightforward. The subdomain equations
remains unchanged as before. We then recall the interface condition (14) to deduce the
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boundary condition for the matrix subdomain,

Km(S m(ψ0
m j

))∇ψ0
m j
· ~nm j = 0, on ΓT .

This is the no-flow boundary condition for the matrix subdomain equation at the frac-
ture/subdomain interface and can be solved independently. Thus, the fracture equation
becomes irrelevant. However, for κ = −1, we can still evaluate the fracture equation by
solving the differential equation,

∂tS f (ψ0
f )(t, z, y) = 0, for z ∈

(
−

1
2
,

1
2

)
, (t, y) ∈ ΓT ,

as the flux terms in the fracture drop out. In the case when κ ∈ (−1,∞), λ ∈ (1,∞), even
the storage term drops out making the fracture irrelevant. Together with retaining the
initial condition and the boundary conditions, we recover Effective model VII and VII∗.

Finally we comment on the effective equations VIII and IX. These correspond to
κ = −1, λ ∈ (−∞,−1) and κ ∈ (−1,∞), λ ∈ (−∞,−1), respectively. Note that in both
cases, the fracture permeability is large enough to yield independence of pressure with
respect to the z co-ordinate. In addition, the fracture pressure also becomes independent
of the y co-ordinate. In case κ = −1, the storage term survives and the fracture pressure
only depends on t. This provides Effective model VIII. Effective model IX results
when the storage term also drops out. We spare the details as they are analogous to the
arguments already discussed before.

4.5. Summary of the effective models

For the readers’ convenience, we summarise the effective model according to the
range of parameters κ and λ.

κ = −1, λ = −1 : Effective model I,
κ ∈ (−1,∞), λ = −1 : Effective model II,
κ = −1, λ ∈ (−1, 1) : Effective model III,
κ ∈ (−1,∞), λ ∈ (−1, 1) : Effective model IV,
κ = −1, λ = 1 : Effective model V,
κ ∈ (−1,∞), λ = 1 : Effective model VI,
κ = −1, λ ∈ (1,∞) : Effective model VII,
κ ∈ (−1,∞), λ ∈ (1,∞) : Effective model VII∗,
κ = −1, λ ∈ (−∞,−1) : Effective model VIII,
κ ∈ (−1,∞), λ ∈ (−∞,−1) : Effective model IX.

(20)

5. Numerical examples

The aim of this section is to validate the results of the theoretical upscaling nume-
rically. For all simulations, we use a simple finite volume scheme on a static, uniform

18



grid with rectangular cells, implemented in MATLAB. Fluxes are computed with a
two-point flux approximation scheme. An implicit Euler method with fixed time step
is used for the time discretisation and we employ a modified Picard scheme for the line-
arisation procedure. For simplicity, the problem is solved monolithically in the entire
coupled domain instead of harnessing a domain decomposition scheme.

In our numerical example, we consider a realistic, dimensional setting in order to
investigate how well the effective models approximate the full model for different soil
properties. The example is inspired by [52] and deals with the filling of a reservoir
that is crossed by a horizontal fracture. Since we assume the geometry to be symme-
tric, it is sufficient to simulate one half of the geometry (see Figure 2). The filling of
the reservoir is modelled by a time-dependent Dirichlet condition at the upper domain
boundary and we impose no-flow conditions everywhere at the outer boundary except
in the lower right corner, where the pressure head is kept fixed. This means that in order
for the injected water to leave the domain, it must travel through the fracture, which
can either hinder or facilitate the flow, depending on the fracture’s hydraulic properties.

To be specific, we define the geometry as Ωm1 = (0, 2) × (0, l), Ωm2 = (0, 2) ×
(1.1, 2.2), Ω f = (0, 2) × (1.1 − l, 1.1), where the parameter l determines the fracture
width. Initially, the entire domain is in a hydrostatic equilibrium state given by

ψI(x, z) = −0.5 − z. (21)

We subdivide the domain boundary into ∂Ω = ΓD1∪ΓD2∪ΓN , where ΓD1 = {2}×(0, 0.5),
ΓD2 = (0, 1)× {2.2}, and ΓN = ∂Ω \

(
ΓD1 ∪ ΓD2

)
is the remaining boundary, and impose

the boundary conditions

ψ(t, x, z) =


−0.5 − z, on ΓD1 ,

−1.6 + 0.6 t, for t < 3 on ΓD2 ,

0.2, for t ≥ 3 on ΓD2 ,

(22)

and
∇ψ(t, x, z) · ~n = 0, on ΓN , (23)

where ~n denotes the normal vector on the outer domain boundary.
In this example, we denote the horizontal co-ordinate with x and the vertical co-

ordinate with z such that gravity points in negative z-direction as usual. Note that this
contrasts with the use of x and z in the theoretical part. The spatial grid consists of
square cells with ∆x = ∆y = 1 cm in the solid matrix blocks as well as for fractures of
10 − 20 cm width; for fractures of 1 cm width, we choose ∆x = 1 cm and ∆z = 0.1 cm
in order to resolve the fracture appropriately. The fracture equation in the effective
models is discretised on a one-dimensional grid with ∆x = 1 cm.

Although not presented in the theoretical part of this work, gravity is included in
these simulations in order to make the problem setup more interesting – the extension
of the theoretical upscaling to include gravity is immediate.
The soil parameters that we consider are taken from [22] and [32] and listed in Table
1.
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Figure 2: Scheme of the geometry with boundary and initial conditions for the realistic example

Since the simulation uses dimensional quantities, the flux and storage term are not
scaled with powers of ε. Let us emphasise that the hydraulic quantities do not change
depending on different fracture widths that we consider. Although smaller fracture
widths lead to a slightly larger lower solid matrix block since we keep the size of the
coupled simulation domain fixed, we expect this effect to be small compared to the
impact of the smaller fracture width itself on the fluid flow.

Name Guelph loam Hygiene sandstone Silt loam Touchet silt loam UNSODA 4030

α [m−1] 1.15 0.79 0.423 0.50 4.32
θS [−] 0.520 0.250 0.396 0.469 0.415
θR [−] 0.218 0.153 0.131 0.190 0.0
nVG [−] 2.76 10.4 2.06 7.09 1.41
KS [m d−1] 0.316 1.08 0.0496 3.03 0.0116

Table 1: Van Genuchten parameters of the soils for the realistic example

5.1. Soils with similar properties
First, let us investigate the case of two soils with similar permeability and porosity

(note that the van Genuchten parameter θS corresponds to porosity if we assume that
the entire pore space is accessible to the water), i.e. the regime κ, λ ≈ 0.

We choose the simulation end time to be T = 4 d and the time step is taken to be
∆t = 0.05 d. We consider two fracture widths, l = 10 cm and l = 1 cm, and compare
the solution of the full models to the solution of the corresponding effective model.
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The solid matrices are taken to be composed of drying Guelph loam, while the
fracture is made up of Hygiene sandstone. Thus, the ratio between the permeabilities
and porosities is well within one order of magnitude and we expect the solution to
converge towards Effective model IV, where the flow is continuous across the fracture
and the storage and the flux terms in the fracture have vanished.

In detail, this can be seen by plugging in the soil properties into equation (5) and
using ε = l/L, which gives κ ≈ 0.24, 0.14 and λ ≈ −0.41,−0.23 for l = 10 cm, 1 cm,
respectively. This means that κ > −1 and λ ∈ (−1, 1) for both fracture widths under
consideration, corresponding to the parameter range of Effective model IV. Since we
do explicitly not scale the soil parameters with the fracture width in the spirit of a con-
vergence study but rather investigate how well the limit models approximate realistic
scenarios, the absolute value of the scaling parameters becomes smaller for smaller
fracture widths due to the fixed left hand side in equation (5).

Figure 3 shows the solution in intervals of a day (from top to bottom) for the case
of a 10 cm thick fracture. As the simulation starts in hydrostatic equilibrium, the hy-
draulic head is initially constant; then, it increases over time beginning from the upper
left corner where the reservoir is being filled. Note that whereas the pressure head is
continuous at the fracture because of the pressure interface condition, the saturation is
discontinuous since the parametrisations of the saturation in the fracture and the solid
matrix differ from each other. It is clearly visible that the flow in the fracture is slightly
faster than in the surrounding matrix blocks due to the slightly higher permeability: af-
ter three days, the water in the fracture has already reached the right domain boundary
(see the hydraulic head in Figure 3) as opposed to the matrix blocks where the right
domain boundary is still dry. After four days, almost the entire domain is saturated
except for the area around ΓD1 where the pressure is kept fixed, and the upper right
corner that the flow has not reached yet.

The z-averaged pressure head at final time is plotted in Figure 4. As expected,
Effective model IV gives an excellent approximation of the full model in case of a
thin fracture and it is apparent that the fracture solution of the full model converges
towards the effective model as the fracture width goes to zero. For larger fracture
widths, the slightly higher permeability of the fracture as compared to the solid matrix
blocks means that the fracture is the preferred flow path and water is discharged along
the fracture, leading to a higher pressure on the right hand side as compared to the
effective model. As the fracture width becomes smaller, the fracture gradually loses its
ability to store water and to transport water along the fracture owing to its decreasing
volume, culminating in Effective model IV where the fracture as a physical object has
disappeared.

We also show the result for Effective model III, where the storage term remains and
the flux term has vanished. This effective model gives a lower pressure than the full
models, which is a consequence of the fracture’s ability to store water.

Note that simply approximating a thin fracture by the one-dimensional Richards
equation (Effective model I) leads to a massive overestimation of the fracture’s abi-
lity to store water and to conduct flow. This can also be seen in Figure 5, where the
cumulative outflow across the lower right Dirichlet boundary over time is depicted in
a logarithmic scale. Notice that the unit m2/d reflects the fact that our geometry is
two-dimensional. During the first two days, the inflow has not yet reached the lower
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Figure 3: From left to right: pressure head ψ, hydraulic head h = ψ + z, and saturation S after 1, 2, 3, and 4
days (from top to bottom), where the fracture width is l = 10 cm, fracture: Hygiene sandstone, solid matrix:
Guelph loam

right boundary. Then, the outflow increases by several orders of magnitude over the
next day and is sustained as the solution is approaching a stationary state. Whereas the
outflow in Effective model IV is in good agreement with the full model, in particular
for a very thin fracture of width 1 cm, Effective model I predicts a later point in time
for the fluid to pass through the fracture, and the total outflow remains too low until
a stationary flow establishes after approximately four days. This is due to the storage
term in the one-dimensional Richards equation that causes the fracture to fill up with
water and delays the saturation process of the lower matrix block, which is unphysical
since the storage capacity of the two-dimensional fracture is negligible given its small
width. Finally, we remark that the outflow rate in Effective model III is similar to the
one in Effective model I.

5.2. Impermeable fracture

Next, we consider the case that the fracture is much less permeable than the sur-
rounding matrix blocks. For this purpose, we take the van Genuchten parameters for the
fracture corresponding to sample 4030 in the UNSODA database and opt for Touchet
silt loam as the solid matrix. This implies a saturated permeability ratio of ∼ 1: 261
between the fracture and the solid matrices. Now, we consider fractures of width 20
cm and 10 cm. For this choice, we have κ ≈ 0.053, 0.041 and λ ≈ 2.42, 1.86 for
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Figure 4: z-averaged pressure head in the fracture at final time T = 4 d, fracture: Hygiene sandstone, solid
matrix: Guelph loam

Figure 5: Cumulative outflow at lower Dirichlet boundary over time, fracture: Hygiene sandstone, solid
matrix: Guelph loam
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l = 20 cm, 10 cm, respectively. Accordingly, theory predicts Effective model VII∗ to be
the appropriate choice for these soil properties and we anticipate that a steep pressure
gradient across the fracture will form.

The simulations were run until an end time of T = 0.2 d at a time step of ∆t =

0.001 d ≈ 86 s. This means that at the final time of the simulation, the reservoir is still
in the process of being filled.

Figure 6 shows the z-averaged pressure head at final time. Here, we compare the
solution of the full model with Effective models I and IV as examples of effective
models with continuous pressure at the fracture. Note that in Effective model VII∗ no
pressure is defined in the fracture for which reason no curve for this effective model
is depicted. One clearly sees that the average pressure along the fracture in the full
models is much lower than in Effective models I and IV. The reason for this is that
the inflowing water has not yet penetrated large parts of the fracture in the full models
at the simulation end time; hence, the lower part of the fracture is unaffected by the
inflow and remains at a low pressure. For the 20 cm wide fracture, larger parts of the
fracture have not been in contact with the inflowing water as compared to the 10 cm
wide fracture, which explains why the z-averaged pressure is lower in the former case.
On the other hand, the continuous effective models do not impede the crossing of water
through the fracture and the subsequent flow into the lower solid matrix. Consequently,
the pressure profiles in the fracture do not resemble the ones of the full models at all,
which is not surprising recalling that the theoretical part of this work predicts that this
situation falls within the range of an effective model with discontinuous pressure at the
interface.

Looking at the outflow at the lower Dirichlet boundary (see Figure 7) reveals that
the no-flow interface condition in Effective model VII∗ is evidently the correct approx-
imation for the two-dimensional fractures in the full model, for which the outflow lies
within the range of machine accuracy. In contrast, in the continuous models, water le-
aves the domain after short time. To summarise this case, the simulation confirms our
theoretical prediction that we are within the range of Effective model VII∗, whereas
continuous effective models would give a completely wrong description of the flow.

5.3. Permeable fracture
Let us now turn towards a case where the fracture is more conductive than the

solid matrices. To be precise, we consider a fracture filled with Touchet silt loam,
surrounded by solid matrix blocks of silt loam. For this constellation, the fracture is ∼
61 times as conductive as the matrix blocks when being fully saturated. Consequently,
we expect that the flow along the fracture is substantial even for thin fractures. We
consider fracture widths of l = 10 cm and l = 1 cm and choose T = 4 d, ∆t = 0.05 d.

This yields κ ≈ −0.056,−0.032 and λ ≈ −1.37,−0.78 for l = 10 cm, 1 cm, re-
spectively, implying that we expect the source term to vanish. Let us remark that this
is typical in many common situations in subsurface flow where the porosities of the
materials are within an order of magnitude. The situation for the flux term is less tri-
vial. Since λ is close to minus one, Effective model II might be a good choice. For the
1 cm thick fracture, λ lies between −1 and 0 and thus, Effective model IV potentially
approximates the full model well, too, while for the 10 cm thick fracture, λ is slightly
smaller than minus one, which might hint at Effective model IX.
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Figure 6: z-averaged pressure head in the fracture at final time T = 0.2 d, fracture: UNSODA sample 4030,
solid matrix: Touchet silt loam

Figure 7: Cumulative outflow at lower Dirichlet boundary over time, fracture: UNSODA sample 4030, solid
matrix: Touchet silt loam

Figure 8 shows the z-averaged pressure head at final time. We compare the solution
of the full models to Effective models I, II, IV, and IX. The solutions of the full model

25



lie between the solution of Effective models II and IV, with Effective model II being a
better approximation for the fracture of 10 cm width and Effective model IV being clo-
ser to the solution in case of a 1 cm wide fracture. This can be understood as follows:
in the case of the thicker fracture, the fracture possesses enough volume to transport the
inflowing water quickly to the right hand side of the domain, yielding a small pressure
gradient along the fracture. As the fracture width decreases, less water can flow along
the fracture causing the pressure gradient to rise. Effective model IV corresponds to
the limit case where flow along the fracture no longer takes place, whereas the elliptic
partial differential equation for the fracture in Effective model II expresses that inflo-
wing water is distributed along the fracture without the fracture being able to store it.
Clearly, the solutions of the full model interpolate between these two limit cases. In
Effective model IX, which is suitable in a situation where the fracture permeability is
much higher than the one in the solid matrices (i.e. λ < −1), the pressure in the fracture
is spatially constant. At final time, this constant pressure is almost identical to the solu-
tion of Effective model II. Effective model I gives a poor approximation of the pressure
in the fracture since the storage term of the one-dimensional Richards equation is too
big as compared to the one of the two-dimensional thin fractures.

Figure 9 shows the cumulative outflow across the lower right domain boundary over
time. Effective model IX is not a suitable approximation in this situation as inflow on
the left hand side of the fracture is instantaneously distributed along the entire fracture
which causes the water to reach the lower right domain boundary much earlier than in
the full models. This is despite the fact that for l = 10 cm, we have λ < −1, showing
that leaving out higher order terms can lead to severe errors and that convergence is
only obtained in the limit of vanishing fracture width. In Effective model II, the out-
flow increases earlier than in Effective models I and IV due to the quick transport of
water along the fracture without any storage, which gives a good approximation of the
outflow of the full model with a fracture of width 10 cm. Thus, Effective model II,
corresponding to κ > −1, λ = −1, gives the best approximation here, which fits well
the actual parameters κ ≈ −0.056, λ ≈ −1.37. In contrast, the outflow of water rises
slower in Effective model IV since there is no flux term in the fracture. The outflow in
the full model with a fracture of 1 cm width lies in between Effective models II and IV
as expected due to λ ≈ −0.78. After four days, the total outflow is very similar in all
models except for Effective model I, where the outflow through the domain boundary
is reduced since parts of the water can be stored in the fracture.

From this example, it can be seen that in many realistic situations, it is not trivial
to determine which effective model is the right one since the upscaled model is only
obtained in the limit. Besides, it illustrates the need for higher order correction terms
that account for the non-zero fracture width.

6. Conclusion

We have developed effective equations for replacing a fracture by an interface for
Richards’ equation. The starting geometry is a fracture of small thickness ε in a porous
medium. The effective models are derived as the limit of ε→ 0. The ratios of porosity
and absolute permeability of the fracture and the porous matrix are characterised by εκ

and ελ, respectively. The effective equations depend on the two parameters κ and λ and
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Figure 8: z-averaged pressure head in the fracture at final time T = 4 d, fracture: Touchet silt loam, solid
matrix: silt loam

Figure 9: Cumulative outflow at lower Dirichlet boundary over time, fracture: Touchet silt loam, solid
matrix: silt loam

we cover the cases κ ≥ −1, λ ∈ (−∞,∞). The numerical examples show that the ups-
caled models approximate the ε problem in a satisfactory manner. Further exploration
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of the numerical tests for the different upscaled models will be carried out elsewhere.
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