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Abstract

In this paper, we derive upscaled equations for modeling biofilm growth in porous media. The resulting macro-
scale mathematical models consider permeable multi-species biofilm including water flow, transport, detachment, and
reactions. We start with a pore-scale mathematical model for permeable biofilm formation. The biofilm is composed
by extracellular polymeric substances (EPS), water, active bacteria, and dead bacteria. The free flow is described by the
Stokes system and the water flux inside the biofilm by the Brikman equations. The nutrients are transported in the water
phase by convection and diffusion. This pore-scale model includes variations of the biofilm composition and size due
to reproduction of bacteria, production of EPS, death of bacteria, and shear forces. The model includes a water-biofilm
interface between the free flow and the biofilm. Homogenization techniques are applied to obtain upscaled models in a
thin channel and a tube. The resulting numerical computations are presented to compare the outcome of the effective
(upscaled) models for the two different geometries.

Symbols
c Nutrient concentration
C Reference nutrient concentration
d Biofilm height
D Nutrient diffusion coefficient
E Integration coefficient
F Integration coefficient
G Integration coefficient
h Variable dependent on the biofilm height (channel)
H Set-valued Heaviside graph
Hδ Regularized set-valued Heaviside graph
i Imaginary number
I Identity matrix
J Nutrient flux
Jν Bessel function of order ν of first kind
k Permeability
K Saturated hydraulic conductivity
kres Bacterial decay rate coefficient
kstr Stress coefficient
kn Monod-half nutrient velocity coefficient
l Height of thin channel
L Pore length
M′ Matrix with flux water derivatives (tube)
M, Matrix with flux water derivatives (channel)
p Pressure
P Reference pressure
Pe Péclet number
q Water velocity
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q̄ Average water velocity (tube)
q̂ Average water velocity (channel)
Q Reference water velocity
r Radial coordinate
R Reaction term
S Tangential shear stress
t Time
T Reference time
u Velocity of the biomass
U Reference biomass velocity
v Darcy velocity
V Integration coefficient
w Variable dependent of the biofilm height (tube)
W Integration coefficient
x Cartesian coordinate
X Integration coefficient
y Cartesian coordinate
Y Yield coefficient
Yν Bessel function of order ν of second kind
z Cartesian/Cylindrical coordinate
Greek symbols
χ General variable
δ Small regularization parameter
ε Dimensionless aspect ratio (channel)
η Experimentally determined parameter
Γ Space boundary
κc Effective permeability (channel)
κt Effective permeability (tube)
µ Dynamic viscosity
µn Maximum rate of nutrient utilization
η Experimental determined parameter
ν Unitary normal vector (interface)
νn Interface velocity
Ω Space domain
φ Porosity of the porous medium
Φ Growth velocity potential
ρ Density
Σ Sum of reaction terms
τ Unitary tangential vector
θ Volume fraction
υ Unitary normal vector (wall)
ξ Variable dependent of the permeability and water content (tube)
Ξ′ Space region (tube)
Ξ, Space region (channel)
ε Dimensionless aspect ratio (tube)
ρ Tube radius
ϕ Angular coordinate
Subscripts/superscripts
a Active bacteria
B Biodegradation microbe
b Biofilm
C Channel
d Dead bacteria
i Input
ib Input biofilm domain
iw Input water domain
K Biobarrier-forming microbe
l Lower
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m Middle
o Output
ob Output biofilm domain
ow Output water domain
e EPS
s Wall
T Tube
u Up
w Water
wb Water-biofilm (interface)
0 Initial
Abbreviations
EPS Extracellular polymeric substance
MEOR Microbial Enhanced Oil Recovery

1 Introduction
Biofilms are sessile communities of bacteria housed in a self-produced adhesive matrix consisting of extracellular poly-
meric substances (EPS), including polysaccharides, proteins, lipids, and DNA [1]. The proportion of EPS in biofilms
is 50% to 90% of the total organic matter [8, 26]. Water is by far the largest component of the matrix, giving biofilms
the nickname “stiff water” [9]. Biofilms provoke chronic bacterial infection, infection on medical devices, deterioration
of water quality, and the contamination of food [12]. On the other hand, biofilms can be used for wastewater treatment
and bioenergy production [16]. In microbial enhanced oil recovery (MEOR), one of the strategies is selective plugging,
where bacteria are used to form biofilm in the high permeable zones to diverge the water flow and extract the oil located
in the low permeable zones [20]. In wastewater treatment, one of the strategies consists in using biofilms to break down
compounds which it is not desirable to discharge into the natural environment [5].

Two of the motivations to derive upscaled models are to describe the average behavior of the system in an accurate
manner with relatively low computational effort compared to fully detailed calculations starting at the microscale [24] and
to determine constitutive relationships [11]. We also refer to [19], and [21], where the authors upscale various pore-scale
models for biofilm formation in perforated and strip geometries.

The present work builds on [14], where a pore-scale model is discussed. The model includes permeability and
different biofilm components. This mathematical model is based on laboratory experiments performed by [15], where
the biofilm was grown in micro-channels. Here we upscale this pore-scale model to derive one-dimensional effective
equations, by investigating the limit as the ratio of the height to the length approaches to zero.

In this general context, the objective of the research reported in the present article is to obtain core-scale models
for permeable biofilm in two different pore geometries. The motivation to choose these two geometries is because
experiments are performed in the laboratory in different geometries [3, 15] and some porous media can be modeled as a
stack of micro-tubes or micro-channels [24].

To summarize, the novel aspect in this work is in deriving core-scale models from a pore-scale model for a biofilm
which is permeable to the flow and has a variable (in time and space) height. The fluid flow in the biofilm is modeled by
the Brinkman equations, whereas in the remaining pore space the Stokes model is adopted. This is done for two different
geometries. We derive analytical expressions for the upscaled quantities and provide numerical simulation results for the
upscaled models in both cases.

The structure of this paper is as follows. In section 2, we describe the pore-scale biofilm model. In section 3, we
present the dimensionless pore-scale biofilm model. In section 4, we perform formal homogenization on the model
equations and obtain upscaled equations. In section 5, we compare the upscaled models with the upscaled model of [24]
and with the well-known core-scale model of [6]. Also, we perform numerical simulations in the upscaled models and we
compare the results for the percentage of biofilm coverage area and biofilm height for the two different effective models.
Finally, in section 6 we present the conclusions.

2 Pore-Scale Model
The pore-scale mathematical model considered here follows ideas from [2] ,[24], and [7]. A detailed description of this
model can be found in [14], where a comparison of laboratory measurements and numerical simulations is also presented.

The biofilm has four components: water, EPS, active, and dead bacteria ( j = {w,e,a,d}). Let θ j and ρ j denote the
volume fraction and the density of species j. The sum of volume fractions is constraint to 1 (θw + θe + θa + θd = 1).
The biomass phases and water are assumed to be incompressible (∂tρ j = 0) and the biofilm layer is attached to the pore
walls. Recalling that biofilms are formed mostly by water, the volume fraction of water θw is taken as a constant. Figure
1 shows schematically the phenomena considered for the biofilm formation.
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Figure 1: Conceptual pore-scale model showing the processes for the biofilm dynamics.

We consider two different pore geometries: a thin channel in Cartesian coordinates (x,y,z) and a tube in cylindrical
coordinates (r,ϕ,z). In the first case, the pore has circular cross-section, and in the second a rectangular one. In both
cases, the length is bigger than the cross-sectional diameter. In both cases, we assume a certain symmetry. For the
cylindrical pore we assume that the processes are radially symmetric, hence there is no angular dependence (see Figure
2). For the thin channel, there are no changes in the x direction, so it can be reduced to a two-dimensional strip (see Figure
Figure 8). This assumption is based on experiments, showing that when the width of the channel is much smaller than its
height, the growing of the biofilm occurs only at the upper and lower walls [15]. We present in detail the upscaling of the
model equations on the tube geometry. The upscaling on the channel geometry is shown in Appendix A. Figure 2 shows
the different domains, boundaries, and interface in the pore with tubular geometry.
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Figure 2: Pore of radius ρ and length L in cylindrical coordinates.

We consider a thin tube of radius ρ and length L,

Tube Ω
T := [0,ρ]× [0,2π)× [0,L]. (1)

The domain is occupied by the water and biofilm phases with the biofilm located along the tube walls. This leads to
the following sub-domains in the tube:

Water Ω
T
w(t) := {~r| r ∈ [0,ρ−d(z, t)), ϕ ∈ ×[0,2π), z ∈ (0,L)},

Biofilm Ω
T
b (t) := {~r| r ∈ (ρ−d(z, t),ρ), ϕ ∈ ×[0,2π), z ∈ (0,L)}. (2)

The boundary of the tube consists of the wall, and the in- and outflow boundaries

Wall Γ
T
s := {ρ}× [0,2π)× [0,L],

Inflow Γ
T
i := [0,ρ]× [0,2π)×{0},

Outflow Γ
T
o := [0,ρ]× [0,2π)×{L}. (3)

The water domain has three boundary parts: the in- and outflow, and the interface between the water and the biofilm

Water inflow Γ
T
iw(t) := {~r| r ∈ [0,ρ−d(z, t)), ϕ ∈ ×[0,2π), z = 0},

Water outflow Γ
T
ow(t) := {~r| r ∈ [0,ρ−d(z, t)), ϕ ∈ ×[0,2π), z = L},

Water-biofilm interface Γ
T
wb(t) := {~r| r = ρ−d(z, t), ϕ ∈ ×[0,2π), z ∈ (0,L)}. (4)

Similarly, for the biofilm one has the in- and outflow boundary parts, the water-biofilm interface ΓT
wb, and the solid

tube wall ΓT
s
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Biofilm inflow Γ
T
ib(t) := {~r| r ∈ (ρ−d(z, t),ρ), ϕ ∈ ×[0,2π), z = 0},

Biofilm outflow Γ
T
ob(t) := {~r| r ∈ (ρ−d(z, t),ρ), , ϕ ∈ ×[0,2π) z = L}. (5)

The unit normal~ν pointing into the biofilm and the normal velocity of the interface νn can be written in terms of the
biofilm height d as [24]

Unit normal ~ν = (1,∂zd)/
√

1+(∂zd)2, (6)

Normal velocity νn = −∂td/
√

1+(∂zd)2. (7)

Although the tube is a three-dimensional domain, recalling the rotational symmetry, we only write the r̂ and ẑ com-
ponents of the vectors in order to reduce the length of the mathematical expressions.

The water flux is described by the Stokes equations

Stokes equations ∇ ·~qw = 0, µ∆~qw = ∇pw in Ω
T
w(t), (8)

while the water flux inside the biofilm is described by the Brinkman equations

Brinkman equations ∇ ·~qb = 0, (µ/θw)∆~qb− (µ/k)~qb = ∇pb in Ω
T
b (t). (9)

Here pw and pb are the water pressures and~qw and~qb are the water velocities in the water domain and biofilm domain
respectively; µ is the water viscosity (constant, not dependent on biofilm species), and k is the permeability of the biofilm
(assumed isotropic). At the interface ΓT

wb(t) one has the continuity of the velocity and of the normal stress tensor, and at
the wall we consider the no-slip boundary condition

Continuity stress tensor ~ν · (µ∇~qw− I pw) = ~ν · ((µ/θw)∇~qb− I pb) at Γ
T
wb(t),

Continuity velocities ~qw = ~qb at Γ
T
wb(t),

No-slip condition ~qb = ~0 at Γ
T
s , (10)

where I is the identity matrix.
To model the nutrient transport and consumption, we let cα (α ∈ {w,b}) stand for the nutrient concentration in water

or biofilm respectively, and D is the nutrient diffusion coefficient in water. Then, the nutrients in the water and the biofilm
satisfy the convection-diffusion equation

Nutrient mass balance in water ∂tcw +∇ · ~Jw = 0 in Ω
T
w(t),

Nutrient mass balance in biofilm ∂t(θwcb)+∇ · ~Jb = Rb in Ω
T
b (t), (11)

where ~Jw and ~Jb are given by

Nutrient flux in water ~Jw = −D∇cw +~qwcw,

Nutrient flux in biofilm ~Jb = −θwD∇cb +~qbcb. (12)

Further at ΓT
wb(t) we impose the mass conservation and the continuity of the concentration, and at the solid wall ΓT

s
the normal flux is 0

Mass conservation (~Jb− ~Jw) ·~ν = νn(θwcb− cw) at Γ
T
wb(t),

Continuity of the concentration θwcb = cw at Γ
T
wb(t),

Normal flux condition ~υ · ~Jb = 0 at Γ
T
s , (13)

where ~υ is the normal vector on the pore wall. The reaction term Rb for the consumption of nutrients is given by
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Nutrient consumption rate Rb = −µnθaρacb/(kn + cb), (14)

where µn is the maximum rate of nutrient consumption and kn is the Monod-half nutrient velocity coefficient.
To model the movement of the biomass components due to reproduction, production of EPS, and dead of active

bacteria, we consider the following equations [2, 14]

Potential equation ∇ ·~u = (1−θw)
−1

Σi(Ri/ρi), i ∈ {e,a,d} in Ω
T
b (t),

Velocity of biomass ~u = −∇Φ in Ω
T
b (t),

Reference potential Φ = 0 at Γ
T
wb(t),

Wall condition ~υ ·∇Φ = 0 at Γ
T
s . (15)

where ~u is the velocity of the biomass and Φ is the growth velocity potential. The growth velocity potential is set to
zero at the interface ΓT

wb(t).
For each of the biomass components, we assume mass conservation [2]

Conservation of mass ρi∂tθi +ρi∇ · (θi~u) = Ri, i ∈ {e,a,d} in Ω
T
b (t),

Detached components ~ν ·∇θi = 0 at Γ
T
wb(t),

Wall condition ~υ ·∇θi = 0 at Γ
T
s . (16)

The reaction terms for the biomass components are given by

Dead bacterial rate Rd = kresθaρa,

Active bacterial rate Ra = −Yaµnθaρacb/(kn + cb)− kresθaρa,

EPS rate Re = −Yeµnθaρacb/(kn + cb), (17)

where Ye and Ya are yield coefficients and kres is the bacterial decay rate.
The water-biofilm interface changes in time due to the water flux provoking detachment of components and the

changes inside the biofilm. Thus, the normal velocity of the interface is given by [24]

Normal velocity νn =

 [~ν ·~u]+, if d = l,
~ν ·~u+ kstrS, if 0 < d < l,
0, if d = 0,

at Γ
T
wb(t). (18)

Here kstr is the stress coefficients and S is the tangential shear stress, given by

Tangential shear stress S := ||(I−~ν~νT )µ(∇~qw +∇~qT
w)~ν ||. (19)

This pore-scale model can be extended to consider more complex systems. For example, one can add different kind
of nutrients, different active bacteria species in the biofilm, or bacterial attachment.

3 Non-dimensional model
Before seeking an effective model, we bring the mathematical equations to a non-dimensional form. To this aim, we
introduce the reference time T , length L, radius ρ , water velocity Q := L/T , biomass velocity U , pressure P, and concen-
tration C. The thin tube is characterized by the ratio of its radius to the length ε := ρ/L, which is called the dimensionless
aspect ratio. We define the following dimensionless coordinates

t :=
t
T
, r :=

r
ρ
, z :=

z
L
.

The non-dimensional biofilm height is given by dε := d/ρ . In view of the scaling, the space domains (1)-(2) for the
non-dimensional formulation become
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Tube Ω
T,ε := [0,1]× [0,2π)× [0,1],

Water Ω
T,ε
w (t) := {~r| r ∈ [0,1−dε(z, t)), ϕ ∈ ×[0,2π), z ∈ (0,1)},

Biofilm Ω
T,ε
b (t) := {~r| r ∈ (1−dε(z, t),1), ϕ ∈ ×[0,2π), z ∈ (0,1)},

and the boundaries and interface become (3-5)

Inflow Γ
T,ε
i := [0,1]× [0,2π)×{0},

Outflow Γ
T,ε
o := [0,1]× [0,2π)×{1},

Water inflow Γ
T,ε
iw (t) := {~r| r ∈ [0,1−dε(z, t)), ϕ ∈ ×[0,2π), z = 0},

Water outflow Γ
T,ε
ow (t) := {~r| r ∈ [0,1−dε(z, t)), ϕ ∈ ×[0,2π), z = 1},

Water-biofilm interface Γ
T,ε
wb (t) := {~r| r = 1−dε(z, t), ϕ ∈ ×[0,2π), z ∈ (0,1)},

Biofilm inflow Γ
T,ε
ib (t) := {~r| r ∈ (1−dε(z, t),1), ϕ ∈ ×[0,2π), z = 0},

Biofilm outflow Γ
T,ε
ob (t) := {~r| r ∈ (1−dε(z, t),1), ϕ ∈ ×[0,2π), z = 1},

Wall Γ
T,ε
s := {ρ}× [0,2π)× (0,1).

The non-dimensional unit normal (6) is given by

~νε(r,z) = (1,ε∂zdε)/
√

1+(ε∂zdε)2.

We notice that a factor of ε appears in the second component of the non-dimensional unit normal, as a result of the
upscaling of the coordinates

∂zd =
1
L

∂

∂ z

(
ρ

d
ρ

)
=

1
L

∂

∂ z
(ρdε) = ε∂zdε .

We recall that due to the radial symmetry we have omitted the dependence of ϕ in the vector variables to reduce the
length of the manuscript (~νε(r,ϕ,z) =~νε(r,z)). The non-dimensional nutrient concentrations and densities are given by

cε
w :=

cw

C
, cε

b :=
cb

C
, ρ

′
i :=

ρi

C
i ∈ {e,a,d}.

The water velocities are given by

~qε
w(r,z) = (qε(r)

w , qε(z)
w ) :=

(
q(r)w

εQ
,

q(z)w

Q

)
, ~qε

b(r,z) = (qε(r)
b , qε(z)

b ) :=
(

q(r)b
εQ

,
q(z)b
Q

)
,

and the biomass velocity is given by

~uε(r,z) = (uε(r), uε(z)) :=
(

u(r)

εU
,

u(z)

U

)
.

Here, we assume that the velocities in the radial direction are of the order ρ/T . Hence, they scale by 1/ε when com-
pared to the longitudinal velocities. The biomass volume fractions are dimensionless; therefore, in the non-dimensional
model we simply define θ ε

i := θi, i ∈ {e,a,d}. Finally, the pressures and growth velocity potential become

pε
w :=

pw

P
, pε

b :=
pb

P
, Φ

ε :=
Φ

ULε2 .

We observe that the growth velocity potential Φ is scaled by 1/ε2 in order to have the biomass velocities in the radial
direction of the order ρ/T [?, see]]Noorden:Article:2010.

We define the following dimensionless parameters

P′e :=
QL
D

, µ
′
n := T µn, k′n :=

kn

C
, k′ :=

k
ρ2 , µ

′ :=
µLQ
ρ2P

, k′str :=
Pkstr

U
, k′res := T kres.

In this way, the dimensionless system of equations for the water flux (8-10) takes the form
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1
r

∂r(rq
ε(r)
w )+∂zq

ε(z)
w = 0 in Ω

T,ε
w (t), (20)

µ
′(

1
r

∂r(r∂rq
ε(r)
w )+ ε

2
∂

2
z qε(r)

w − qε(r)
w

r2 ) = ε
−2

∂r pε
w in Ω

T,ε
w (t), (21)

µ
′(

1
r

∂r(r∂rq
ε(z)
w )+ ε

2
∂

2
z qε(z)

w ) = ∂z pε
w in Ω

T,ε
w (t), (22)

1
r

∂r(rq
ε(r)
b )+∂zq

ε(z)
b = 0 in Ω

T,ε
b (t), (23)

µ ′

θw
(

1
r

∂r(r∂rq
ε(r)
b )+ ε

2
∂

2
z qε(r)

b −
qε(r)

b
r2 ) = ε

−2
∂r pε

b in Ω
T,ε
b (t), (24)

µ ′

θw
(

1
r

∂r(r∂rq
ε(z)
b )+ ε

2
∂

2
z qε(z)

b ) =
µ ′

k′
(qε(r)

b ,qε(z)
b )+∂z pε

b in Ω
T,ε
b (t), (25)

ν
(z)(µ ′∂zq

ε(z)
w − pε

w−
µ ′

θw
∂zq

ε(z)
b + pε

b) = εν
(r)(

µ ′

θw
∂zq

ε(r)
b −µ

′
∂zq

ε(r)
w ) at Γ

T,ε
wb (t), (26)

εν
(r)(

µ ′

θw
∂rq

ε(r)
b − pε

b−µ
′
∂rq

ε(r)
w + pε

w) = ν
(z)(µ ′∂rq

ε(z)
w − µ ′

θw
∂rq

ε(z)
b ) at Γ

T,ε
wb (t), (27)

(qε(r)
w , qε(z)

w ) = (qε(r)
b , qε(z)

b ) at Γ
T,ε
wb (t), (28)

(qε(r)
w , qε(z)

w ) = (0, 0) at Γ
T,ε
s , (29)

where (20-22) are the dimensionless Stokes equations, (23-25) are the dimensionless Brinkman equations, (26-28)
are the dimensionless interface conditions, and (29) is the dimensionless condition on the wall.

The dimensionless equations for the transport of nutrients (11-13) in the water and biofilm are given by

∂tcε
w−

1
P′e
(

ε−2

r
∂r(r∂rcε

w)+∂
2
z cε

w)+
1
r

∂r(rqε(r)
w cε

w)+∂z(q
ε(z)
w cε

w) = 0 in Ω
T,ε
w (t), (30)

∂t(θwcε
b)−

θw

P′e
(

ε−2

r
∂r(r∂rcε

b)+∂
2
z cε

b)+
1
r

∂r(rqε(r)
b cε

b)+∂z(q
ε(z)
b cε

b) = Rε
b in Ω

T,ε
b (t), (31)

− 1
P′eε2 (∂rcε

w−θw∂rcε
b)− (cε

bqε(r)
b − cε

wqε(r)
w )+∂tdε(θwcε

b− cε
w)

+
∂zdε

P′e
(∂zcε

w−θw∂zcε
b)+∂zdε(cε

bqε(z)
b − cε

wqε(z)
w ) = 0 at Γ

T,ε
wb (t), (32)

θwcε
b = cε

w at Γ
T,ε
wb (t), (33)

∂rcε
b = 0 at Γ

T,ε
s (t), (34)

where (30) is the dimensionless transport equation of nutrients in the water domain, (31) is the dimensionless transport
equation of nutrients in the biofilm domain, (32)-(33) are the dimensionless coupling conditions at the interface, and (34)
is the dimensionless condition on the wall. The dimensionless reaction rate (14) for the consumption of nutrients is given
by

Rε
b =−µ

′
nθ

ε
a ρ
′
a

cε
b

k′n + cε
b
.

The equations for the growth velocity potential (15) become

U
Q
(

1
r

∂r(ruε(r))+∂zuε(z)) = Σ
ε in Ω

T,ε
b (t), (35)

(uε(r), uε(z)) = −(∂rΦ
ε ,ε2

∂zΦ
ε) in Ω

T,ε
b (t), (36)

Φ
ε = 0 at Γ

T,ε
wb (t), (37)

∂rΦ
ε = 0 at Γ

T,ε
s , (38)

where (35)-(36) are the dimensionless equations for the biomass growth velocity potential, (37) is the dimensionless
reference potential at the interface, and (38) is the dimensionless condition on the wall. We define the dimensionless sum
of the biomass reaction terms as
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Σ
ε :=

(
ρ ′a
ρ ′e

Ye +Ya

)
µ
′
nθ

ε
a

cε
b

k′n + cε
b
+

(
ρ ′a
ρ ′d
−1
)

k′resθ
ε
a .

The equations for the biomass components (16) become

∂tθ
ε
e +

U
Q
(uε(r)

∂rθ
ε
e +uε(z)

∂zθ
ε
e ) = Yeµ

′
nθ

ε
a

ρ ′a
ρ ′e

cε
b

k′n + cε
b
−θ

ε
e Σ

ε in Ω
T,ε
b (t), (39)

∂tθ
ε
a +

U
Q
(uε(r)

∂rθ
ε
a +uε(z)

∂zθ
ε
a ) = Yaµ

′
nθ

ε
a

cε
b

k′n + cε
b
− k′resθ

ε
a −θ

ε
a Σ

ε in Ω
T,ε
b (t), (40)

∂tθ
ε
d +

U
Q
(uε(r)

∂rθ
ε
d +uε(z)

∂zθ
ε
d ) = k′res

ρ ′a
ρ ′d

θ
ε
a −θ

ε
d Σ

ε in Ω
T,ε
b (t), (41)

−∂rθi + ε∂zdε
∂zθi = 0 i ∈ {e,a,d} at Γ

T,ε
wb (t), (42)

∂rθi = 0 i ∈ {e,a,d} at Γ
T,ε
s , (43)

where (39-41) are the dimensionless conservation of mass equations for the biomass components, (42) is the dimen-
sionless condition at the interface, and (43) is the dimensionless condition on the wall.

The dimensionless biofilm height (18)-(19) is given by

∂tdε =


[−U

Q (−uε(r)+∂zdε uε(z))]+, if d = 1,
−
√

1+(ε∂zdε)2εk′strS
′− U

Q (−uε(r)+∂zdε uε(z)), if 0 < d < 1,
0, if d = 0,

at Γ
T,ε
wb (t). (44)

The dimensionless tangential shear stress (19) is given by

S′ = ||(I−νε νεT )µ ′M′νε ||, (45)

where the matrix M′ is given by

M′ =

(
∂rq

ε(r)
w ε∂zq

ε(r)
w

ε−1∂rq
ε(z)
w ∂zq

ε(z)
w

)
. (46)

4 Upscaling
The pore-scale mathematical model describes the biofilm formation in a three-dimensional domain. When the length of
the tube is much larger than its radius, it is possible to reduce the mathematical model from three to one dimension, letting
the aspect ratio ε to approach zero. We perform a formal asymptotic expansion for the variables depending on ε , namely
pε

w, pε
b, cε

w, cε
b,~qε

w,~qε
b,~uε , Φε , θ ε

w, θ ε
e , θ ε

a , θ ε
d and dε . For all except d we assume

χ
ε(~r, t) = χ0(~r, t)+ εχ1(~r, t)+O(ε2).

The corresponding asymptotic expansion of d is

dε(z, t) = d0(z, t)+ εd1(z, t)+O(ε2).

In [24], [13], and [4], the authors present upscaled models for pore-scale mathematical models for reactive flows.
Following the same ideas, we show how to obtain the corresponding upscaled model in the tube pore geometry.

We define the average water flow as the following integral

q̂(z, t) = q̂w(z, t)+ q̂b(z, t) =
∫ 2π

0

(∫ 1−d0

0
q(z)w,0rdr+

∫ 1

1−d0

q(z)b,0rdr
)

dϕ. (47)

We consider the following space regions in the tube

Ξ
′
w = {~r| r ≤ 1−d ∧ 0≤ ϕ < 2π ∧ z1 ≤ z≤ z1 +δ z},

Ξ
′
b = {~r| 1−d ≤ r ≤ 1 ∧ 0≤ ϕ < 2π ∧ z1 ≤ z≤ z1 +δ z}.
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These regions are a disk of radius 1− d and a ring of height d respectively; both of length δ z. Integrating (20) and
(23) over the previous regions and using the Gauss theorem, we obtain

0 =
∫

Ξ′w
∇ ·~qε

wdV +
∫

Ξ′b

∇ ·~qε
bdV = 2π

∫ z1+δz

z1

~qε
w ·~ν

∣∣
r=(1−dε )

dz

+2π

∫ 1−dε

0
(qε(z)

w
∣∣
z=z1+δz

−qε(z)
w
∣∣
z=z1

)rdr−2π

∫ z1+δz

z1

(~qε
b ·~ν

∣∣
r=1−dε )

+~qε
b ·~ν

∣∣
r=1)dz

+2π

∫ 1

1−dε

(qε(z)
b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)rdr.

Recalling the no-slip condition for the water flux on the wall (29) and the continuity of fluxes at the interface (28), the
previous equation becomes

∫ 1−dε

0
(qε(z)

w
∣∣
z=z1+δz

−qε(z)
w
∣∣
z=z1

)rdr+
∫ 1

1−dε

(qε(z)
b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)rdr = 0.

Dividing the previous equation by δz and letting δz approach zero, we obtain for the lowest-order terms in ε

∂zq̂ = ∂zq̂w(z, t)+∂zq̂b(z, t) = 0,

where we have used the definition of the average water flow (47).
The lowest order terms in the Stokes model (20-22) lead to

1
r

∂r(rq
(r)
w,0)+∂zq

(z)
w,0 = 0, ∂r pw,0 = 0,

µ ′

r
∂r(r∂rq

(z)
w,0) = ∂z pw,0. (48)

From (48b), we conclude that pw,0 does not depend on the r coordinate. Analogous, for the Brinkman model (23-25),
the lower-order terms in ε give

1
r

∂r(rq
(r)
b,0)+∂zq

(z)
b,0 = 0, ∂r pb,0 = 0,

µ ′

rθw
∂r(r∂rq

(z)
b,0)−

µ ′

k′
q(z)b,0 = ∂z pb,0. (49)

From (49b), we conclude that pb,0 does not depend on the r coordinate. Since pw,0 and pb,0 do not depend on the
r coordinate, from (27) we conclude that pw,0 = pb,0 at the biofilm-water interface, resulting in pw,0(z, t) = pb,0(z, t) :=
p0(z, t). We turn our attention to equations (48c) and (49c). It is possible to find solutions for q(z)w,0 and q(z)b,0 integrating
twice with respect to r both equations and in addition using the symmetry, interface, and boundary conditions (26-29).
After integration, we get

q(z)w,0 =

(
r2

4
+E

)
∂z p0

µ ′
, (50)

q(z)b,0 =

(
FJ0(ξ r)+GY0(−ξ r)− k′

)
∂z p0

µ ′
, (51)

where Jν(z) and Yν(z) are the Bessel function of order ν of first and second kind respectively [?, see]]Olver:Book:2012.
The coefficients appearing in (50)-(51) are

E =
2wθw(J0(s)Y0(−ξ w)− J0(ξ w)Y0(−s))+ξ k′(J0(ξ w)Y1(−ξ w)+Y0(−ξ w)J1(ξ w))

4(ξ J0(ξ )Y1(−ξ w)+ξY0(−ξ )J1(ξ w))

−ξ (4k′+w2)(J0(ξ )Y1(−ξ w)+Y0(−ξ )J1(ξ w))
4(ξ J0(ξ )Y1(−ξ w)+ξY0(−ξ )J1(ξ w))

,

F =
2k′ξY1(−ξ w)+wθwY0(−ξ )

2(ξ J0(ξ )Y1(−ξ w)+ξY0(−ξ )J1(ξ w))
,

G =
2k′ξ J1(ξ w)+wθwJ0(ξ )

2(ξ J0(ξ )Y1(−ξ w)+ξY0(−ξ )J1(ξ w))
,

w = 1−d0,

ξ = i
√

θw/k′,

where i is the imaginary number. We remark that most of the mathematical commercial software includes the Bessel
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functions; therefore, it is easy to use the above expression. Also, although the Bessel functions are evaluated with complex
numbers, both fluxes q(z)w,0 and q(z)b,0 are given by real numbers.

To obtain the average water flow defined in (47), we integrate (50) and (51) as follow

q̄ =
∂z p0

µ ′

∫ 2π

0

(∫ 1−d0

0

(
r2

4
+E

)
rdr

+
∫ 1

1−d0

(
FJ0

(
ri

√
θw

k′

)
+GY0

(
− ri

√
θw

k′

)
− k′

)
rdr
)

dϕ

= 2π

(
(1−d0)

4 +8E(1−d0)
2

16
+ i

√
k′

θw

(
FY1

(
− i

√
θw

k′

)
−GJ1

(
i

√
θw

k′

)
−F(1−d0)Y1

(
− (1−d0)i

√
θw

k′

)
+G(1−d0)J1

(
(1−d0)i

√
θw

k′

))
−k′

1− (1−d0)
2

2

)
∂z p0

µ ′
.

This gives the Darcy law

q̄ =−κt(d0)

µ ′
∂z p0,

where κt(d0) is the effective permeability given by

κt(d0) = −2π

(
(1−d0)

4 +8E(1−d0)
2

16
+ i

√
k′

θw

(
FY1

(
− i

√
θw

k′

)
−GJ1

(
i

√
θw

k′

)
−F(1−d0)Y1

(
− (1−d0)i

√
θw

k′

)
+G(1−d0)J1

(
(1−d0)i

√
θw

k′

))
−k′

1− (1−d0)
2

2

)
.

which changes according to the biofilm height d0.
The growth velocity potential equations (35) and (36) for the lower-order terms in ε are

U
Q

(
1
r

∂r(ru(r)0 )+∂zu
(z)
0

)
= Σ0, u(r)0 =−∂rΦb,0, u(z)0 = 0, (52)

where the boundary conditions for the interface (37) becomes Φb,0 = 0 and wall (38) becomes ∂rΦb,0 = 0.
In dimensionless form, the volume fraction equations (39-41) are

∂tθ
ε
i +

U
Q
(uε(r)

∂rθ
ε
i +uε(z)

∂zθ
ε
i ) = Rε

i −θ
ε
i Σ

ε , (53)

with i= {e,a,d}. We focus on biofilms where the biomass components change slightly along the r direction, resulting
in the approximation θi,0(r,z, t) = θi,0(z, t). Using (52c), the lower-order terms in (53) are

∂tθi,0 = Ri,0−θi,0Σ0.

Integrating (52a) over r and using the boundary conditions (37)-(38) one gets

u(r)0 =
Q

2U
Σ0(r−1). (54)

For the nutrients, integrating (30) and (31) over r and ϕ yields
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2π

∫ 1−dε

0

(
∂tcε

w−
1
P′e
(ε−2 1

r
∂r(r∂rcε

w)+∂
2
z cε

w)+
1
r

∂r(rqε(r)
w cε

w)+∂z(q
ε(z)
w cε

w)

)
rdr = 0,

2π

∫ 1

1−dε

(
∂t(θwcε

b)−
θw

P′e
(ε−2 1

r
∂r(r∂rcε

b)+∂
2
z cε

b)+
1
r

∂r(rqε(r)
b cε

b)+∂z(q
ε(z)
b cε

b)

+µ
′
nθ

ε
a ρ
′
a

cε
b

k′n + cε
b

)
rdr = 0.

Interchanging the integration and the differentiation operators, these equations become

∂t

(∫ 1−dε

0
cε

wrdr
)
+∂tdε rcε

w
∣∣
r=1−dε −∂z

(∫ (1−dε )

0

(
1
P′e

∂zcε
w−qε(z)

w cε
w

)
rdr
)

−∂zdε

(
1
P′e

r∂zcε
w− rqε(z)

w cε
w

)∣∣
r=1−dε +

(
1

ε2P′e
r∂rcε

w− rqε(r)
w cε

w

)
|r=1−dε = 0,

∂t

(∫ 1

(1−dε )
θwcε

brdr
)
−∂tdε

θwcε
br
∣∣
r=1−dε

−∂z

(∫ 1

1−dε

(
θw

P′e
∂zcε

b−qε(z)
b cε

b

)
rdr
)
+∂zdε

(
θw

P′e
r∂zcε

b− rqε(z)
b cε

b

)∣∣
r=1−dε

−
(

θw

ε2P′e
r∂rcε

b− rqε(r)
b cε

b

)
|r=1−dε +µ

′
nρ
′
aθ

ε
a

∫ 1

1−dε

cε
b

k′n + cε
b

rdr = 0.

Next, lower order terms in the equations for the conservation of nutrients (30) and (31) are

∂r(r∂rcw,0) = 0, ∂r(r∂r(θwcb,0)) = 0.

The interface coupling condition (32) becomes ∂rcw,0 = ∂r(θwcb,0) and (33) becomes cw,0 = θwcb,0, while the bound-
ary condition on the wall (34) becomes ∂r(θwcb,0) = 0. Therefore, we conclude that cw,0(z, t) = θwcb,0(z, t) := c0(z, t).
Then, using the aforementioned results, the equations for the nutrients can be written as

1
2

∂t(c0(1−d0)
2)+∂td0rc0

∣∣
r=1−d0

− (1−d0)
2

2P′e
∂

2
z c0 + c0

∫ (1−d0)

0
q(r)w,0rdr

−∂zd0

(
1
P′e

r∂zc0− rq(z)w c0

)∣∣
r=1−d0

+

(
1

ε2P′e
r∂rc0− rq(r)w,0c0

)
|r=1−d0 = 0,

1
2

∂t(c0(1− (1−d0)
2))−∂td0rc0

∣∣
r=1−d0

− 1− (1−d0)
2

2P′e
∂

2
z c0

+c0

∫ 1

1−d0

q(z)b,0rdr+∂zd0

(
1
P′e

r∂zc0− rq(z)b,0c0

)∣∣
r=1−d0

−
(

1
ε2P′e

r∂rc0−q(r)b,0c0

)
|r=1−d0 +

1− (1−d0)
2

2
µ
′
nρ
′
aθa,0

c0

k′n + c0
= 0.

Then, adding the both previous equations and using the interface condition (32), we finally obtain

∂tc0 +∂z

(
c0q̂− 1

P′e
∂zc0

)
=−(1− (1−d0)

2)µ ′nθa,0ρ
′
a

c0

k′n + c0
.

We focus on the water-biofilm interface (44):

∂tdε =


[−U

Q (−uε(r)+∂zdε uε(z))]+, if d = 1,
−
√

1+(ε∂zdε)2εk′strS
′− U

Q (−uε(r)+∂zdε uε(z)), if 0 < d < 1,
0, if d = 0.

(55)

Following [24], we regularize the formulation of (55). First we let H0 and H1 be the set-valued Heaviside graphs
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H0(d) :=

 {0}, if d < 0,
[0,1], if d = 0,
{1}, if d > 0,

H1(d) :=

 {1}, if d < 1,
[0,1], if d = 1,
{0}, if d > 1,

(56)

where we set H0(dε = 0) = 0 and H1(dε = 1) = 0. Observe that this choice guarantees that ∂tdε never becomes
negative whenever dε = 0 and positive when dε = 1. Then, (55) is written as

∂tdε ∈ H0(dε)H1(dε)

(
−
√

1+(ε∂zdε)2εk′strµ
′||(I−ν

ε
ν

εT )M′νε ||

−U
Q
(−uε(r)+∂zdε uε(z))

)
+(1−H1(dε))[−U

Q
(−uε(r)+∂zdε uε(z))]+. (57)

For practical calculations, the multi-valued functions are replaced by regularized Heaviside functions, defined by

Hδ
0 (d) :=

 0, if d < 0,
d/δ , if d ∈ [0,δ ],
1, if d > δ ,

Hδ
1 (d) :=

 1, if d < 1,
(1+δ −d)/δ , if d ∈ [1,1+δ ],
0, if d > 1+δ ,

(58)

where δ is a small regularization parameter. Then, we can write (57) as

∂tdε = Hδ
0 (d

ε)Hδ
1 (d

ε)

(
−
√

1+(ε∂zdε)2εk′strµ
′||(I−ν

ε
ν

εT )M′νε ||

−U
Q
(−uε(r)+∂zdε uε(z))

)
+(1−Hδ

1 (d
ε))[−U

Q
(−uε(r)+∂zdε uε(z))]+. (59)

Using (45-46, 52c, 54) for the lower-order terms we have

∂tdε = Hδ
0 (d

ε)Hδ
1 (d

ε)(−k′strµ
′|∂rq

(z)
w,0|+d0Σ0/2)+(1−Hδ

1 (d
ε))[−Σ0/2]+. (60)

Using (50), we obtain

∂tdε = Hδ
0 (d

ε)Hδ
1 (d

ε)(−k′str(1−d0)|∂z p0|/2+d0Σ0/2)+(1−Hδ
1 (d

ε))[−Σ0/2]+.

The original model is obtained when passing δ to zero [23], obtaining finally

∂td0 =

 [Σ0/2]−, if d0 = 1,
−k′str(1−d0)|∂z p0|/2+d0Σ0/2, if 0 < d0 < 1,
0, if d0 = 0.

5 Discussion and comparison with other biofilm models
The extension from a channel (tube) to a porous medium is done by considering a stack of channels (tubes) of void space
and solid material [24], where we denote by φ the porosity of the porous medium. Figure 3 shows the core with tubes as
void spaces. We assume that all tubes have the same diameter. Therefore, multiplying the upscaled model equations by
φ , the corresponding core-scale mathematical models are obtained.

R

Z

φ

K

Porosity

Permeability

Figure 3: Schematic representation of a porous medium consisting of a stack of thin tubes of void space and solid matrix.

Table 1 shows the core-scale equations of the van Noorden model, the porous medium formed by channels and the porous
medium formed by tubes, where v := φq is the Darcy velocity. For the details of the upscaling on the thin channel domain,
see Appendix A.
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Table 1: Core-Scale Equations for the Three Different Models

Name Upscaled equation
Darcya v =− φκc(d)

µ
∂z p, ∂zv = 0

Darcyb v =− φκt (d)
µ

∂z p, ∂zv = 0

Darcyc v =− 2φ(1−d)3

3µ
∂z p, ∂zv = 0

Nutrientsa ∂t(φc)+∂z

(
cv− φ

Pe
∂zc
)
=−dφρaR

Nutrientsb ∂t(φc)+∂z

(
cv− φ

Pe
∂zc
)
=−(1− (1−d)2)φρaR

Nutrientsc ∂t(φc)+∂z

(
cv− φ

Pe
∂zc
)
=−dφρaR

Heighta ∂td =

 [Σ]−, if d = 1,
−kstr(1−d)|∂z p|+dΣ, if 0 < d < 1,
0, if d = 0.

Heightb ∂td =


[Σ/2]−, if d = 1,
−kstr

1−d
2 |∂z p|+dΣ/2, if 0 < d < 1,

0, if d = 0.

Heightc ∂td =

 [Σ]−, if d = 1,
−kstr(1−d)|∂z p|+dΣ, if 0 < d < 1,
0, if d = 0.

Bacteriaa,b ∂tθa = Yaµnθa
c

kn+c − kresθa−θaΣ

EPSa,b ∂tθe =
ρa
ρe

Yeµnθa
c

kn+c −θeΣ

Deada,b ∂tθd = ρa
ρd

kresθa−θdΣ

Reactionsa,b Σ :=
(

ρa
ρe

Ye +Ya

)
R+

(
ρa
ρd
−1
)

kresθa, R = µnθa
c

kn+c

Reactionsc Σ := YaR− kres, R = µn
c

kn+c
aChannel model. bTube model. c[24].

From Table 1, we observe that for the Darcy flow, the permeability is different for the three models. Figure 4 shows the
tube and channel effective permeabilities as a function of the biofilm height for different biofilm permeability values. We
observe that the effective permeability decreases as the biofilm height increases and the biofilm permeability decreases.

Figure 5 shows the three different effective permeabilities for a biofilm permeability value of k = 10−1. We observe
that when there is no biofilm (d = 0), the effective permeability in the channel is larger than the effective permeability
in the tube, as a result of the upscaling. The other limit case is when the biofilm has clogged the channel (d = 1). In
this case, for the [24] model, since the biofilm is not permeable, the water flux becomes 0. This is not true in the present
model as the biofilm is permeable, reflecting better the realistic situation.

For the nutrients, the difference between [24] and the channel model is on the reaction term, where for [24] the
nutrient consumption depends on the biofilm height, while in the channel model depends also in the volume fraction of
active bacteria. Comparing the tube and channel model, we observe a different function of the biofilm height, due to the
cylindrical geometry. For the biofilm height, the difference between [24] and the channel model is on the Σ term, where
for [24] the total sum of reactions accounts for bacterial reproduction and decay, while in the channel model accounts
also for EPS. Finally, for the bacterial, EPS, and dead bacterial volume fractions, the model equations are the same for
the channel and tube models, while for [24] the active bacterial volume fraction is constant with value 1.

In [24], the authors compared their upscaled model with a well-know macro-scale model by [25], where a mathemati-
cal model for an impermeable single-species biofilm including flow, transport and reactions is built. We compare our both
derived uspscaled models with a macro-scale model by [6], where a mathematical model for impermeable multi-species
biofilm including flow, transport and reactions is built (Table 2).

In Table 2, K is the saturated hydraulic conductivity, θB and θK the normalized current biodegradation and biobarrier-
forming microbial concentrations, φ0 and K0 the clean surface porosity and initial hydraulic conductivity respectively and
η an experimentally determined parameter. In [6], the porosity decreases as the component concentrations increases. In
our models, the porosity in the porous medium decreases as the biofilm height increases. However, in [6] the authors do
not include the detachment effects. Therefore, the equation for the biofilm height in our models allow the inclusion of
the detachment. The permeability in both tube and channel models have different functions as a result of the different
geometries and also because of the water flow inside the biofilm. Notice that there is a quartic function of the biofilm
height in one of the permeability terms in the porous medium formed by tubes, as proposed in [22] and [17]. For the
nutrient transportation, those models, in addition to the [6] model, have the same form with different reaction rates.

We perform numerical simulations considering both effective models (channel and tube) to compare the biofilm height
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Figure 4: Effective permeability κt in the tube (a) and κc in the channel (b) as a function of the biofilm height d for
different biofilm permeability values k.
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Figure 5: Effective permeabilities of [24], the tube, and the channel models as a function of the biofilm height d for the
biofilm permeability value of k = 10−1.

over time. We consider two different porous media of length L = 0.1 m: the first one has pores formed by thin channels
of height 2l = 0.2 mm and the second ones with tubes of diameter 2ρ = 0.2 mm. For the inlet boundary, we set pi = 2
Pa. The injected nutrient concentration is C = 10 kg/m3. The porosity Φ is set to 0.4. Recalling that biofilms are mostly
composed by water, we set the water volume fraction in the biofilm equal to 90%. In Table 3, the values of parameters
for the numerical simulations are presented.

We implement the model equations in the commercial software COMSOL Multiphysics (COMSOL 5.2a, Comsol
Inc, Burlington, MA, www.comsol.com). A decoupled finite element algorithm is used to solve the mathematical model
equations. Firstly, we solve for the pressure and concentration. Then, we compute the volume fractions and biofilm height.
We iterate between both steps until the error E (the difference between successive values of the solution) drops below
a given tolerance δ . We perform numerical simulations and we compare the results of the two upscaled mathematical
models.

Figure 6 compares the upscaled model with the pore-scale model in the channel for different values of ε , where the
percentage of biofilm coverage area over time is plotted. We observe that the percentage of biofilm coverage area in the
pore-scale simulations approaches the one computed from the upscaled models as ε gets smaller.

Figure 7 shows the changes over time of biofilm height for both porous media. Initially, the left part (0 < z < L/2)
has a biofilm height of d = l/2 (d = ρ/2 for the tubular pores), while the right part (L > z > L/2) has a height of d = l/4
(d = ρ/4 for the tubular pores). We observe that the biofilm height increases faster for the pore channels than in the
pore tubes. The explanation of this result is that the right-hand side of the equation for the biofilm height in the tube is
half times smaller than the right-hand side of the equation for the biofilm height in the channel which is obtained after
upscaling in the two different geometries. For the porous medium formed by channels, we observe that the biofilm keeps
growing even though the left part of the pore is clogged. This result cannot be observed using the [24] model because the
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Table 2: Core-Scale Equations for the Model Comparison [6]

Name Equation
Darcy v =−K∂z p, ∂zv = 0
Nutrients ∂tc+∂z(cv−D∂zc) = R
Porosity φ = φ0(1−θB−θK)
Permeability K = K0(φ/φ0)

η

Component B ∂tθB = YBµBθB
c

kB+c − kresθB

Component K ∂tθK = YK µKθK
c

kK+c − kresθK

Reactions R =−µBθB
c

kB+c −µKθK
c

kK+c

Table 3: Model Parameters for the Numerical Studies

Name Description Value
µ Water dynamic viscosity 10−3 Pa·s
ρw Water density 103 kg/m3

µn Maximum growth ratea 1.1×10−5/s
kn Monod-half velocitya 10−4 kg/m3

ρe EPS densitya 60 kg/m3

ρa Active bacterial densitya 60 kg/m3

ρd Dead bacterial densitya 60 kg/m3

k Biofilm permeabilityb 10−9 m2

D Nutrient diffusionc 1.7×10−9 m2/s
Ya Active bacterial growth yieldc 0.553
Ye EPS growth yieldc 0.447
kres Bacterial decay ratec 3.5×10−6/s
kstr Stressd 2.6×10−10 m/(s Pa)
a[2]. b[7]. c[10]. d[14].

Figure 6: Percentage of biofilm coverage area over time for the upscaled model and for decreasing values of epsilon.

water flux stops once the channel is clogged.

6 Conclusions
In this work, we upscale a mathematical model for permeable biofilm considering a thin channel and tubular pore ge-
ometries. The upscaled models differ mainly in the permeability terms which are functions of the biofilm height. After
comparison with the [24], it is possible to derive this model as a particular case of the channel model. The derived
upscaled models and the [6] model are very similar, the greatest difference being the lack of detachment of biofilm com-
ponents in the [6] model. The numerical simulations show that the biofilm height increases faster in the porous medium
formed by channels than in the one formed by tubes. To validate the core-scale upscaled models, designed laboratory
experiments are necessary which is the subject of our future research.
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(a) (b)
Figure 7: Biofilm height in the porous medium formed by channels (a) and tubes (b).

A Upscaling of the mathematical model in a thin channel
In section 4, we show with details how to obtain the upscaled model equations in a tube. Following the same ideas, in
this appendix we show how to upscale the model equations in a channel. We consider a thin channel with height 2l,
thickness w, and length L. When the thickness is much smaller than the height, experiments show that the growing of
the biofilm occurs only in the upper and lower walls [15]. Therefore, we can model the biofilm in the thin channel in a
two-dimensional domain. Figure 8 shows the different domains, boundaries, and interface in the rectangular geometry.
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Figure 8: Pore of length L, height 2l, and thickness w in Cartesian coordinates.

To achieve non-dimensional quantities, we use the reference values defined in section 4 (T , L, Q, U , P, and C). The thin
strip is characterized by the ratio of its height to the length ε := l/L.

The two-dimensional space domains for the non-dimensional formulation are given by

Channel Ω
C,ε := [0,1]× [0,1],

Water Ω
C,ε
w (t) := {~x| y ∈ (−1+dε(z, t),1−dε(z, t)), z ∈ (0,1)},

Biofilm Ω
C,ε
b (t) := {~x| y ∈ (−1,−1+dε(z, t)) ∨ y ∈ (1−dε(z, t),1),z ∈ (0,1)},

and the boundaries and interface are given by
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Inflow Γ
C,ε
i := [0,1]×{0},

Outflow Γ
C,ε
o := [0,1]×{1},

Water inflow Γ
C,ε
iw (t) := {~x| y ∈ (−1+dε(z, t),1−dε(z, t)), z = 0},

Water outflow Γ
C,ε
ow (t) := {~x| y ∈ (−1+dε(z, t),1−dε(z, t)), z = 1},

Interface Γ
C,ε
wb (t) := {~x| y =±(1−dε(z, t)), z ∈ (0,1)},

Biofilm inflow Γ
C,ε
ib (t) := {~x| y ∈ (−1,−1+dε(z, t)) ∨ y ∈ (1−dε(z, t),1), z = 0},

Biofilm outflow Γ
C,ε
ob (t) := {~x| y ∈ (−1,−1+dε(z, t)) ∨ y ∈ (1−dε(z, t),1), z = 1},

Wall Γ
C,ε
s := {±1}× (0,1).

The dimensionless system of equations for the water flux is given by

∂yqε(y)
w +∂zq

ε(z)
w = 0 in Ω

C,ε
w (t), (61)

µ
,(ε2

∂
2
z qε(y)

w +∂
2
y qε(y)

w ) = ε
−2

∂y pε
w in Ω

C,ε
w (t), (62)

µ
,
ε

2
∂

2
z qε(z)

w +∂
2
y qε(z)

w = ∂z pε
w in Ω

C,ε
w (t), (63)

∂yqε(y)
b +∂zq

ε(z)
b = 0 in Ω

C,ε
b (t), (64)

µ ,

θw
(ε2

∂
2
z qε(y)

b +∂
2
y qε(y)

b ) = ε
−2

∂y pε
b in Ω

C,ε
b (t), (65)

µ ,

θw
(ε2

∂
2
z qε(z)

b +∂
2
y qε(z)

b ) = ∂z pε
b−

µ ,

k
(qε(y)

b ,qε(z)
b ) in Ω

C,ε
b (t), (66)

ν
(z)(µ ,

∂zq
ε(z)
w − pε

w−
µ ,

θw
∂zq

ε(z)
b + pε

b) = εν
(y)(

µ ,

θw
∂zq

ε(y)
b −µ

,
∂zq

ε(y)
w )at Γ

C,ε
wb (t), (67)

εν
(y)(

µ ,

θw
∂yqε(y)

b − pε
b−µ

,
∂yqε(y)

w + pε
w) = ν

(z)(µ ,
∂yqε(z)

w − µ ,

θw
∂yqε(z)

b ) at Γ
C,ε
wb (t), (68)

(qε(y)
w , qε(z)

w ) = (qε(y)
b , qε(z)

b ) at Γ
C,ε
wb (t), (69)

(qε(y)
b , qε(z)

b ) = (0, 0) at Γ
C,ε
s . (70)

The equations for the nutrients become

∂tcε
w−

1
P,

e
(ε−2

∂
2
y cε

w +∂
2
z cε

w)+∂y(q
ε(y)
w cε

w)+∂z(q
ε(z)
w cε

w) = 0 in Ω
C,ε
w (t), (71)

∂t(θwcε
b)−

θw

P,
e
(ε−2

∂
2
y cε

b +∂
2
z cε

b)+∂y(q
ε(y)
b cε

b)+∂z(q
ε(z)
b cε

b) = Rε
b in Ω

C,ε
b (t), (72)

− 1
P,

eε2 (∂ycε
w−θw∂ycε

b)− (cε
bqε(y)

b − cε
wqε(y)

w )+∂tdε(θwcε
b− cε

w)

+
∂zdε

P,
e
(∂zcε

w−θw∂zcε
b)+∂zdε(cε

bqε(z)
b − cε

wqε(z)
w ) = 0 at Γ

C,ε
wb (t), (73)

θwcε
b = cε

w at Γ
C,ε
wb (t), (74)

∂ycε
b = 0 at Γ

C,ε
s , (75)

where

Rε
b =−µ

,
nθ

ε
a ρ

,
a

cε
b

k,n + cε
b
.

The dimensionless equations for the growth velocity potential are given by
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U
Q
(∂yuε(y)+∂zuε(z)) = Σ

ε in Ω
C,ε
b (t), (76)

(uε(y), uε(z)) = −(∂yΦ
ε ,ε2

∂zΦ
ε) in Ω

C,ε
b (t), (77)

Φ
ε = 0 at Γ

C,ε
wb (t), (78)

∂yΦ
ε = 0 at Γ

C,ε
s , (79)

where

Σ
ε :=

(
ρ
,
a

ρ
,
e
Ye +Ya

)
µ
,
nθ

ε
a

c
k,n + c

+

(
ρ
,
a

ρ
,
d
−1
)

k,resθ
ε
a .

The equations for the biomass components become

∂tθ
ε
e +

U
Q
(uε(y)

∂zθ
ε
e +uε(z)

∂yθ
ε
e ) = Yeµ

,
nθ

ε
a

ρ
,
a

ρ
,
e

cε
b

k,n + cε
b
−θ

ε
e Σ

ε in Ω
C,ε
b (t), (80)

∂tθ
ε
a +

U
Q
(uε(y)

∂zθ
ε
a +uε(z)

∂yθ
ε
a ) = Yaµ

,
nθ

ε
a

cε
b

k,n + cε
b
− k,resθ

ε
a −θ

ε
a Σ

ε in Ω
C,ε
b (t), (81)

∂tθ
ε
d +

U
Q
(uε(y)

∂zθ
ε
d +uε(z)

∂yθ
ε
d ) = k,res

ρ
,
a

ρ
,
d

θ
ε
a −θ

ε
d Σ

ε in Ω
C,ε
b (t), (82)

−∂yθi + ε∂zdε
∂zθi = 0 i ∈ {e,a,d} at Γ

C,ε
wb (t), (83)

∂yθi = 0 i ∈ {e,a,d} at Γ
C,ε
s . (84)

For the biofilm height we have

∂tdε =


[−U

Q (−uε(y)+∂zdε uε(z))]+, if d = 1,
−
√

1+(ε∂zdε)2εk,strS,− U
Q (−uε(y)+∂zdε uε(z)), if 0 < d < 1,

0, if d = 0,
at Γ

C,ε
wb (t), (85)

where

S, = ||(I−ν
ε
ν

εT )µ ,M,
ν

ε ||, (86)

and

M, =

(
∂yqε(y)

w ε∂zq
ε(y)
w

ε−1∂yqε(z)
w ∂zq

ε(z)
w

)
. (87)

We define the average water flow as the following integral

q̄(z, t) = q̄w(z, t)+ q̄b(z, t) =
∫ 1−d0

−(1−d0)
q(z)w,0dy+

∫ −(1−d0)

−1
q(z)b,0dy+

∫ 1

1−d0

q(z)b,0dy. (88)

We define the following space regions in the channel

Ξ
,
u = {~x| 1−dε ≤ y≤ 1 ∧ z1 ≤ z≤ z1 +δ z},

Ξ
,
m = {~x| |y| ≤ 1−dε ∧ z1 ≤ z≤ z1 +δ z},

Ξ
,
l = {~x| −1≤ y≤−(1−dε) ∧ z1 ≤ z≤ z1 +δ z}.

Integrating (61) and (64) over the previous regions and using the Gauss Theorem yield
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0 =
∫

Ξ
,
u

∇ ·~qε
bdV +

∫
Ξ
,
m

∇ ·~qε
wdV +

∫
Ξ
,
l

∇ ·~qε
bdV

= 2
∫ z1+δz

z1

~qε
w ·~ν

∣∣
y=1−dε dz+

∫ 1−d0

−(1−d0)
(qε(z)

w
∣∣
z=z1+δz

−qε(z)
w
∣∣
z=z1

)dy

−
∫ z1+δz

z1

(~qε
b ·~ν

∣∣
y=−(1−dε )

+~qε
b ·~ν

∣∣
y=−1)dz+

∫ −(1−dε )

−1
(qε(z)

b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)dy

−
∫ z1+δz

z1

(~qε
b ·~ν

∣∣
y=1 +~qε

b ·~ν
∣∣
y=1−d)dz+

∫ 1

1−dε

(qε(z)
b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)dy.

Recalling the no-slip condition for the water flux on the wall (70) and the continuity of fluxes at the interface (69), the
previous equation becomes

∫ 1−d0

−(1−d0)
(qε(z)

w
∣∣
z=z1+δz

−qε(z)
w
∣∣
z=z1

)dy+
∫ −(1−dε )

−1
(qε(z)

b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)dy

+
∫ 1

1−dε

(qε(z)
b

∣∣
z=z1+δz

−qε(z)
b

∣∣
z=z1

)dy = 0.

Dividing the previous equation by δz and letting δz approach zero, we obtain for the lowest-order terms in ε

∂zq̄ = ∂zq̄w(z, t)+∂zq̄b(z, t) = 0,

where we have used the definition of the average water flow (88).
The lowest order terms in the Stokes model (61-63) leads to

∂yq(y)w,0 +∂zq
(z)
w,0 = 0, ∂y pw,0 = 0, µ

,
∂

2
y q(z)w,0 = ∂z pw,0. (89)

From (89b), we conclude that pw,0 does not depend on the y coordinate. Analogous, for the Brinkman model (64-66),
the lower-order terms in ε give

∂yq(y)b,0 +∂zq
(z)
b,0 = 0, ∂y pb,0 = 0,

µ ,

θw
∂

2
y q(z)b,0−

µ ,

k,
q(z)b,0 = ∂z pb,0. (90)

From (90b), we conclude that pb,0 does not depend on the y coordinate, and from (68) we conclude that
pw,0(z, t) = pb,0(z, t) := p0(z, t). Integrating twice (89) and (90) with respect to y and using the symmetry, interface, and
boundary conditions

q(z)w,0 =

(
y2

2
+V

)
∂z p0

µ ,
, (91)

q(z)b,0 =

(
Wey
√

θw/k, +Xe−y
√

θw/k, − k,
)

∂z p0

µ ,
, (92)

where the coefficients are given by

V = −
( h2

2 + k,)(e−d0
√

θw/k, + ed0
√

θw/k,)+
√

k,θwh(e−d0
√

θw/k, − ed0
√

θw/k,)−2k,

e−d0
√

θw/k, + ed0
√

θw/k,
,

W =
k,e−h

√
θw/k,)+

√
k,θwhe

√
θw/k,

e−d0
√

θw/k, + ed0
√

θw/k,
,

X =
k,eh
√

θw/k,)−
√

k,θwhe−
√

θw/k,

e−d0
√

θw/k, + ed0
√

θw/k,
,

h = −1+d0.

To obtain the average water flow defined in (88), we integrate (91) and (92) as follows
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q̄ =
∂z p0

µ ,

(∫ 1−d0

−(1−d0)

(
y2

2
+V

)
dy+2

∫ −(1−d0)

−1

(
Wey
√

θw/k, +Xe−y
√

θw/k, − k,
)

dy
)

=

(
(1−d0)

3 +6V (1−d0)

3
+2
(√

k,

θw
We−
√

θw/k,(ed0
√

θw/k, −1)

−

√
k,

θw
Xe
√

θw/k,(e−d0
√

θw/k, −1)− k,d0

))
∂z p0

µ ,

= −κc(d0)

µ ,
∂z p0.

This is the Darcy law

q̄ =−κc(d0)

µ ,
∂z p0,

where κc(d0) is the effective permeability given by

κc(d0) = −
(
(1−d0)

3 +6V (1−d0)

3
+2
(√

k,

θw
We−
√

θw/k,(ed0
√

θw/k, −1)

−

√
k,

θw
Xe
√

θw/k,(e−d0
√

θw/k, −1)− k,d0

))
.

The growth velocity potential equations (76) and (77) for the lower-order terms in ε are

U
Q
(∂yu(y)0 +∂zu

(z)
0 ) = Σ0, u(y)0 =−∂yΦb,0, u(z)0 = 0, (93)

where the conditions at the interface (78) becomes Φb,0 = 0 and wall (79) becomes ∂yΦb,0 = 0.
In dimensionless form, the volume fraction equations (80-82) are

∂tθ
ε
i +

U
Q
(uε(y)

∂yθ
ε
i +uε(z)

∂zθ
ε
i ) = Rε

i −θ
ε
i Σ

ε , (94)

with i = {e,a,d}. We focus on biofilms where the biomass components change slightly along the y direction, resulting
in the approximation θi,0(y,z, t) = θi,0(z, t). Using (93c), the lower-order terms in (94) are

∂tθi,0 = Ri,0−θi,0Σ0. (95)

Integrating (93a) over y and using the boundary conditions (78)-(79) one gets

u(y)0 =
Q
U

Σ0(y+1). (96)

For the nutrients, integrating (71) and (72) y yields

∫ 1−dε

−(1−dε )

(
∂tcε

w−
1
P,

e
(ε−2

∂
2
y cε

w +∂
2
z cε

w)+∂y(q
ε(y)
w cε

w)+∂z(q
ε(z)
w cε

w)

)
dy = 0,

2
∫ −(1−dε )

−1

(
∂t(θwcε

b)−
θw

P,
e
(ε−2

∂
2
y cε

b +∂
2
z cε

b)+∂y(q
ε(y)
b cε

b)+∂z(q
ε(z)
b cε

b)

+µ
,
nθ

ε
a ρ

,
a

cε
b

k,n + cε
b

)
dy = 0.

Interchanging the integration and the differentiation operators, these equations become
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∂t

(∫ 1−dε

−(1−dε )
cε

wdy
)
+2∂tdε cε

w
∣∣
y=−(1−dε )

−∂z

(∫ 1−dε )

−(1−dε )

(
1
P,

e
∂zcε

w−qε(z)
w cε

w

)
dy
)

(97)

−2∂zdε

(
1
P,

e
∂zcε

w−qε(z)
w cε

w

)∣∣
y=−(1−dε )

+2
(

1
ε2P,

e
∂ycε

w−qε(y)
w cε

w

)
|y=−(1−dε ) = 0,

2∂t

(∫ −(1−dε )

−1
θwcε

bdy
)
−2∂tdε

θwcε
b

∣∣
y=−(1−dε )

−2∂z

(∫ −(1−dε )

−1

(
θw

P,
e

∂zcε
b−qε(z)

b cε
b

)
dy
)
+2∂zdε

(
θw

P,
e

∂zcε
b−qε(z)

b cε
b

)∣∣
y=−(1−dε )

(98)

−2
(

θw

ε2P,
e
∂ycε

b−qε(y)
b cε

b

)
|y=−(1−dε )+2µ

,
nρ

,
a

∫ −(1−dε )

−1
θ

ε
a

cε
b

k,n + cε
b

dy = 0.

Next, the lower order terms in the equations for the conservation of nutrients (71)-(72) are

∂
2
y cw,0 = 0, ∂

2
y cb,0 = 0.

The interface coupling condition (73) becomes θw∂ycb,0 = ∂ycw,0 and (74) becomes θwcb,0 = cw,0, while the boundary
condition on the wall (75) becomes ∂ycb,0 = 0. The symmetry in y implies that both nutrient concentrations do not
depend on y, resulting in cw,0(z, t) = θwcb,0(z, t) := c0(z, t). Using the aforementioned results, both equations (97) and
(98) can be written as

∂t(c0(2−2d0))+2∂td0c0
∣∣
y=−(1−d0)

− 2−2d0

P,
e

∂
2
z c0 + c0

∫ 1−d0

−(1−d0)
q(z)w,0dy

−2∂zd0

(
1
P,

e
∂zc0−q(z)w c0

)∣∣
y=−(1−d0)

+2
(

1
ε2P,

e
∂yc0−q(y)w,0c0

)
|y=−(1−d0) = 0,

∂t(2d0c0)−2∂td0c0
∣∣
y=−(1−d0)

−2d0
1
P,

e
∂

2
z c0 + c0

∫ −(1−dε )

−1
q(z)b,0dy

+2∂zd0

(
1
P,

e
∂zc0−q(z)b,0c0

)∣∣
y=−(1−dε )

−2
(

1
ε2P,

e
∂yc0−q(y)b,0c0

)
|y=−(1−dε )

+2d0µ
,
nρ

,
aθa,0

c0

k,n + c0
= 0.

Then, adding both equations and using the interface condition (73), we finally obtain

∂tc0 +∂z

(
c0q̄− 1

P,
e
∂zc0

)
=−d0µ

,
nθa,0ρ

,
a

c0

k,n + c0
.

We focus on the water-biofilm interface (85):

∂tdε =


[−U

Q (−uε(y)+∂zdε uε(z))]+, if d = 1,
−
√

1+(ε∂zdε)2εk,strµ ,||(I−νε νεT )M,νε ||− U
Q (−uε(y)+∂zdε uε(z)), if 0 < d < 1,

0, if d = 0.

Using the set-valued Heaviside graphs (56), we can write the previous equations as

∂tdε ∈ H0(dε)H1(dε))

(
−
√

1+(ε∂zdε)2εk,strµ
,||(I−ν

ε
ν

εT )M,
ν

ε || (99)

−U
Q
(−uε(y)+∂zdε uε(z))

)
+(1−H1(dε))[−U

Q
(−uε(y)+∂zdε uε(z))]+.

Using the regularized Heaviside functions (58), we can write (99) as

∂tdε = Hδ
0 (d

ε)Hδ
1 (d

ε))

(
−
√

1+(ε∂zdε)2εk,strµ
,||(I−ν

ε
ν

εT )M,
ν

ε ||

−U
Q
(−uε(y)+∂zdε uε(z))

)
+(1−Hδ

1 (d
ε))[−U

Q
(−uε(y)+∂zdε uε(z))]+.
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Using (86-87,91,93a,96), for the lower-order terms in ε we have

∂tdε = Hδ
0 (d

ε)Hδ
1 (d

ε))(−k,str(1−d0)|∂z p0|+d0Σ0)+(1−Hδ
1 (d

ε))[−Σ0]+.

Letting δ go to zero in order to return to the nonregularized formulation, we get

∂td0 =

 [Σ0]− if d0 = 1,
−k,str(1−d0)|∂z p0|+d0Σ0, if 0 < d0 < 1,
0, if d = 0.
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